
Optimization Methods for Machine Learning

Sathiya Keerthi

Microsoft

Talks given at UC Santa Cruz
February 21-23, 2017

The slides for the talks will be made available at:

http://www.keerthis.com/

http://www.keerthis.com/

Introduction

Aim

To introduce optimization problems that arise in the solution of ML
problems, briefly review relevant optimization algorithms, and point
out which optimization algorithms are suited for these problems.

Range of ML problems

Classification (binary, multi-class), regression, ordinal regression,
ranking, taxonomy learning, semi-supervised learning, unsupervised
learning, structured outputs (e.g. sequence tagging)

Introduction

Aim

To introduce optimization problems that arise in the solution of ML
problems, briefly review relevant optimization algorithms, and point
out which optimization algorithms are suited for these problems.

Range of ML problems

Classification (binary, multi-class), regression, ordinal regression,
ranking, taxonomy learning, semi-supervised learning, unsupervised
learning, structured outputs (e.g. sequence tagging)

Classification of Optimization Algorithms

min
w∈C

E (w)

Nonlinear

Unconstrained vs Constrained (Simple bounds, Linear
constraints, General constraints)

Differentiable vs Non-differentiable

Convex vs Non-convex

Others

Quadratic programming (E : convex quadratic function, C :
linear constraints)

Linear programming (E : linear function, C : linear constraints)

Discrete optimization (w : discrete variables)

Classification of Optimization Algorithms

min
w∈C

E (w)

Nonlinear

Unconstrained vs Constrained (Simple bounds, Linear
constraints, General constraints)

Differentiable vs Non-differentiable

Convex vs Non-convex

Others

Quadratic programming (E : convex quadratic function, C :
linear constraints)

Linear programming (E : linear function, C : linear constraints)

Discrete optimization (w : discrete variables)

Classification of Optimization Algorithms

min
w∈C

E (w)

Nonlinear

Unconstrained vs Constrained (Simple bounds, Linear
constraints, General constraints)

Differentiable vs Non-differentiable

Convex vs Non-convex

Others

Quadratic programming (E : convex quadratic function, C :
linear constraints)

Linear programming (E : linear function, C : linear constraints)

Discrete optimization (w : discrete variables)

Unconstrained Nonlinear Optimization

min
w∈Rm

E (w)

Gradient

g(w) = ∇E (w) = [
∂E

∂w1
. . .

∂E

∂wm
]T T = transpose

Hessian

H(w) = m ×m matrix with
∂2E

∂wi∂wj
as elements

Before we go into algorithms let us look at an ML model where
unconstrained nonlinear optimization problems arise.

Unconstrained Nonlinear Optimization

min
w∈Rm

E (w)

Gradient

g(w) = ∇E (w) = [
∂E

∂w1
. . .

∂E

∂wm
]T T = transpose

Hessian

H(w) = m ×m matrix with
∂2E

∂wi∂wj
as elements

Before we go into algorithms let us look at an ML model where
unconstrained nonlinear optimization problems arise.

Unconstrained Nonlinear Optimization

min
w∈Rm

E (w)

Gradient

g(w) = ∇E (w) = [
∂E

∂w1
. . .

∂E

∂wm
]T T = transpose

Hessian

H(w) = m ×m matrix with
∂2E

∂wi∂wj
as elements

Before we go into algorithms let us look at an ML model where
unconstrained nonlinear optimization problems arise.

Unconstrained Nonlinear Optimization

min
w∈Rm

E (w)

Gradient

g(w) = ∇E (w) = [
∂E

∂w1
. . .

∂E

∂wm
]T T = transpose

Hessian

H(w) = m ×m matrix with
∂2E

∂wi∂wj
as elements

Before we go into algorithms let us look at an ML model where
unconstrained nonlinear optimization problems arise.

Regularized ML Models

Training data: {(xi , ti)}nexi=1

xi ∈ Rm is the i-th input vector
ti is the target for xi
e.g. binary classification: ti = 1 ⇒ Class 1 and −1 ⇒ Class 2
The aim is to form a decision function y(x ,w)
e.g. Linear classifier: y(x ,w) =

∑
i wixi = wT x .

Loss function

L(y(xi ,w), ti) expresses the loss due to y not yielding the desired ti
The form of L depends on the problem and model used.

Empirical error

L =
∑
i

L(y(xi ,w), ti)

Regularized ML Models

Training data: {(xi , ti)}nexi=1

xi ∈ Rm is the i-th input vector
ti is the target for xi
e.g. binary classification: ti = 1 ⇒ Class 1 and −1 ⇒ Class 2
The aim is to form a decision function y(x ,w)
e.g. Linear classifier: y(x ,w) =

∑
i wixi = wT x .

Loss function

L(y(xi ,w), ti) expresses the loss due to y not yielding the desired ti
The form of L depends on the problem and model used.

Empirical error

L =
∑
i

L(y(xi ,w), ti)

Regularized ML Models

Training data: {(xi , ti)}nexi=1

xi ∈ Rm is the i-th input vector
ti is the target for xi
e.g. binary classification: ti = 1 ⇒ Class 1 and −1 ⇒ Class 2
The aim is to form a decision function y(x ,w)
e.g. Linear classifier: y(x ,w) =

∑
i wixi = wT x .

Loss function

L(y(xi ,w), ti) expresses the loss due to y not yielding the desired ti
The form of L depends on the problem and model used.

Empirical error

L =
∑
i

L(y(xi ,w), ti)

The Optimization Problem

Regularizer

Minimizing only L can lead to overfitting on the training data.
The regularizer function R prefers simpler models and helps
prevent overfitting. E.g. R = ‖w‖2.

Training problem

w , the parameter vector which defines the model is obtained by
solving the following optimization problem: minw E = R+ CL

Regularization parameter

The parameter C helps to establish a trade-off between R and L.
C is a hyperparameter. All hyperparameters need to be tuned at a
higher level than the training stage, e.g. by doing cross-validation.

The Optimization Problem

Regularizer

Minimizing only L can lead to overfitting on the training data.
The regularizer function R prefers simpler models and helps
prevent overfitting. E.g. R = ‖w‖2.

Training problem

w , the parameter vector which defines the model is obtained by
solving the following optimization problem: minw E = R+ CL

Regularization parameter

The parameter C helps to establish a trade-off between R and L.
C is a hyperparameter. All hyperparameters need to be tuned at a
higher level than the training stage, e.g. by doing cross-validation.

The Optimization Problem

Regularizer

Minimizing only L can lead to overfitting on the training data.
The regularizer function R prefers simpler models and helps
prevent overfitting. E.g. R = ‖w‖2.

