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Abstract

In this paper we consider the problem of collectively classi-

fying entities where relational information is available across

the entities. In practice inaccurate class distribution for each

entity is often available from another (external) classifier.

For example this distribution could come from a classifier

built using content features or a simple dictionary. Given

the relational and inaccurate external classifier information,

we consider two graph based settings in which the problem

of collective classification can be solved. In the first setting

the class distribution is used to fix labels to a subset of nodes

and the labels for the remaining nodes are obtained like in a

transductive setting. In the other setting the class distribu-

tions of all nodes are used to define the fitting function part

of a graph regularized objective function. We define a gen-

eralized objective function that handles both the settings.

Methods like harmonic Gaussian field and local-global con-

sistency (LGC) reported in the literature can be seen as spe-

cial cases. We extend the LGC and weighted vote relational

neighbor classification (WvRN) methods to support usage of

external classifier information. We also propose an efficient

least squares regularization (LSR) based method and relate

it to information regularization methods. All the methods

are evaluated on several benchmark and real world datasets.

Considering together speed, robustness and accuracy, exper-

imental results indicate that the LSR and WvRN-extension

methods perform better than other methods.

1 Introduction

Traditionally classifiers are built using only local fea-
tures of individual entities such as web pages or images.
Relational classifiers also make use of relational infor-
mation that exist across the entities. For example, local
features of a web page could be collection of keywords
that appear in the title or page content and useful rela-
tional information could be scores computed from pres-
ence/absence of inlinks and/or outlinks, similarity of
page structure, url etc. In relational classification prob-
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lems, a collection of entities is represented as a graph
or a network of nodes. Each node represents an entity
with its set of local features, class attribute informa-
tion and edge weight encodes any relational information
that exists between those connected nodes. In its gen-
eral setup the graph contains zero or more labeled nodes
and one or more unlabeled nodes and the goal is to la-
bel a set of unlabeled nodes (test nodes). This problem
is either solved by treating it as an induction problem
where a model (possibly statistical) model is learnt us-
ing training data (labeled nodes) and used to classify
future data, or, as a transduction problem where classi-
fication is needed(done) only on the test nodes. The key
aspect of this relational classification problem is making
collective inference of the class labels, that is, labels of
all the nodes are obtained simultaneously. See [5], [4]
and references there for more details.

In this paper we consider a related relational learn-
ing problem where, instead of a subset of labeled nodes,
we have inaccurate external label/class distribution in-
formation for each node. This problem arises in many
web applications. Consider, for example, the problem
of identifying pages about Public works, Court, Health,
Community development, Library etc. within the web
site of a particular city. The link and directory rela-
tions contain useful signals for solving such a classifica-
tion problem. Note that this relational structure will
be different for different city web sites. If we are only
interested in a small number of cities then we can afford
to label a number of pages in each site and then apply
transductive learning using the labeled nodes. But, if
we want to do the classification on hundreds of thou-
sands of city sites, labeling on all sites is expensive and
we need to take a different approach. One possibility
is to use a selected set of content dictionary features
together with the labeling of a small random sample
of pages from a number of sites to learn an inaccurate
probabilistic classifier, e.g., logistic regression. Now, for
any one city web site, the output of this initial classifier
can be used to generate class distributions for the pages
in the site, which can then be used together with the
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relational information in the site to get accurate classi-
fication.

The problem of doing relational learning together
with externally available class distribution information
can be solved by modifying existing transductive meth-
ods. The problem has been discussed within broad
sets of techniques such as denoising, relaxation label-
ing, metric labeling (see [3] and references there) etc.,
as well as within recent specific techniques such as the
Gaussian Field Harmonic Function (GFHF) method [9]
and the Information Regularization (IR)[2], dual IR
(DIR) [6] methods. We also consider two more methods,
viz., the Local-Global Consistency (LGC) method [8]
and the probabilistic Weighted vote Relational Neighbor
(WvRN) Classification method with Relaxation Label-
ing [4]. The main aim of this paper is to take a few tech-
niques (the last five specific methods mentioned above)
that are popularly discussed and used in recent rela-
tional learning literature, extend them as needed and
compare in different settings to see which ones are most
effective in solving our problem. The proposed exten-
sions and method include supporting external classifier
information for the LGC and WvRN methods, and us-
ing least squares (LS) divergence measure (referred to
as the LSR method) as opposed to the KL-divergence
measure used in the IR methods. We also establish the
relation between the LSR method and the IR methods.

Our problem may be solved in two different settings.
In the first setting we select a subset of nodes for which
we have high confidence in the class labels and fix the
labels of these nodes. For example we may select the
nodes based on thresholding its probability or decision
function score above a certain value. We can treat
the remaining nodes as unlabeled and solve it as a
transduction problem in which relational information
is used to propagate labels from the labeled set to the
unlabeled set through the connections according to their
strengths. In the second setting we make use of the
external class distribution of all the nodes fully and no
nodes are treated as unlabeled. For different methods
this is done in different ways.

Detailed experiments on four benchmark datasets
indicate that the second solution setting (full use of class
distribution information) is better. Further experiments
(in setting 2) on real world shopping domain datasets
clearly demonstrate that significant performance gain
can be achieved with the proposed methods. Consid-
ering speed, robustness and accuracy together, the ex-
perimental results indicate that the LSR and WvRN
extension methods are better than the other methods.

The paper is organized as follows. Section 2 for-
mulates the problem and describes the two solution set-
tings. The methods are grouped as function estimation

and probability distribution based methods; details on
how they are modified for the two settings are given
in sections 3 and 4. In section 5 we give experimental
results, and summarize key observations in section 6.

2 Solution Settings.

In this section we present the statement of the problem
and discuss two solution settings in which the problem
can be solved. Then we briefly mention the methods
and their extensions considered in this paper.