Training problem

w , the parameter vector which defines the model is obtained by
solving the following optimization problem: minw E = R+ CL

Regularization parameter

The parameter C helps to establish a trade-off between R and L.
C is a hyperparameter. All hyperparameters need to be tuned at a
higher level than the training stage, e.g. by doing cross-validation.

Binary Classification: loss functions

Decision: y(x ,w) > 0 ⇒ Class 1, else Class 2.

Logistic Regression

Logistic loss: L(y , t) = log(1 + exp(−ty))
It is the negative-log-likelihood of the probability of t:
1/(1 + exp(−ty)).

Support Vector Machines (SVMs)

Hinge loss: l(y , t) = 1− ty if ty < 1; 0 otherwise.
Squared Hinge loss: l(y , t) = (1− ty)2/2 if ty < 1; 0 otherwise.
Modified Huber loss: l(y , t) is: 0 if ξ ≥ 0; ξ2/2 if 0 < ξ < 2; and
2(ξ − 1) if ξ ≥ 2, where ξ = 1− ty .

Binary Classification: loss functions

Decision: y(x ,w) > 0 ⇒ Class 1, else Class 2.

Logistic Regression

Logistic loss: L(y , t) = log(1 + exp(−ty))
It is the negative-log-likelihood of the probability of t:
1/(1 + exp(−ty)).

Support Vector Machines (SVMs)

Hinge loss: l(y , t) = 1− ty if ty < 1; 0 otherwise.
Squared Hinge loss: l(y , t) = (1− ty)2/2 if ty < 1; 0 otherwise.
Modified Huber loss: l(y , t) is: 0 if ξ ≥ 0; ξ2/2 if 0 < ξ < 2; and
2(ξ − 1) if ξ ≥ 2, where ξ = 1− ty .

Binary Classification: loss functions

Decision: y(x ,w) > 0 ⇒ Class 1, else Class 2.

Logistic Regression

Logistic loss: L(y , t) = log(1 + exp(−ty))
It is the negative-log-likelihood of the probability of t:
1/(1 + exp(−ty)).

Support Vector Machines (SVMs)

Hinge loss: l(y , t) = 1− ty if ty < 1; 0 otherwise.
Squared Hinge loss: l(y , t) = (1− ty)2/2 if ty < 1; 0 otherwise.
Modified Huber loss: l(y , t) is: 0 if ξ ≥ 0; ξ2/2 if 0 < ξ < 2; and
2(ξ − 1) if ξ ≥ 2, where ξ = 1− ty .

Binary Loss functions

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8
Binary Loss Functions

ty

Logistic

Hinge

SqHinge

ModHuber

SVMs and Margin Maximization

The margin between the planes defined by y = ±1 is 2/‖w‖.
Making margin big is equivalent to making R = ‖w‖2 small.

Unconstrained optimization: Optimality conditions

At a minimum we have stationarity: ∇E = 0
Non-negative curvature: H is positive semi-definite

E convex ⇒ local minimum is a global minimum.

Unconstrained optimization: Optimality conditions

At a minimum we have stationarity: ∇E = 0
Non-negative curvature: H is positive semi-definite

E convex ⇒ local minimum is a global minimum.

Non-convex functions have local minima

Representation of functions by contours

w = (x , y) E = f

Geometry of descent

∇E (θnow)Td < 0; Here : θ is w

Tangent plane: E =constant is approximately
E (θnow) +∇E (θnow)T (θ − θnow) =constant ⇔
∇E (θnow)T (θ − θnow) = 0

A sketch of a descent algorithm

Steps of a Descent Algorithm

1 Input w0.

2 For k ≥ 0, choose a descent direction dk at wk :

∇E (wk)Tdk < 0

3 Compute a step size η by line search on E (wk + ηdk).

4 Set wk+1 = wk + ηdk .

5 Continue with next k until some termination criterion (e.g.
‖∇E‖ ≤ ε) is satisfied.

Most optimization methods/codes will ask for the functions, E (w)
and ∇E (w) to be made available. (Some also need H−1 or H
times a vector d operation to be available.)

Gradient/Hessian of E = R+ CL

Classifier outputs

yi = wT xi = xTi w , written combined for all i as: y = Xw
X is nex ×m matrix with xTi as the i-th row.

Gradient structure

∇E = 2w + C
∑
i

a(yi , t)xi = 2w + CXTa

where a is a nex dimensional vector containing the a(yi , t) values.

Hessian structure

H = 2I + CXTDX , D is diagonal

In large scale problems (e.g text classification) X turns out to be
sparse and Hd = 2d + CXT (D(Xd)) calculation for any given
vector d is cheap to compute.

Gradient/Hessian of E = R+ CL

Classifier outputs

yi = wT xi = xTi w , written combined for all i as: y = Xw
X is nex ×m matrix with xTi as the i-th row.

Gradient structure

∇E = 2w + C
∑
i

a(yi , t)xi = 2w + CXTa

where a is a nex dimensional vector containing the a(yi , t) values.

Hessian structure

H = 2I + CXTDX , D is diagonal

In large scale problems (e.g text classification) X turns out to be
sparse and Hd = 2d + CXT (D(Xd)) calculation for any given
vector d is cheap to compute.

Gradient/Hessian of E = R+ CL

Classifier outputs

yi = wT xi = xTi w , written combined for all i as: y = Xw
X is nex ×m matrix with xTi as the i-th row.

Gradient structure

∇E = 2w + C
∑
i

a(yi , t)xi = 2w + CXTa

where a is a nex dimensional vector containing the a(yi , t) values.

Hessian structure

H = 2I + CXTDX , D is diagonal

In large scale problems (e.g text classification) X turns out to be
sparse and Hd = 2d + CXT (D(Xd)) calculation for any given
vector d is cheap to compute.

Exact line search along a direction d

η? = min
η
φ(η) = E (w + ηd)

Hard to do unless E has simple form such as a quadratic form.

Exact line search along a direction d

η? = min
η
φ(η) = E (w + ηd)

Hard to do unless E has simple form such as a quadratic form.

Inexact line search: Armijo condition

Global convergence theorem

E is Lipschitz continuous

Sufficient angle of descent condition: For some fixed δ > 0,

−∇E (wk)Tdk ≥ δ‖∇E (wk)‖‖dk‖

Armijo line search condition: For some fixed µ1 ≥ µ2 > 0

−µ1η∇E (wk)Tdk ≥ E (wk)− E (wk + ηdk) ≥ −µ2η∇E (wk)Tdk

Then, either E → −∞ or wk converges to a stationary point w?:
∇E (w?) = 0.

Global convergence theorem

E is Lipschitz continuous

Sufficient angle of descent condition: For some fixed δ > 0,

−∇E (wk)Tdk ≥ δ‖∇E (wk)‖‖dk‖

Armijo line search condition: For some fixed µ1 ≥ µ2 > 0

−µ1η∇E (wk)Tdk ≥ E (wk)− E (wk + ηdk) ≥ −µ2η∇E (wk)Tdk

Then, either E → −∞ or wk converges to a stationary point w?:
∇E (w?) = 0.

Global convergence theorem

E is Lipschitz continuous

Sufficient angle of descent condition: For some fixed δ > 0,

−∇E (wk)Tdk ≥ δ‖∇E (wk)‖‖dk‖

Armijo line search condition: For some fixed µ1 ≥ µ2 > 0

−µ1η∇E (wk)Tdk ≥ E (wk)− E (wk + ηdk) ≥ −µ2η∇E (wk)Tdk

Then, either E → −∞ or wk converges to a stationary point w?:
∇E (w?) = 0.

Global convergence theorem

E is Lipschitz continuous

Sufficient angle of descent condition: For some fixed δ > 0,

−∇E (wk)Tdk ≥ δ‖∇E (wk)‖‖dk‖

Armijo line search condition: For some fixed µ1 ≥ µ2 > 0

−µ1η∇E (wk)Tdk ≥ E (wk)− E (wk + ηdk) ≥ −µ2η∇E (wk)Tdk

Then, either E → −∞ or wk converges to a stationary point w?:
∇E (w?) = 0.

Rate of convergence

εk = E (wk)− E (wk+1)

|εk+1| = ρ|εk |r in limit as k →∞

r = rate of convergence,
a key factor for speed of convergence of optimization algorithms

Linear convergence (r = 1) is quite a bit slower than

quadratic convergence (r = 2) .

Many optimization algorithms have
superlinear convergence (1 < r < 2) which is pretty good.

Rate of convergence

εk = E (wk)− E (wk+1)

|εk+1| = ρ|εk |r in limit as k →∞

r = rate of convergence,
a key factor for speed of convergence of optimization algorithms

Linear convergence (r = 1) is quite a bit slower than

quadratic convergence (r = 2) .

Many optimization algorithms have
superlinear convergence (1 < r < 2) which is pretty good.

Rate of convergence

εk = E (wk)− E (wk+1)

|εk+1| = ρ|εk |r in limit as k →∞

r = rate of convergence,
a key factor for speed of convergence of optimization algorithms

Linear convergence (r = 1) is quite a bit slower than

quadratic convergence (r = 2) .

Many optimization algorithms have
superlinear convergence (1 < r < 2) which is pretty good.

Rate of convergence

εk = E (wk)− E (wk+1)

|εk+1| = ρ|εk |r in limit as k →∞

r = rate of convergence,
a key factor for speed of convergence of optimization algorithms

Linear convergence (r = 1) is quite a bit slower than

quadratic convergence (r = 2) .

Many optimization algorithms have
superlinear convergence (1 < r < 2) which is pretty good.

Rate of convergence

εk = E (wk)− E (wk+1)

|εk+1| = ρ|εk |r in limit as k →∞

r = rate of convergence,
a key factor for speed of convergence of optimization algorithms

Linear convergence (r = 1) is quite a bit slower than

quadratic convergence (r = 2) .

Many optimization algorithms have
superlinear convergence (1 < r < 2) which is pretty good.

(Batch) Gradient descent method

d = −∇E

Linear convergence

Very simple; locally good; but often very slow; rarely used in
practice.
http://en.wikipedia.org/wiki/Steepest_descent

http://en.wikipedia.org/wiki/Steepest_descent

(Batch) Gradient descent method

d = −∇E

Linear convergence

Very simple; locally good; but often very slow; rarely used in
practice.
http://en.wikipedia.org/wiki/Steepest_descent

http://en.wikipedia.org/wiki/Steepest_descent

(Batch) Gradient descent method

d = −∇E

Linear convergence

Very simple; locally good; but often very slow; rarely used in
practice.
http://en.wikipedia.org/wiki/Steepest_descent

http://en.wikipedia.org/wiki/Steepest_descent

Conjugate Gradient (CG) Method

Motivation

Accelerate slow convergence of steepest descent, but keep its
simplicity: use only ∇E and avoid operations involving Hessian.

Conjugate gradient methods can be regarded as somewhat in
between steepest descent and Newton’s method (discussed below),
having the positive features of both of them.

Conjugate gradient methods originally invented and solved for the
quadratic problem:
min E = wTQw − bTw ⇔ solving 2Qw = b
Solution of 2Qw = b this way is referred as: Linear Conjugate
Gradient
http://en.wikipedia.org/wiki/Conjugate_gradient_method

http://en.wikipedia.org/wiki/Conjugate_gradient_method

Conjugate Gradient (CG) Method

Motivation

Accelerate slow convergence of steepest descent, but keep its
simplicity: use only ∇E and avoid operations involving Hessian.

Conjugate gradient methods can be regarded as somewhat in
between steepest descent and Newton’s method (discussed below),
having the positive features of both of them.

Conjugate gradient methods originally invented and solved for the
quadratic problem:
min E = wTQw − bTw ⇔ solving 2Qw = b
Solution of 2Qw = b this way is referred as: Linear Conjugate
Gradient
http://en.wikipedia.org/wiki/Conjugate_gradient_method

http://en.wikipedia.org/wiki/Conjugate_gradient_method

Conjugate Gradient (CG) Method

Motivation

Accelerate slow convergence of steepest descent, but keep its
simplicity: use only ∇E and avoid operations involving Hessian.

Conjugate gradient methods can be regarded as somewhat in
between steepest descent and Newton’s method (discussed below),
having the positive features of both of them.

Conjugate gradient methods originally invented and solved for the
quadratic problem:
min E = wTQw − bTw ⇔ solving 2Qw = b
Solution of 2Qw = b this way is referred as: Linear Conjugate
Gradient
http://en.wikipedia.org/wiki/Conjugate_gradient_method

http://en.wikipedia.org/wiki/Conjugate_gradient_method

Basic Principle

Given a symmetric pd matrix Q, two vectors d1 and d2 are said to
be Q conjugate if dT

1 Qd2 = 0.

Given a full set of independent Q conjugate vectors {di}, the
minimizer of the quadratic E can be written as

w? = η1d1 + ...+ ηmdm (1)

Using 2Qw? = b, pre-multiplying (1) by 2Q and by taking the
scalar product with di we can easily solve for ηi :

dT
i b = dT

i 2Qw? = 0 + · · ·+ ηid
T
i 2Qdi + · · ·+ 0

Key computation: Q times d operations.