2.1 Notations and Problem Formulation. As-
sume that we have a graph G with vertices V and
edges E. Let the vertices (nodes) vi, i ∈ N where
N = {1, . . . , n} represent the entities. Let the edges
ei,j (where i, j ∈ N) encode relational information be-
tween node vi and vj , with weight wi,j . Let W denote
the weight matrix with wi,j as its elements. Let ∆ be
the graph Laplacian matrix defined as ∆ = D−W [9]
and let its unnormalized and normalized versions be de-
noted as: Lun = ∆ and Lnrm = D−

1
2 ∆D−

1
2 = I−

D−
1
2 WD−

1
2 respectively. D is a diagonal matrix with

ith diagonal element defined as dii =
∑
j wi,j and dii

measures degree of ith node. In a traditional problem
formulation, labeling of vi corresponds to specifying its
class label ci where ci ∈ {1, . . . ,K} and K is the num-
ber of classes. A related quantity is the vector yi = δk,ci

where δ is the Kronecker delta function. Let Y =
[y1, . . . ,yn]. Alternatively, one can specify the class
distribution information pi where pi = [pi,1, . . . , pi,K ]T

with
∑
k pi,k = 1. Let P = [p1, . . . ,pn]. The case where

only class label information (ci, yi and Y) are given
may be viewed as a special case of the class distribuion
view with P = Y. Therefore without loss of generality
we assume that we are given P and we can derive the
class label for node vi as ci = argmax

k pi,k. Thus, given
P, we can obtain derived labels ci and obtain the cor-
responding performance (e.g., accuracy) Perf(P). In
this paper we are mainly concerned with effective use
of an initial P (that is available from some external
means) and using it together with the relational infor-
mation to do better. In such a case we call Perf(P)
as the initial performance of the classifier. The clas-
sification problem of using relational information (W)
and initial class distribution (P) can be loosely stated
as follows: given (G,W,P), find P̂ such that Perf(P̂)
is better than Perf(P). Given the above formulation
we consider two settings in which the problem can be
solved.

2.2 Solution Setting 1. In the first setting the ex-
ternal class distribution information available with all
the nodes (P) is first used to select a subset of la-
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beled nodes, S. We treat the remaining nodes as un-
labeled. Then, for each i ∈ S we fix the label of node
i as arg maxk pi,k. Once this is done, the problem can
be solved using any standard graph based transductive
or semi-supervised learning method. However, while
conventional semi-supervised learning or transduction
problem settings usually assume that pi or yi is accu-
rate, this is not the case here. The selection of subset
of nodes is an important aspect and will be addressed
later when we discuss specific methods.

2.3 Solution Setting 2. In the second setting the
external class distribution information of all the nodes
is used in the solution process. Exactly how this is done
will be detailed in later sections.

2.4 Existing Methods and Extensions. Graph
based transduction methods fall in one of two groups:
(1) those which are based on function estimation and (2)
those which are based on probability distribution esti-
mation. In this paper we consider the following methods
from each group: the Gaussian Field Harmonic Func-
tion (GFHF) method [9] and the Local-Global Consis-
tency (LGC) method [8] from the first group and the
Information Regularization (IR) [2], dual IR (DIR) [6]
methods and the probabilistic Weighted vote Relational
Neighbor (WvRN) Classification method with Relax-
ation Labeling [4] from the second group. While all
these five methods can easily solve the problem in the
first setting, the second setting is (briefly) discussed in
the literature only for GFHF, IR and DIR methods. In
the following sections we extend LGC and WvRN meth-
ods to handle the second setting. We also propose an ef-
ficient least squares regularization (LSR) based method
as compared to the KL-divergence based IR methods
and relate these methods.

3 Function Estimation Methods

Graph based classification methods in this group find
the classification function by minimizing the function:

(3.1) Q(F) = QGR(F) + CQdatafit(F,Y)

where C is a positive regularization constant. The ob-
jective function consists of two terms. The first term
known as the graph regularization (GR) term makes
use of the weight matrix W and imposes smoothness
of the function over the graph. The second term is de-
pendent on the known label information and measures
deviations from model implied label information. Con-
sequently, this term is often called the data fitting term.
In the traditional transductive setting, labels for a sub-
set of nodes, S are given and the remaining labels need
to be inferred. For example, in the GFHF method, the

function F is set to Y for the labeled nodes S and is es-
timated for the unlabeled nodes by minimizing only the
graph regularization term QGR(F) =

∑K
k=1 FTkLunFk.

In the LGC method, the function F is estimated by min-
imizing C

∑K
k=1 FTkLnrmFk + ||Fk −Yk||2 where Y is

set to zero for the unlabeled nodes.
As explained in section 2, applying the methods in

solution setting 1 is straightforward. The selection of
S will be discussed below. Some care is needed when
extending the methods to deal with solution setting 2,
which aims to make effective use of the class distribution
information P. It makes good sense to set Y = P in
(3.1) and thus try and force F to be close to P while also
ensuring its smoothness on the graph. It is also a good
idea to try a bit more and use the uncertainty present
in the class distribution information to apply different
weights to different data fitting terms. With this in
mind we give a generic quadratic formulation with two
parameters (H and Λ). Original versions of the GFHF
method and the LGC method follow as special cases.
Also, choosing the parameters differently using P leads
to extensions of these methods to solution setting 2.

3.1 Generic Quadratic Objective Function. We
define the following generic quadratic objective function
to estimate F̂ and we shall see that the objective
functions used in GFHF and LGC methods are special
cases of this objective function.
(3.2)

Qg(F) =
K∑
k=1

C(Fk−VΛYk)TH(Fk−VΛYk) +FTkLFk

where F = [F1 · · ·FK ] and Yk is kth column of Y. On
comparing (3.2) and (3.1) we see that the data fitting
term is nothing but a weighted quadratic error function
and the graph regularization term is another quadratic
function defined in terms of graph Laplacian matrix L.