Basic Principle

Given a symmetric pd matrix Q, two vectors d1 and d2 are said to
be Q conjugate if dT

1 Qd2 = 0.

Given a full set of independent Q conjugate vectors {di}, the
minimizer of the quadratic E can be written as

w? = η1d1 + ...+ ηmdm (1)

Using 2Qw? = b, pre-multiplying (1) by 2Q and by taking the
scalar product with di we can easily solve for ηi :

dT
i b = dT

i 2Qw? = 0 + · · ·+ ηid
T
i 2Qdi + · · ·+ 0

Key computation: Q times d operations.

Basic Principle

Given a symmetric pd matrix Q, two vectors d1 and d2 are said to
be Q conjugate if dT

1 Qd2 = 0.

Given a full set of independent Q conjugate vectors {di}, the
minimizer of the quadratic E can be written as

w? = η1d1 + ...+ ηmdm (1)

Using 2Qw? = b, pre-multiplying (1) by 2Q and by taking the
scalar product with di we can easily solve for ηi :

dT
i b = dT

i 2Qw? = 0 + · · ·+ ηid
T
i 2Qdi + · · ·+ 0

Key computation: Q times d operations.

Conjugate Gradient Method

The conjugate gradient method starts with gradient descent
direction as the first direction and selects the successive conjugate
directions on the fly.

Start with d0 = −g(w0), where g = ∇E .

Simple formula to determine the new Q-conjugate direction:

dk+1 = −g(wk+1) + βkdk

Only slightly more complicated than steepest descent.

Fletcher-Reeves formula: βk =
gT
k+1gk+1

gT
k gk

Polak-Ribierre formula: βk =
gT
k+1(gk+1−gk)

gT
k gk

Conjugate Gradient Method

The conjugate gradient method starts with gradient descent
direction as the first direction and selects the successive conjugate
directions on the fly.

Start with d0 = −g(w0), where g = ∇E .

Simple formula to determine the new Q-conjugate direction:

dk+1 = −g(wk+1) + βkdk

Only slightly more complicated than steepest descent.

Fletcher-Reeves formula: βk =
gT
k+1gk+1

gT
k gk

Polak-Ribierre formula: βk =
gT
k+1(gk+1−gk)

gT
k gk

Conjugate Gradient Method

The conjugate gradient method starts with gradient descent
direction as the first direction and selects the successive conjugate
directions on the fly.

Start with d0 = −g(w0), where g = ∇E .

Simple formula to determine the new Q-conjugate direction:

dk+1 = −g(wk+1) + βkdk

Only slightly more complicated than steepest descent.

Fletcher-Reeves formula: βk =
gT
k+1gk+1

gT
k gk

Polak-Ribierre formula: βk =
gT
k+1(gk+1−gk)

gT
k gk

Extending CG to Nonlinear Minimization

There is no proper theory since there is no specific Q matrix.

Still, simply extend CG by:

using FR or PR formulas for choosing the directions

obtaining step sizes ηi by line search

The resulting method has good convergence when implemented
with good line search.

http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient

http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient

Extending CG to Nonlinear Minimization

There is no proper theory since there is no specific Q matrix.

Still, simply extend CG by:

using FR or PR formulas for choosing the directions

obtaining step sizes ηi by line search

The resulting method has good convergence when implemented
with good line search.

http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient

http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient

Extending CG to Nonlinear Minimization

There is no proper theory since there is no specific Q matrix.

Still, simply extend CG by:

using FR or PR formulas for choosing the directions

obtaining step sizes ηi by line search

The resulting method has good convergence when implemented
with good line search.

http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient

http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient

Newton method

d = −H−1∇E , η = 1

w + d minimizes second order approximation

Ê (w + d) = E (w) +∇E (w)Td +
1

2
dTH(w)d

w + d solves linearized optimality condition

∇E (w + d) ≈ ∇Ê (w + d) = ∇E (w) + H(w)d = 0

Quadratic rate of convergence

http://en.wikipedia.org/wiki/Newton’s_method_in_

optimization

http://en.wikipedia.org/wiki/Newton's_method_in_optimization
http://en.wikipedia.org/wiki/Newton's_method_in_optimization

Newton method

d = −H−1∇E , η = 1

w + d minimizes second order approximation

Ê (w + d) = E (w) +∇E (w)Td +
1

2
dTH(w)d

w + d solves linearized optimality condition

∇E (w + d) ≈ ∇Ê (w + d) = ∇E (w) + H(w)d = 0

Quadratic rate of convergence

http://en.wikipedia.org/wiki/Newton’s_method_in_

optimization

http://en.wikipedia.org/wiki/Newton's_method_in_optimization
http://en.wikipedia.org/wiki/Newton's_method_in_optimization

Newton method

d = −H−1∇E , η = 1

w + d minimizes second order approximation

Ê (w + d) = E (w) +∇E (w)Td +
1

2
dTH(w)d

w + d solves linearized optimality condition

∇E (w + d) ≈ ∇Ê (w + d) = ∇E (w) + H(w)d = 0

Quadratic rate of convergence

http://en.wikipedia.org/wiki/Newton’s_method_in_

optimization

http://en.wikipedia.org/wiki/Newton's_method_in_optimization
http://en.wikipedia.org/wiki/Newton's_method_in_optimization

Newton method

d = −H−1∇E , η = 1

w + d minimizes second order approximation

Ê (w + d) = E (w) +∇E (w)Td +
1

2
dTH(w)d

w + d solves linearized optimality condition

∇E (w + d) ≈ ∇Ê (w + d) = ∇E (w) + H(w)d = 0

Quadratic rate of convergence

http://en.wikipedia.org/wiki/Newton’s_method_in_

optimization

http://en.wikipedia.org/wiki/Newton's_method_in_optimization
http://en.wikipedia.org/wiki/Newton's_method_in_optimization

Newton method: Comments

Compute H(w), g = ∇E (w) solve Hd = −g and set w := w + d .
When number of variables is large do the linear system solution
approximately by iterative methods, e.g. linear CG discussed
earlier. http://en.wikipedia.org/wiki/Conjugate_gradient_method

Newton method may not converge (or worse, If H is not positive

definite, Newton method may not even be properly defined when
started far from a minimum ⇒ d may not even be descent)

Convex E: H is positive definite, so d is a descent direction. Still,
an added step, line search, is needed to ensure convergence.

If E is piecewise quadratic, differentiable and convex (e.g. SVM
training with squared hinge loss) then the Newton-type method
converges in a finite number of steps.

http://en.wikipedia.org/wiki/Conjugate_gradient_method

Newton method: Comments

Compute H(w), g = ∇E (w) solve Hd = −g and set w := w + d .
When number of variables is large do the linear system solution
approximately by iterative methods, e.g. linear CG discussed
earlier. http://en.wikipedia.org/wiki/Conjugate_gradient_method

Newton method may not converge (or worse, If H is not positive

definite, Newton method may not even be properly defined when
started far from a minimum ⇒ d may not even be descent)

Convex E: H is positive definite, so d is a descent direction. Still,
an added step, line search, is needed to ensure convergence.

If E is piecewise quadratic, differentiable and convex (e.g. SVM
training with squared hinge loss) then the Newton-type method
converges in a finite number of steps.

http://en.wikipedia.org/wiki/Conjugate_gradient_method

Newton method: Comments

Compute H(w), g = ∇E (w) solve Hd = −g and set w := w + d .
When number of variables is large do the linear system solution
approximately by iterative methods, e.g. linear CG discussed
earlier. http://en.wikipedia.org/wiki/Conjugate_gradient_method

Newton method may not converge (or worse, If H is not positive

definite, Newton method may not even be properly defined when
started far from a minimum ⇒ d may not even be descent)

Convex E: H is positive definite, so d is a descent direction. Still,
an added step, line search, is needed to ensure convergence.

If E is piecewise quadratic, differentiable and convex (e.g. SVM
training with squared hinge loss) then the Newton-type method
converges in a finite number of steps.

http://en.wikipedia.org/wiki/Conjugate_gradient_method

Newton method: Comments

Compute H(w), g = ∇E (w) solve Hd = −g and set w := w + d .
When number of variables is large do the linear system solution
approximately by iterative methods, e.g. linear CG discussed
earlier. http://en.wikipedia.org/wiki/Conjugate_gradient_method

Newton method may not converge (or worse, If H is not positive

definite, Newton method may not even be properly defined when
started far from a minimum ⇒ d may not even be descent)

Convex E: H is positive definite, so d is a descent direction. Still,
an added step, line search, is needed to ensure convergence.

If E is piecewise quadratic, differentiable and convex (e.g. SVM
training with squared hinge loss) then the Newton-type method
converges in a finite number of steps.

http://en.wikipedia.org/wiki/Conjugate_gradient_method

Trust Region Newton method

Define trust region at the current point: T = {w : ‖w − wk‖ ≤ r}
a region where you think Ê , the quadratic used in the derivation of
Newton method approximates E well.

Optimize the Newton quadratic Ê only within T . In the case of
solving large scale systems via linear CG iterations, simply
terminate when the iterations hit the boundary of T .

After each iteration, observe the ratio of decrements in E and Ê .
Compare this ratio with 1 to decide whether to expand or shrink T .

In large scale problems, when far away from w? (the minimizer of
E) T is hit in just a few CG iterations. When near w? many CG
iterations are used to zoom in on w? quickly.
http://www.machinelearning.org/proceedings/icml2007/papers/114.pdf

http://www.machinelearning.org/proceedings/icml2007/papers/114.pdf

Trust Region Newton method

Define trust region at the current point: T = {w : ‖w − wk‖ ≤ r}
a region where you think Ê , the quadratic used in the derivation of
Newton method approximates E well.

Optimize the Newton quadratic Ê only within T . In the case of
solving large scale systems via linear CG iterations, simply
terminate when the iterations hit the boundary of T .

After each iteration, observe the ratio of decrements in E and Ê .
Compare this ratio with 1 to decide whether to expand or shrink T .

In large scale problems, when far away from w? (the minimizer of
E) T is hit in just a few CG iterations. When near w? many CG
iterations are used to zoom in on w? quickly.
http://www.machinelearning.org/proceedings/icml2007/papers/114.pdf

http://www.machinelearning.org/proceedings/icml2007/papers/114.pdf

Trust Region Newton method

Define trust region at the current point: T = {w : ‖w − wk‖ ≤ r}
a region where you think Ê , the quadratic used in the derivation of
Newton method approximates E well.

Optimize the Newton quadratic Ê only within T . In the case of
solving large scale systems via linear CG iterations, simply
terminate when the iterations hit the boundary of T .

After each iteration, observe the ratio of decrements in E and Ê .
Compare this ratio with 1 to decide whether to expand or shrink T .

In large scale problems, when far away from w? (the minimizer of
E) T is hit in just a few CG iterations. When near w? many CG
iterations are used to zoom in on w? quickly.
http://www.machinelearning.org/proceedings/icml2007/papers/114.pdf

http://www.machinelearning.org/proceedings/icml2007/papers/114.pdf

Trust Region Newton method

Define trust region at the current point: T = {w : ‖w − wk‖ ≤ r}
a region where you think Ê , the quadratic used in the derivation of
Newton method approximates E well.

Optimize the Newton quadratic Ê only within T . In the case of
solving large scale systems via linear CG iterations, simply
terminate when the iterations hit the boundary of T .

After each iteration, observe the ratio of decrements in E and Ê .
Compare this ratio with 1 to decide whether to expand or shrink T .

In large scale problems, when far away from w? (the minimizer of
E) T is hit in just a few CG iterations. When near w? many CG
iterations are used to zoom in on w? quickly.
http://www.machinelearning.org/proceedings/icml2007/papers/114.pdf

http://www.machinelearning.org/proceedings/icml2007/papers/114.pdf

Quasi-Newton Methods

Instead of the true Hessian, an initial matrix H0 is chosen (usually
H0 = I) which is subsequently modified by an update formula:

Hk+1 = Hk + Hu
k

where Hu
k is the update matrix.

This updating can also be done with the inverse of the Hessian
B = H−1 as follows:

Bk+1 = Bk + Bu
k

This is better since Newton direction is: −H−1g = −Bg .

Quasi-Newton Methods

Instead of the true Hessian, an initial matrix H0 is chosen (usually
H0 = I) which is subsequently modified by an update formula:

Hk+1 = Hk + Hu
k

where Hu
k is the update matrix.

This updating can also be done with the inverse of the Hessian
B = H−1 as follows:

Bk+1 = Bk + Bu
k

This is better since Newton direction is: −H−1g = −Bg .

Hessian Matrix Updates

Given two points wk and wk+1, define gk = ∇E (wk) and
gk+1 = ∇E (wk+1). Further, let pk = wk+1 − wk , then

gk+1 − gk ≈ H(wk)pk

If the Hessian is constant, then gk+1 − gk = Hk+1pk .

Define qk = gk+1 − gk . Rewrite this condition as

H−1k+1qk = pk

This is called the quasi-Newton condition .

Hessian Matrix Updates

Given two points wk and wk+1, define gk = ∇E (wk) and
gk+1 = ∇E (wk+1). Further, let pk = wk+1 − wk , then

gk+1 − gk ≈ H(wk)pk

If the Hessian is constant, then gk+1 − gk = Hk+1pk .