Let us consider the weighted quadratic error func-
tion. We have introduced two parameters: a generic er-
ror weight matrix H and a label degree matrix Λ. The
role of H is to give different weightage to individual er-
rors (data fitting terms) and is assumed to be positive
definite. When H is diagonal the data fitting term is
essentially a weighted sum of squared errors with er-
ror in the ith node weighted by hii. Λ is a diagonal
matrix and its role is to incorporate any label degree
information we want to associate with each node where
0 ≤ λii ≤ 1. For example if node i is unlabeled then
λii = 0 and when it is labeled fully λii = 1. Note that
the interval 0 < λii < 1 brings in the notion of partial
labeling and provides flexibility when yi (ith row of Y)
is inaccurate.

Finally, V is a node regularization matrix which
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is also diagonal. Wang et al[7] introduced the notion
of node regularization in the original LGC formulation
to handle label imbalance problem in the graph. As-
suming yi to contain only one non-zero element they
defined normalized label matrix Z̃ = ṼY with vii =∑K
k=1

yi,kdii

η̃k
. Here η̃k =

∑n
i=1 diiyi,k and we can see

that
∑n
i=1 z̃i,k = 1. Thus V balances the influence of

labels from different classes and allows with high de-
gree to make more contribution. In our general set-
ting we allow 0 ≤ yi,k ≤ 1, k = 1, . . . ,K subject to∑K
i=1 yi,k = 1 and we also have the label degree matrix

Λ. Therefore we redefine vii as: vii =
∑K
k=1

diiλiiyi,k

ηk

where ηk =
∑n
i=1 diiλiiyi,k. Defining Z = VΛY we

have
∑n
i=1 zi,k = 1, ∀k and, Z becomes a normalized

matrix as earlier.
Given the additive nature of the function Qg(F),

Fk can be solved independently. Then setting the
derivative ∂Qg(F)

∂Fk
to zero gives the following closed form

solution that involves matrix inversion and costs O(n3).

(3.3) F̂k = C
(
L + CH

)−1
HZk

Here Zk is kth column of Z. In the following dis-
cussion we assume that H is diagonal and is invert-
ible. Then equation (3.3) can be rewritten as: F̂k =(
I+ 1

cH
−1L

)−1
Zk. Then instead of estimating F̂k from

(3.3) using matrix inversion, we can find it by iteratively
using the fixed point equation: F̂ = − 1

cH
−1LF̂ + Z.

Note that the convergence rate of the iterative solution
depends on the eigen values of the matrix

(
I+ 1

cH
−1L

)
.

Also the fixed point equation changes depending on
whether normalized or unnormalized graph Laplacian
is used and the specific form of error weight matrix H.

3.2 GFHF Method As a Special Case. The
GFHF method [9] was originally proposed to solve semi-
supervised learning problem based on a Gaussian ran-
dom field model for a weighted graph model. In this
formulation a real valued function f is estimated by min-
imizing a quadratic energy function (

∑K
k=1 FTkLunFk)

subject to the constraint that the function f takes the
actual label values on the set of labeled nodes. It is as-
sumed that yi,k takes value in {0, 1}. This solution is
retrieved by considering our generic quadratic formula-
tion and setting L = Lun, V = I, H = DΛ(I − Λ)−1

and C = 1. Further λii = 1 if node i is labeled and
is zero otherwise. Note that the specific structure of H
and Λ imposes the constraints on the labeled nodes by
assigning infinite weights to the errors on labeled nodes.
On substituting these specific matrices we get:

(3.4) Fk =
(
I−

(
I− Λ

)
D−1W

)−1ΛYk

where Yk is kth column of the matrix Y. The corre-
sponding fixed point equation (after including the node
regularization matrix V) is: Fk =

(
I − Λ)D−1WFk +

ΛZk.
Note that (3.4) can handle both the solution set-

tings presented in section 2. In a transductive setting
with labeled and unlabeled nodes we have λii = 1 for
the labeled subset of nodes such that i ∈ S and λii = 0
for the remaining set of nodes i ∈ S̄. [9] also gave a ran-
dom walk interpretation to this method. That is, f̂i,j
has an interpretation as the probability that a particle
starting from node i, hits a labeled node with label 1
(with class j being considered as 1 like in one-vs-all set-
ting). They also discussed incorporating external class
label information using the notion of dongle nodes. Here
each node having label information is attached with a
dongle node and the label value is tied to this node.
Further a transition of probability µ was defined from
each node to its dongle node and all other transitions
are covered with probability (1− µ).

It may be noted that (3.4) is a general form with
this interpretation and when Λ = µI we get the original
form of GFHF method. Thus we allow these transition
probabilities to take different values for different nodes
and this is very useful since we may have different levels
of confidence on the label information we get for each
node from the external classifier. Below we shall discuss
how to choose these values.

3.3 LGC Method As a Special Case and its
Extension. Zhou et al[8] proposed a semi-supervised
learning approach to design a smooth classification func-
tion F such that it respects any intrinsic structure re-
vealed by the labeled and unlabeled nodes. Starting
with the intution of label propagation they introduced
an iterative algorithm which essentially finds the solu-
tion to a FP equation. With yi having only one non-
zero element and by setting, in our generic quadratic
formulation, L = Lnrm, V = I, H = I, λii = 1, ∀i ∈ S
and λii = 0, ∀i ∈ S̄ we can retrieve the FP equation
following the same steps in the previous section. Zhou
et al[8] also considered several variants of fixed point
equations and showed how one such FP equation can be
obtained as solution from optimizing a regularized ob-
jective function (C

∑K
k=1 FTkLnrmFk + ||Fk −Yk||2).

Equation (3.2) can be seen as a generalized version of
such an objective function. Unlike GFHF method the
regularization constant C is to be set using standard
techniques like cross-validation and this is possible only
when sufficient number of labeled nodes is available.

Extension for Setting 2 We extend the basic
LGC method to handle setting 2 as follows. Firstly,
we relax yi as described earlier. Secondly, we make use
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of the label degree matrix Λ to handle inaccurate label
information. Finally, we allow S to be the entire set of
nodes. With specific structures of L and H defined as
above we get:

(3.5) Fk = (1− γ)
(
I− γD−

1
2 WD−

1
2
)−1ΛZk

where γ = 1
1+C and it can re-written in fixed point form

as done earlier with the GFHF method. We will discuss
shortly how to choose C and Λ in the two settings.

The solution of the fixed point equations, (3.4) and
(3.5) can be obtained iteratively. In all our experiments
we found the solution iteratively. The iterative update is
very useful when W is sparse (which is often the case in
practice) and the convergence rate is dependent on the
eigen values of the matrix involved in the inversion. In
the worst case the cost is expected to be in the order of
O(mn2) where m is a bound on the number of neighbors
of a node in the graph. When the graph is dense, the
complexity can be cubic in n [1].

3.4 Parameter Selection in Two Settings. In
this section we present ways of selecting the subset S
and other parameters Λ and C that appear in (3.2).
We propose two scoring schemes that can be used to
make the subset selection for solution setting 1.

Maximum Probability Scoring Scheme Let
pmaxi = maxl pi,l ∀i. Then we sort the nodes based
on the maximum probability score (pmaxi ) of each node
from its class distribution. Then the subset of nodes
that satisfy the condition pmaxi ≥ pth can be selected as
the set of labeled nodes. Essentially we select nodes
on which we have high confidence in their labeling
assignments. If pth is very high then the number of
labeled nodes becomes smaller. However the noise level
(percentage of noisy labeled nodes) will also be low and
care has to be taken to ensure that each class has at least
some labeled nodes. On the other hand, if the threshold
level is low then though the number of labeled nodes
increases the noise level also increases. Alternately, we
can also select top-M percentage of nodes as the subset
of labeled nodes. We will refer to the subset selection
scheme based on the maximum probability score as
MPS scheme.

Entropy based Scoring Scheme In this scheme
we sort the nodes based on an entropy based score ηi for
node i defined as: ηi = 1− E(pi)/Emax where E(pi)
represents the entropy of the class distribution pi and
Emax = log(K) is the maximum entropy possible for a
given number of classes K. Thus ηi lies in the interval
[0, 1] and takes high or low values depending on the
spread of the class distribution. This score is motivated
from the view that we do not have any class label
information when the class distribution is uniform and

we are certain when pi,k = δk,ci
. Setting a threshold

to select the subset of labeled nodes S is harder here
compared to MPS scheme and as mentioned earlier,
so we can simply select the top-M percentage of nodes
sorted by this score. We will refer to this subset selection
scheme as EBS scheme.

Note that the above two schemes only use the class
distribution information to select the subset of nodes.
It is also possible in addition to make use of the graph
structure information and is a direction for further work.

Choice of Λ Recall that λii has the interpretation
of transition probability in GFHF method; and it has
the interpretation of partial label information in the
LGC-extension method. Earlier we gave two useful
scoring schemes based only on the external classifier
information. We can make use of either of these schemes
to fix λii. That is, we can either set λii = pmaxi or λii =
ηi. We evaluate both these schemes in our experiments.
Note that when the subset selection scoring scheme also
makes use of graph structure information, then we may
not want to use the same scoring scheme to choose λ.
This is because we may like to give importance to the
label degree or transition probability to each node only
based on the information from the external classifier.

Choice of C We use 5-fold cross-validation (CV)
technique to choose C for LGC. In the first setting, for
each value of C chosen from a range in the log scale,
we evaluate 5-fold CV accuracy on the selected subset
of nodes using the label information available for these
nodes. Then we pick the value of C that gives the
maximum accuracy and find the final solution using the
chosen C value. Here the label information is nothing
but the label that has the maximum probability score.
In the second setting we evaluate 5-fold CV accuracy on
top-M percentage of nodes selected using MPS or EBS
scheme. It is worth pointing out that, inaccuracies in
the external class distribution could lead to a choice of
C that is tilted away from the best possible choice.

4 Probabilistic Methods

The methods in this class, viz., the information reg-
ularization (IR), dual IR methods and the probabilis-
tic weighted vote relational neighbor (WvRN) classifier
method, estimate the class distributions of the nodes.
In this section we discuss their adaptation for the two
solution settings and also introduce least squares regu-
larization (LSR) based method. Overall, we group the
IR, DIR and LSR methods under the category of region
based regularization methods.

4.1 WvRN Method and its Extension. The orig-
inal probabilistic weighted vote relational classifier
(with relaxation labeling) method [4] was formulated
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to solve the collective classification problem where class
distributions of a subset of nodes are known and fixed.
Then the class distributions of the remaining (unla-
beled) nodes are obtained by an iterative algorithm. We
give a version of this algorithm in Algorithm 4.1. It
has two components, namely, weighted vote relational
neighbor classifier (WvRN) component and relaxation
labeling (RL) component. The relaxation labeling com-
ponent performs collective inferencing and keeps track
of the current probability estimates p(t)

i for all unla-
beled nodes at each time instant t. These frozen esti-
mates p(t)

i are used by the relational classifier. The re-
lational classifier computes the probability distribution
for each unlabeled node as the weighted sum of probabil-
ity distributions p(t)

j of its neighbors with weight wij .
Since relaxation labeling may not converge, simulated
annealing is performed to ensure convergence (as given
in step (2) of the algorithm) [4]. Note that β(t) → 0 for
sufficiently large number of iterations; therefore, con-
vergence is guaranteed. It has been observed that the
performance is robust when 0.9 < ν < 1. The WvRN
algorithm (Algorithm 4.1) can be directly used to solve
the problem in the first setting by setting the proba-
bility distributions associated with the selected set of
nodes i ∈ S to δk,ci

and initializing the probability dis-
tributions of the remaining set of nodes (S̄) with the
class prior obtained using the label information of the
selected set of nodes. Here the label for a node (ci)
in the selected subset is defined as the label with the
maximum probability score obtained from pi.