Define qk = gk+1 − gk . Rewrite this condition as

H−1k+1qk = pk

This is called the quasi-Newton condition .

Hessian Matrix Updates

Given two points wk and wk+1, define gk = ∇E (wk) and
gk+1 = ∇E (wk+1). Further, let pk = wk+1 − wk , then

gk+1 − gk ≈ H(wk)pk

If the Hessian is constant, then gk+1 − gk = Hk+1pk .

Define qk = gk+1 − gk . Rewrite this condition as

H−1k+1qk = pk

This is called the quasi-Newton condition .

Rank One and Rank Two Updates

Substitute the updating formula Bk+1 = Bk + Bu
k and the

condition becomes
Bkqk + Bu

k qk = pk (1)

(remember: pk = wk+1 − wk and qk = gk+1 − gk)

There is no unique solution to finding the update matrix Bu
k .

A general form is
Bu
k = auuT + bvvT

where a and b are scalars and u and v are vectors.
auuT and bvvT are rank one matrices.
Quasi-Newton methods that take b = 0: rank one updates.
Quasi-Newton methods that take b 6= 0: rank two updates.

Rank One and Rank Two Updates

Substitute the updating formula Bk+1 = Bk + Bu
k and the

condition becomes
Bkqk + Bu

k qk = pk (1)

(remember: pk = wk+1 − wk and qk = gk+1 − gk)

There is no unique solution to finding the update matrix Bu
k .

A general form is
Bu
k = auuT + bvvT

where a and b are scalars and u and v are vectors.
auuT and bvvT are rank one matrices.
Quasi-Newton methods that take b = 0: rank one updates.
Quasi-Newton methods that take b 6= 0: rank two updates.

Rank One and Rank Two Updates

Substitute the updating formula Bk+1 = Bk + Bu
k and the

condition becomes
Bkqk + Bu

k qk = pk (1)

(remember: pk = wk+1 − wk and qk = gk+1 − gk)

There is no unique solution to finding the update matrix Bu
k .

A general form is
Bu
k = auuT + bvvT

where a and b are scalars and u and v are vectors.
auuT and bvvT are rank one matrices.
Quasi-Newton methods that take b = 0: rank one updates.
Quasi-Newton methods that take b 6= 0: rank two updates.

Rank one updates are simple, but have limitations. Rank two
updates are the most widely used schemes. The rationale can be
quite complicated.

The following two update formulas have received wide acceptance:
Davidon -Fletcher-Powell (DFP) formula
Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula.

Numerical experiments have shown that BFGS formula’s
performance is superior over DFP formula. Hence, BFGS is often
preferred over DFP.
http://en.wikipedia.org/wiki/BFGS_method

http://en.wikipedia.org/wiki/BFGS_method

Rank one updates are simple, but have limitations. Rank two
updates are the most widely used schemes. The rationale can be
quite complicated.

The following two update formulas have received wide acceptance:
Davidon -Fletcher-Powell (DFP) formula
Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula.

Numerical experiments have shown that BFGS formula’s
performance is superior over DFP formula. Hence, BFGS is often
preferred over DFP.
http://en.wikipedia.org/wiki/BFGS_method

http://en.wikipedia.org/wiki/BFGS_method

Rank one updates are simple, but have limitations. Rank two
updates are the most widely used schemes. The rationale can be
quite complicated.

The following two update formulas have received wide acceptance:
Davidon -Fletcher-Powell (DFP) formula
Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula.

Numerical experiments have shown that BFGS formula’s
performance is superior over DFP formula. Hence, BFGS is often
preferred over DFP.
http://en.wikipedia.org/wiki/BFGS_method

http://en.wikipedia.org/wiki/BFGS_method

Quasi-Newton Algorithm

1 Input w0, B0 = I .

2 For k ≥ 0, set dk = −Bkgk .

3 Compute a step size η (e.g., by line search on E (wk + ηdk))
and set wk+1 = wk + ηdk .

4 Compute the update matrix Bu
k according to a given formula

(say, DFP or BFGS) using the values qk = gk+1 − gk ,
pk = wk+1 − wk , and Bk .

5 Set Bk+1 = Bk + Bu
k .

6 Continue with next k until termination criteria are satisfied.

Limited Memory Quasi Newton

When the number of variables is large, even maintaining and using
B is expensive.

Limited memory quasi Newton methods which use a low rank
updating of B using only the (pk , qk) vectors from the past L steps
(L small, say 5-15) work well in such large scale settings.

L-BFGS is very popular. In particular see Nocedal’s code
(http://en.wikipedia.org/wiki/L-BFGS).

http://en.wikipedia.org/wiki/L-BFGS

Limited Memory Quasi Newton

When the number of variables is large, even maintaining and using
B is expensive.

Limited memory quasi Newton methods which use a low rank
updating of B using only the (pk , qk) vectors from the past L steps
(L small, say 5-15) work well in such large scale settings.

L-BFGS is very popular. In particular see Nocedal’s code
(http://en.wikipedia.org/wiki/L-BFGS).

http://en.wikipedia.org/wiki/L-BFGS

Limited Memory Quasi Newton

When the number of variables is large, even maintaining and using
B is expensive.

Limited memory quasi Newton methods which use a low rank
updating of B using only the (pk , qk) vectors from the past L steps
(L small, say 5-15) work well in such large scale settings.

L-BFGS is very popular. In particular see Nocedal’s code
(http://en.wikipedia.org/wiki/L-BFGS).

http://en.wikipedia.org/wiki/L-BFGS

Overall comparison of the methods

Gradient descent method is slow and should be avoided as much as
possible.

Conjugate gradient methods are simple, need little memory, and, if
implemented carefully, are very much faster.

Quasi-Newton methods are robust. But, they require O(m2)
memory space (m is number of variables) to store the approximate
Hessian inverse, so they are not suited for large scale problems.
Limited Memory Quasi-Newton methods use O(m) memory (like
CG and gradient descent) and they are suited for large scale
problems.

In many problems Hd evaluation is fast and, for them Newton-type
methods are excellent candidates, e.g. Trust region Newton.

Overall comparison of the methods

Gradient descent method is slow and should be avoided as much as
possible.

Conjugate gradient methods are simple, need little memory, and, if
implemented carefully, are very much faster.

Quasi-Newton methods are robust. But, they require O(m2)
memory space (m is number of variables) to store the approximate
Hessian inverse, so they are not suited for large scale problems.
Limited Memory Quasi-Newton methods use O(m) memory (like
CG and gradient descent) and they are suited for large scale
problems.

In many problems Hd evaluation is fast and, for them Newton-type
methods are excellent candidates, e.g. Trust region Newton.