Extensions for Setting 2 Next we extend the
WvRN algorithm to solve the problem in setting 2. We
consider two variants. In the first variant we consider a
simpler form where we initialize p(0)

i with the external
classifier information for all nodes and run Algorithm
4.1 as it is. In the second variant we use the dongle
node idea (used in the GFHF method) and modify the
relational classifier estimate from qi to q̃i as follows.
With λii representing the transition probability, we
define q̃i,k = λiip

(0)
i,k + (1 − λii)qi,k (where qi,k is as

defined in Algorithm 4.1) and p(0)
i is the distribution

information available from the external classifier. We
can select Λ using MPS or EBS schemes, and ν using
the cross-validation technique (see section 3.4).

4.2 Region Based Regularization Methods Cor-
duneanu and Jakkola [2] proposed the information regu-
larization method. They introduced a notion of region,
where each region is defined as a subset of nodes in the
graph. The intuition is that nodes belonging to a given
region have the same label. Here a weight is associ-
ated with each region and a weight to each node that

Algorithm 4.1 Probabilistic WvRN Algorithm
• Set t = 0, β(0) = 1 and ν=0.95
• For all nodes i ∈ S̄, initialize p(0)

i to class prior
(obtained from known labeled nodes)

• Until convergence holds for all the nodes in S̄ do:

For each element i ∈ S̄ and k = {1, . . . ,K}
1. Estimate node class probabil-

ity (using neighbor information)
qi,k = 1

ψ

∑
j wi,jp

(t)
j,k (where ψ is a

normalizing constant)

2. Set p(t+1)
i,k = β(t)qi,k + (1− β(t))p(t)

i,k

Set t = t+ 1 and β(t+1) = β(t) ∗ ν

defines the relative importance of points that belong
to a given region. Further, a distribution is associated
with each region and node. Then the distributions of
labels are propagated on a graph for semi-supervised or
transductive learning. We refer to methods that work
within this framework of region as region based regular-
ization methods. The IR, DIR and LSR methods fall
in this category. In graph based classification problem,
each edge forms a region and the weight of the region is
nothing but the edge weight; further, an equal degree of
importance is given to both the nodes connected by the
edge. Then the regularized optimization problem can
be written as minimization of the objective function:

(4.6)
H(P; W) = C

∑
i∈S

λiiD(p(0)
i ,pi) +

∑
i,j

wi,jD(pj , p̄i,j)

where D(·) denotes a divergence measure, λii denotes
relative weight factor that we would like to assign to
i-th node in S. Further, p̄i,j denote the probability dis-
tribution associated with the region (edge) (i, j). The
optimization problem should include the following con-
straints: (1) 0 ≤ pi,k ≤ 1 and (2)

∑K
k=1 pi,k = 1. The

region distributions are constrained in a similar way. In
this formulation, an alternating learning algorithm[2]
consists of two steps. In the first step, all the node dis-
tributions pi,∀i collected as a vector P are fixed and, all
the region distributions p̄i,j ,∀(i, j) pairs are obtained
by minimizing only the second term in (4.6). In the
second step, using these estimated region distributions,
the node distributions are re-estimated by minimizing
both the terms in (4.6). These steps are repeated until
convergence.

Now let us look at how (4.6) is used in the two
solution settings. In the first setting, having selected
the subset of nodes S we fix pi,k = p

(0)
i,k = δk,ci

, ∀i ∈ S
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and k = 1, . . . ,K. Then the optimization is over PV\S
where we have explicitly indicated the set of nodes to
be optimized. Therefore the first term in (4.6) does not
play a role in the optimization process. In the second
setting, the first term also plays a role since we optimize
over the entire set of node distributions PV. Using this
broad setup let us consider several methods that stem
from different divergent measures D(·), namely, KL-
divergence and squared error (loss). The complexity
of all these methods is same as that of the function
estimation methods.

4.2.1 Information Regularization (IR) Method
Within the above framework, Corduneanu and
Jakkola [2] used KL-divergence as the divergence mea-
sure D(·) and called the second term as information
regularization term. Then closed form solution can be
obtained for p̄i,j and is given by:

(4.7) p̄i,j =
1
2

(pi + pj).

Note that p̄i,js are the region (edge) distributions and
are obtained from minimizing the second term in (4.6)
with the KL-divergence measure. As mentioned earlier,
in solution setting 1 the first term does not play a role
in the optimization process. Then the distributions for
the unlabeled nodes are directly obtained as:

(4.8) pi,k =
1
χi
exp(

∑
i,j

wi,j log p̄i,j(k))

where p̄i,j(k) denotes kth component in p̄i,j (see (4.7))
and χi denotes a normalizing constant. Thus in setting
1, closed form solutions exist in both the steps of the
alternating learning algorithm. In solution setting 2,
with the first term also playing a role in the optimization
process there is no closed form solution like (4.8). Then
constrained optimization using either Newton’s method
or exponentiated gradient algorithm is carried out. This
step could be expensive and affects the scalability of
the method. To address this issue, Tsuda [6] proposed
a dual information regularization method, where closed
form solutions are obtained in both the steps even when
the first term in (4.6) plays a role.