Overall comparison of the methods

Gradient descent method is slow and should be avoided as much as
possible.

Conjugate gradient methods are simple, need little memory, and, if
implemented carefully, are very much faster.

Quasi-Newton methods are robust. But, they require O(m2)
memory space (m is number of variables) to store the approximate
Hessian inverse, so they are not suited for large scale problems.
Limited Memory Quasi-Newton methods use O(m) memory (like
CG and gradient descent) and they are suited for large scale
problems.

In many problems Hd evaluation is fast and, for them Newton-type
methods are excellent candidates, e.g. Trust region Newton.

Overall comparison of the methods

Gradient descent method is slow and should be avoided as much as
possible.

Conjugate gradient methods are simple, need little memory, and, if
implemented carefully, are very much faster.

Quasi-Newton methods are robust. But, they require O(m2)
memory space (m is number of variables) to store the approximate
Hessian inverse, so they are not suited for large scale problems.
Limited Memory Quasi-Newton methods use O(m) memory (like
CG and gradient descent) and they are suited for large scale
problems.

In many problems Hd evaluation is fast and, for them Newton-type
methods are excellent candidates, e.g. Trust region Newton.

Simple Bound Constraints

Example. L1 regularization: minw
∑

j |w j |+ CL(w) Compared to

using ‖w‖2 =
∑

j(w
j)2 the use of the L1 norm causes all irrelevant

w j variables to go to zero. Thus feature selection is neatly
achieved.

Problem: L1 norm is non-differentiable.
Take care of this by introducing two variables w j

p ≥ 0, w j
n ≥ 0,

setting w j = w j
p − w j

n and |w j | = w j
p + w j

n so that we have

min
wp≥0,wn≥0

∑
j

(w j
p + w j

n) + CL(wp − wn)

Most algorithms (Newton, BFGS etc) have modified versions that
can tackle the simple constrained problem.

Simple Bound Constraints

Example. L1 regularization: minw
∑

j |w j |+ CL(w) Compared to

using ‖w‖2 =
∑

j(w
j)2 the use of the L1 norm causes all irrelevant

w j variables to go to zero. Thus feature selection is neatly
achieved.

Problem: L1 norm is non-differentiable.
Take care of this by introducing two variables w j

p ≥ 0, w j
n ≥ 0,

setting w j = w j
p − w j

n and |w j | = w j
p + w j

n so that we have

min
wp≥0,wn≥0

∑
j

(w j
p + w j

n) + CL(wp − wn)

Most algorithms (Newton, BFGS etc) have modified versions that
can tackle the simple constrained problem.

Simple Bound Constraints

Example. L1 regularization: minw
∑

j |w j |+ CL(w) Compared to

using ‖w‖2 =
∑

j(w
j)2 the use of the L1 norm causes all irrelevant

w j variables to go to zero. Thus feature selection is neatly
achieved.

Problem: L1 norm is non-differentiable.
Take care of this by introducing two variables w j

p ≥ 0, w j
n ≥ 0,

setting w j = w j
p − w j

n and |w j | = w j
p + w j

n so that we have

min
wp≥0,wn≥0

∑
j

(w j
p + w j

n) + CL(wp − wn)

Most algorithms (Newton, BFGS etc) have modified versions that
can tackle the simple constrained problem.

Stochastic methods

Deterministic methods

The methods we have covered till now are based on using the
“full” gradient of the training objective function. They are
deterministic in the sense that, from the same starting w0, these
methods will produce exactly the same sequence of weight updates
each time they are run.

Stochastic methods

These methods are based on partial gradients with randomness
in-built; they are also a very effective class of methods.

Stochastic methods

Deterministic methods

The methods we have covered till now are based on using the
“full” gradient of the training objective function. They are
deterministic in the sense that, from the same starting w0, these
methods will produce exactly the same sequence of weight updates
each time they are run.

Stochastic methods

These methods are based on partial gradients with randomness
in-built; they are also a very effective class of methods.

Objective function as an expectation

The original objective

E = ‖w‖2 + C
nex∑
i=1

Li (w)

Multiply through by λ = 1/(C ∗ nex)

Ẽ = λ‖w‖2 +
1

nex

nex∑
i=1

Li (w) =
1

nex

nex∑
i=1

L̃i (w) = Exp L̃i (w)

where L̃i (w) = λ‖w‖2 + Li and Exp denotes Expectation over
examples. Gradient: ∇Ẽ (w) = Exp ∇L̃i (w)

Stochastic methods

Update w using a sample of examples, e.g., just one example.

Objective function as an expectation

The original objective

E = ‖w‖2 + C
nex∑
i=1

Li (w)

Multiply through by λ = 1/(C ∗ nex)

Ẽ = λ‖w‖2 +
1

nex

nex∑
i=1

Li (w) =
1

nex

nex∑
i=1

L̃i (w) = Exp L̃i (w)

where L̃i (w) = λ‖w‖2 + Li and Exp denotes Expectation over
examples. Gradient: ∇Ẽ (w) = Exp ∇L̃i (w)

Stochastic methods

Update w using a sample of examples, e.g., just one example.

Objective function as an expectation

The original objective

E = ‖w‖2 + C
nex∑
i=1

Li (w)

Multiply through by λ = 1/(C ∗ nex)

Ẽ = λ‖w‖2 +
1

nex

nex∑
i=1

Li (w) =
1

nex

nex∑
i=1

L̃i (w) = Exp L̃i (w)

where L̃i (w) = λ‖w‖2 + Li and Exp denotes Expectation over
examples. Gradient: ∇Ẽ (w) = Exp ∇L̃i (w)

Stochastic methods

Update w using a sample of examples, e.g., just one example.

Stochastic Gradient Descent (SGD)

Steps of SGD

1 Repeat the following steps for many epochs.

2 In each epoch, randomly shuffle the dataset

3 Repeat, for each i : w ← w − η∇L̃i (w)

Mini-batch SGD

In step 2, form random sets of mini-batches

In step 3, do for each mini-batch set MB:
w ← w − η 1

m

∑
i∈MB ∇L̃i (w)

Need for random shuffling in step 2

Any systematic ordering of examples will lead to poor or slow
convergence.

Stochastic Gradient Descent (SGD)

Steps of SGD

1 Repeat the following steps for many epochs.

2 In each epoch, randomly shuffle the dataset

3 Repeat, for each i : w ← w − η∇L̃i (w)

Mini-batch SGD

In step 2, form random sets of mini-batches

In step 3, do for each mini-batch set MB:
w ← w − η 1

m

∑
i∈MB ∇L̃i (w)

Need for random shuffling in step 2

Any systematic ordering of examples will lead to poor or slow
convergence.