4.2.2 Dual Information Regularization (DIR)
Method Tsuda [6] modified the regularizer by inter-
changing the arguments in the KL divergence measure
(KL(p̄i,j ||pi)) and using modified p̄i,j given by:

(4.9) p̄i,j =
1
Zij

exp
(1

2
(log(pi) + log(pj))

)

where Zij is the normalization factor. Then the closed
form solutions for pi are obtained as:

(4.10) pi =
1

λii +Dii
(λiip

(0)
i +

∑
i,j

wi,jp̄i,j)

where Dii =
∑
j wi,j . We refer to the update equations

(4.9) and (4.10) as the dual information regularization
(DIR) method. Let us consider the implications in
the two settings. In the first setting we fix the node
distributions of the nodes in S and estimate only the
node distributions of the nodes V \ S. This estimation
is done using (4.9) and with λii = 0,∀i ∈ S in (4.10).
In the second setting, (4.9) and (4.10) are used as they
are. Thus, closed form solutions are available in both
settings and in both steps of the learning algorithm and,
this helps in improving the speed of the IR method.

4.2.3 Least Squares Regularization (LSR)
Method We propose to use the squared error as the di-
vergence measure D(·); that is, for any two distributions
p and q, we define D(p,q) = ||p−q||2. Then it is easy
to verify from (4.6) that the optimal p̄i,j = 1

2 (pi + pj)
and is same as the one obtained in the IR method.
In this method, we proceed as in the 2-step algorithm
where we estimate PV keeping all the node distribu-
tions fixed. This results in the closed form solution:
pi = 1

λii+Dii
(λiip

(0)
i +

∑
i,j wi,jp̄i,j). This solution is

exactly same as the one given in (4.10). We refer the up-
dates (4.7) and (4.10) as the least squares regularization
(LSR) method. Note that application of this method in
two settings is exactly same as described above for the
DIR method.

Relation to other Methods The LSR objective
function, that is, (4.6) with squared error as the diver-
gence measure has structure similar to the generalized
quadratic function (3.2). The key difference is that un-
like the rows of F, the node distributions pi and p(0)

i are
constrained to be probability distributions. Now, com-
paring the DIR and LSR updates, we see that they differ
in the way region distributions are updated. Thus, the
LSR method interestingly combines the IR based region
distribution update with the D-IR based node distribu-
tion update. Also, like the IR methods, the objective
function is convex and has global minimum.

5 Experiments

We conducted two experiments on the two function es-
timation methods, LGC and GFHF, and the four prob-
abilistic methods, WvRN, IR, DIR and LSR. In differ-
ent settings the acronyms of methods will appropriately
refer to the modifications that we described earlier in
the paper. For WvRN in solution setting 2 there are
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Table 1: Public Datasets Description. n, K, |E| and d
denote the number of nodes, classes, edges and dimensions
respectively.

Dataset n K |E| d

WebKB 1051 2 269046 4840

USPS 3874 4 6398 256

CoraCite 4270 7 22516 -

CoraAll 4270 7 71824 -

two versions, which we will refer to as WvRN-V1 and
WvRN-V2 (see section 4.1 and 4.2). In the first ex-
periment we evaluate the performance of the methods
in solution settings 1 and 2 with four publicly available
benchmark datasets. Next, we present results from the
second experiment where we evaluated the performance
in solution setting 2 on datasets constructed from web
pages of three shopping sites.

5.1 Datasets Description. The details of the
datasets are given in Table 1. The WebKB dataset con-
tains two document categories, course and noncourse.
Each document has two types of information, the web-
page text content and link information. The number
of features in page and link representations are 3000
and 1840 respectively. Following [7] we constructed the
graph based on cosine distance neighbors with Gaus-
sian weights and chose 200 nearest neighbors. The
USPS dataset is a handwritten digit recognition task,
for which we used the same setting as given in [8]. The
number of features is 256, obtained from a 16 × 16 im-
age. The four classes correspond to digits 1 to 4. The
graph is constructed using a radial basis function ker-
nel with width set to 1.25; the number of neighbors is
set to 1. The CORA dataset comprises computer sci-
ence research papers. There are seven classes associ-
ated with the papers; the classes correspond to the fol-
lowing machine learning sub-topics: Case-based Meth-
ods, Genetic Algorithms, Neural Networks, Probabilistic
Methods, Reinforcement Learning, Rule Learning and
Theory. The dataset consists of the full citation graph
with labels for the topic of each paper. There are two
variants of this dataset, referred to as CORACITE and
CORAALL. These variants come from the way the pa-
pers are linked. The CoraCite variant uses only citation
link and an edge is placed between two papers if one
cites the other. The weight of an edge is normally one
unless the two papers cite each other, in which case it is
two. The CoraAll variant uses both citation and author
link information, where an edge is placed (in addition
to co-citation) when two papers have author relation
as well. We used the CORA dataset versions available

from Netkit package described in [4].

5.2 Classifier Information Generation. While
these datasets have only label information we need in-
accurate external classifier (distribution) information in
our problem formulation. Therefore we need a model
which generates this distribution given the label infor-
mation. We now describe the model used in our ex-
periments. We fix two probability parameters pmin and
pmax with pmin < pmax that take values in [0, 1]. Given
pmin and pmax we generate the distribution for each
node as follows. In the first step generate a random
number plabel from the interval [pmin, pmax] and treat
pci

as the probability score of the true label (ci). Then
we generate K − 1 random numbers (prk with k 6= ci)
from the interval [0, 1] and assign pk = prk(1−pci

)

ψ where
ψ is a normalizing constant such that

∑
k 6=ci

pk = 1−pci
.

The choices of pmin and pmax determine the degree of
inaccuracy present in the information. If pmin is set too
low many nodes get labeled wrongly. Also note that
the number of classes play a role in determining the de-
gree of accuracy since the mass 1− pci

gets distributed
across K−1 number of classes. We considered different
levels of inaccuracy by setting different values for pmin
and pmax. As the observations were almost the same
across the methods and settings for different levels of
inaccuracy, we present results only for one set of values.

5.3 Experiment With Setting 1. We conducted
the experiment with the two function estimation meth-
ods, LGC and GFHF, and the four probabilistic meth-
ods, WvRN, IR, DIR and LSR. We measured the classi-
fier accuracy on the entire set of nodes. This experiment
was conducted with both maximum probability scoring
(MPS) and entropy based scoring (EBS) subset selec-
tion schemes. The selected subset size |S| was varied
from top 10 percent to 90 percent (as per the chosen
selection scheme).

Let us discuss parameter selection. Recall that in
the GFHF method C is set to 1. In the IR, DIR and
LSR methods only the second term is present (once we
fix the probability distribution of labeled nodes). In the
WvRN method we set ν = 0.95. Thus only the LGC
method required tuning of the regularization parameter
C. For selecting C we used 5-fold CV on the labeled
nodes and varied C in the range [0.00153, 100] (doubling
in each step). As mentioned in section 3.4.3, note that
the 5-fold evaluation used here is inaccurate since it is
based on noisy information. Therefore, the C estimate
can be inferior sometimes.

The average classifier accuracy was computed as
the average of accuracies obtained from 100 random
partitions of the graph. The results for one parameter
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Figure 1: Setting 1 Results: X-axis represents the subset size in terms of percentage of number of nodes and
Y-axis represents accuracy. The results correspond to the EBS subset selection scheme. Results for the MPS
subset selection scheme are not given because of their closeness with EBS; see text. Initial refers to accuracy
computed from generated inaccurate distribution.

setting with the MPS subset selection scheme for all
the datasets are given in Figure 1; we set pmax = 0.99
for all the datasets and set pmin as 0.4, 0.2 and 0.1 for
WebKB, USPS and CORA datasets (both CORACITE
and CORAALL) respectively.

From Figure 1 we see that only on the WebKB
dataset all the methods are able to perform better
than the initial accuracy; in fact, even on this dataset,
WvRN and GFHF methods fall short when the subset
size |S| is small. All methods other than LGC give
almost the same accuracy as |S| becomes larger, on
all datasets; of course, the exact value of |S| at which
they converge vary from one dataset to another. On
the CORA datasets WvRN performed better followed
by GFHF, LSR, DIR, IR and LGC when |S| is small.
On comparing EBS and MPS selection schemes we
found that the EBS scheme performed slightly better
(around 2%) on CORA datasets, while the performances
were almost same on WebKB dataset; the EBS scheme
performed slightly inferior on USPS dataset. Except
for these variations, the behavior of the EBS scheme
as a function of |S| was almost same as that of the
MPS scheme; therefore, only the results for the EBS
scheme are shown in the figure. We analyzed the inferior
performance of LGC on CORA datasets and observed
that incorrect choice of C due to noisy CV estimates
was the reason behind it.

5.4 Experiment With Setting 2. We conducted
the experiment with LGC, GFHF, IR, DIR, LSR,
WvRN-V1 and WvRN-V2. The classifier accuracy
measurement, evaluation with two selection schemes,
subset size variation and pmin and pmax settings remain
the same as in setting 1. In this setting IR, DIR, LSR
and WvRN-V2 also require parameter tuning (that is, C
and ν). In the case of WvRN-V1 there is no parameter
tuning and we set ν = 0.95. In the case of GFHF we
set C = 1 as done earlier. All parameter tunings are
done using 5-fold CV, using top M percent of selected
nodes, as in setting 1. It is useful to recall that the
main difference of setting 2 from setting 1 is that the
distribution information from all nodes is used during
the solution process. We used the same range for C as
in setting 1 for the LGC method. In the case of WvRN-
V2 method we used the same range but set ν = 1

1+C . In
the modified IR method we selected C from the range
[0.0625, 312.5] (doubling in each step). In the case of
LSR and DIR methods we selected C from the range
[0.078, 10] (doubling in each step). Finally the average
accuracy was computed from 100 random partitions of
the graph for all the methods except IR.

Efficiency The objective function optimization in
the case of IR takes significantly longer time (an order of
magnitude) compared to other methods in this setting
due to the nonlinear optimization involved. Therefore,
only for IR, we computed the average performance from
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100, 20 and 10 partitions for USPS, WebKB and CORA
datasets respectively. In terms of speed, WvRN, LGC,
GFHF, LSR, DIR and IR methods come in that order.
Although the update equations for the DIR and LSR
methods look similar, the DIR method took more time
to converge than the LSR method and we observed
that the LSR method was approximately 6-10 times
faster than the DIR method. On the other hand, the
LSR method was slower by 2-4 times compared to the
remaining methods.

Choice of C from Cross-Validation The choice
of C from the noisy CV accuracy estimates has an
important effect on the classification performances of
LGC, IR, DIR and LSR methods; this effect varies
across datasets. In these methods we observed that infe-
rior performances were obtained when we chose C that
gave the best CV accuracy. To get improved and ro-
bust performances, we recommend an alternate way to
choose C: choose the smallest C such that the corre-
sponding CV accuracy estimate was within, say, 5% of
the best CV accuracy. This helps because the varia-
tion of CV accuracy estimate as a function of C can
be quite flat around the best CV accuracy and, in such
cases choosing the least C within a specified accuracy
estimate regularizes the solution better. The results re-
ported in Figure 2 are the improved performances ob-
tained using the recommended way of choosing C de-
scribed above; some inferior performances can be still
seen with IR on the WebKB, USPS datasets (particu-
larly for low values of |S|) and LGC on CORA datasets.
From this viewpoint, the results suggest that DIR, LSR
and WvRN-V2 are more robust compared to IR and
LGC.

Classifier Performance From figure 2 we clearly
see that WvRN-V1, WvRN-V2, IR, DIR and LSR meth-
ods improved the performance significantly over the ini-
tial accuracy on all datasets. The LGC-extension and
modified GFHF methods improved the performance sig-
nificantly on WebKB and USPS datasets. The perfor-
mance curves of GFHF and WvRN-V1 remain flat in
each plot. This is because there is no parameter tuning
involved in these methods. For the other methods the
choice of C made remained almost same for all |S|. Con-
sidering the performance on all the datasets the EBS
scheme seems to be more robust compared to the MPS
scheme, although slightly inferior performance is seen
on the CORAALL dataset. Note that the performance
variations over |S| is lesser with the EBS scheme partic-
ularly on the WebKB dataset. We believe this behav-
ior is due to the conservative estimate of λii given by
this scheme compared to the MPS scheme in the noisy
scenario. Clearly, compared to the first setting, the sec-
ond setting using distribution information of all nodes

during the solution process enhances the performance
significantly. Though function estimation methods per-
formed quite close on two datasets, the probabilistic
methods performed better considering all the datasets.
Among the probabilistic methods, the performances of
IR, DIR and LSR were quite close as |S| became large.
Comparing WvRN-V2 and WvRN-V1, since the per-
formance difference is significant (>4% in many cases),
WvRN-V2 is to be preferred. Since the performance
variation across C in the WvRN-V2 method is not much
it seems that much of the gain comes from using don-
gle nodes. Recall that GFHF and WvRN methods have
almost same performances on all datasets in the first
setting; however, in setting 2, distinctly different per-
formances of these methods are seen, particularly on
CORA datasets. More investigation is needed to under-
stand this behavior. Finally, the performance improve-
ment is dependent on the quality of relational graph
(with respect to the assumption of strong connectivity
of nodes belonging to same class) and initial accuracy.

5.5 Experiment with Shopping Datasets. We
evaluated the performances of DIR, LGC, WvRN-
V2 and LSR in solution setting 2 on real world
datasets from three shopping sites (www.compusa.com,
www.uncommongoods.com and www.walmart.com). We
considered two binary classification problems: product
detail vs non-product and product listing vs non-listing.
While the product pages are about one specific product
like canon camera with certain model number in more
detail, the listing pages are about several products of
same cateogory (for example, different models of canon
camera) arranged as a list in each page. These problems
along with their site names are referred to as CU-D,
CU-L, UG-D, UG-L, WM-D and WM-L respectively in
Table 2. In each problem, the class distribution score
for each page was obtained using an external classifier
(EC) based on content features. The relational graph
was constructed using structural signature (shingle) ob-
tained using html tags of web pages. An edge between
two pages was formed when their structural signatures
had a match score of at least 6 (the values are in the
range [0,8]) and a unit weight was assigned to each such
edge. Also, each node was connected to a maximum of
20 other nodes. A subset of pages (nodes) in each site
(graph) was manually labeled; the number of labeled
nodes is indicated as L in Table 2. The classifier ac-
curacy was evaluated for the external classifier and the
various methods on these labeled nodes. The results are
given in Table 2.

In almost all the cases the EBS scheme performed
better compared to the MPS scheme. The results given
in Table 2 are the best performances obtained over the
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Table 2: Experiment: Shopping Datasets. n, L and |E| denote the number of nodes, labeled nodes and edges in the graph
respectively. The classificiation accuracy evaluated on the labeled nodes for the external classifier (EC), LGC, WvRN-V2,
LSR and DIR methods are given.

Problem n L |E| EC LGC-Ext WvRN-V2 LSR DIR

CU-D 53023 1433 1186190 77.18 77.88 77.74 78.02 78.02

CU-L 53023 1433 1186190 91.70 93.79 93.93 94.21 94.21

UG-D 82027 1166 1714228 94.51 97.68 94.51 95.54 95.80

UG-L 82027 1166 1714228 81.90 91.51 85.93 91.25 91.51

WM-D 67997 1250 1318903 93.20 94.48 95.12 95.52 95.60

WM-L 67997 1250 1318903 93.36 94.72 94.72 95.60 95.04

percentage of subset sizes (|S|) and C values. There
were minor variations (0.5 − 2%) in the performances
over (|S|) and choices of C. The results clearly demon-
strate that significant performance improvement (as
high as 10%) can be achieved. Also, the usefulness of
the proposed extensions and LSR method as effective
alternate methods can be seen from comparison with
the DIR method.

6 Summary

We considered the problem of collectively classifying
entities where relational information and inaccurate
class distribution information from another (external)
classifier are available. We present below a list of key
observations from the experimental studies conducted
on several benchmark and real world datasets.

• Of the two solution settings evaluated, the second
setting (which uses external classifier information
of all nodes) is better. Using this second setting
a significant improvement over the external classi-
fier performance can be achieved using relational
information.

• For parameter selection, the entropy based se-
lection scheme was observed to be more robust
compared to the maximum probability selection
scheme.

• With respect to choice of C using inaccurate CV
estimates, the DIR, LSR and WvRN-V2 methods
were observed to be more robust.

• Overall, the probabilistic methods fared better
compared to the function estimation methods.
Within the probabilistic methods, the IR methods
were competitive to the other methods. Within the
proposed methods, the LSR, WvRN-V2 and LGC
ranked better, in that order.

• In terms of speed, the original IR method was quite
slow compared to other methods. Although the

DIR method was faster, it was still not competitive
in speed to the proposed methods. Among the
proposed methods, the WvRN-extensions, LGC
and LSR methods were faster, ranked by speed in
that order.

• Overall, considering the issues of speed, robustness
and accuracy together, the LSR and WvRN-V2
methods performed the best.
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Figure 2: Setting 2 Results: X-axis represents the subset size in terms of percentage of number of nodes and
Y-axis represents accuracy. The left and right columns correspond to MPS and EBS subset selection schemes
respectively. The legends for the CORA datasets are same as the one given for the WebKB and USPS datasets.
Initial refers to accuracy computed from generated inaccurate distribution.
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