Stochastic Gradient Descent (SGD)

Steps of SGD

1 Repeat the following steps for many epochs.

2 In each epoch, randomly shuffle the dataset

3 Repeat, for each i : w ← w − η∇L̃i (w)

Mini-batch SGD

In step 2, form random sets of mini-batches

In step 3, do for each mini-batch set MB:
w ← w − η 1

m

∑
i∈MB ∇L̃i (w)

Need for random shuffling in step 2

Any systematic ordering of examples will lead to poor or slow
convergence.

Pros and Cons

Speed

Unlike (batch) gradient methods they don’t have to wait for a full
round (epoch) over all examples to do an update.

Variance

Since each update uses a small sample of examples, the behavior
will be jumpy.

Jumpiness even at optimality

∇Ẽ (w) = Exp ∇L̃i (w) = 0 does not mean ∇L̃i (w) or a mean
over a small sample will be zero.

Pros and Cons

Speed

Unlike (batch) gradient methods they don’t have to wait for a full
round (epoch) over all examples to do an update.

Variance

Since each update uses a small sample of examples, the behavior
will be jumpy.

Jumpiness even at optimality

∇Ẽ (w) = Exp ∇L̃i (w) = 0 does not mean ∇L̃i (w) or a mean
over a small sample will be zero.

Pros and Cons

Speed

Unlike (batch) gradient methods they don’t have to wait for a full
round (epoch) over all examples to do an update.

Variance

Since each update uses a small sample of examples, the behavior
will be jumpy.

Jumpiness even at optimality

∇Ẽ (w) = Exp ∇L̃i (w) = 0 does not mean ∇L̃i (w) or a mean
over a small sample will be zero.

SGD Improvements

Greatly researched topic over many years

Momentum, Nesterov accelerated gradient are examples;

Make learning rate adaptive.

There is rich theory.

There are methods which reduce variance + improve
convergence.

(Deep) Neural Networks

Mini-batch SGD variants are the most popular.

Need to deal with non-convex objective functions

Objective functions also have special ill-conditionings

Need for separate adaptive learning rates for each weight

Methods - Adagrad, Adadelta, RMSprop, Adam (currently the
most popular)

SGD Improvements

Greatly researched topic over many years

Momentum, Nesterov accelerated gradient are examples;

Make learning rate adaptive.

There is rich theory.

There are methods which reduce variance + improve
convergence.

(Deep) Neural Networks

Mini-batch SGD variants are the most popular.

Need to deal with non-convex objective functions

Objective functions also have special ill-conditionings

Need for separate adaptive learning rates for each weight

Methods - Adagrad, Adadelta, RMSprop, Adam (currently the
most popular)

Dual methods

Primal

min
w

Ẽ = λ‖w‖2 +
1

nex

nex∑
i=1

Li (w)

Dual

max
α

D(α) = λ‖w(α)‖2 +
1

nex

nex∑
i=1

−φ(αi)

α has dimension nex - there is one αi for each example i

φ(·) is the conjugate of the loss function

w(α) = 2
nex

∑nex
i=1 αixi

Always E (w) ≥ D(α); At optimality, E (w) = D(α) and
w∗ = w(α∗).

Dual methods

Primal

min
w

Ẽ = λ‖w‖2 +
1

nex

nex∑
i=1

Li (w)

Dual

max
α

D(α) = λ‖w(α)‖2 +
1

nex

nex∑
i=1

−φ(αi)

α has dimension nex - there is one αi for each example i

φ(·) is the conjugate of the loss function

w(α) = 2
nex

∑nex
i=1 αixi

Always E (w) ≥ D(α); At optimality, E (w) = D(α) and
w∗ = w(α∗).

Dual Coordinate Ascent Methods

Dual Coordinate Ascent (DCA)

Epochs-wise updating

1 Repeat the following steps for many epochs.

2 In each epoch, randomly shuffle the dataset.

3 Repeat, for each i : maximize D with respect to αi only,
keeping all other α variables fixed.

Stochastic Dual Coordinate Ascent (SDCA)

There is no epochs-wise updating.

1 Repeat the following steps.

2 Choose a random example i with uniform distribution.

3 maximize D with respect to αi only, keeping all other α
variables fixed.

Dual Coordinate Ascent Methods

Dual Coordinate Ascent (DCA)

Epochs-wise updating

1 Repeat the following steps for many epochs.

2 In each epoch, randomly shuffle the dataset.

3 Repeat, for each i : maximize D with respect to αi only,
keeping all other α variables fixed.

Stochastic Dual Coordinate Ascent (SDCA)

There is no epochs-wise updating.

1 Repeat the following steps.

2 Choose a random example i with uniform distribution.

3 maximize D with respect to αi only, keeping all other α
variables fixed.

Convergence

DCA (SDCA-Perm) and SDCA methods enjoy linear convergence.

References for Stochastic Methods

SGD
http://sebastianruder.com/optimizing-gradient-descent/

http://cs231n.github.io/neural-networks-3/#update

http://en.wikipedia.org/wiki/Stochastic_gradient_descent

DCA, SDCA
https://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf

http://www.jmlr.org/papers/volume14/shalev-shwartz13a/

shalev-shwartz13a.pdf

http://sebastianruder.com/optimizing-gradient-descent/
http://cs231n.github.io/neural-networks-3/#update
http://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf
http://www.jmlr.org/papers/volume14/shalev-shwartz13a/shalev-shwartz13a.pdf
http://www.jmlr.org/papers/volume14/shalev-shwartz13a/shalev-shwartz13a.pdf

References for Stochastic Methods

SGD
http://sebastianruder.com/optimizing-gradient-descent/

http://cs231n.github.io/neural-networks-3/#update

http://en.wikipedia.org/wiki/Stochastic_gradient_descent

DCA, SDCA
https://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf

http://www.jmlr.org/papers/volume14/shalev-shwartz13a/

shalev-shwartz13a.pdf

http://sebastianruder.com/optimizing-gradient-descent/
http://cs231n.github.io/neural-networks-3/#update
http://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf
http://www.jmlr.org/papers/volume14/shalev-shwartz13a/shalev-shwartz13a.pdf
http://www.jmlr.org/papers/volume14/shalev-shwartz13a/shalev-shwartz13a.pdf

Least Squares loss for Classification

L(y , t) = (y − t)2

with t ∈ {1,−1} as above for logistic and SVM losses.

Although one may have doubting questions such as:
“Why should we penalize (y − t) when, say, t = 1 and y > 1?”,
the method works surprisingly well in practice!

Least Squares loss for Classification

L(y , t) = (y − t)2

with t ∈ {1,−1} as above for logistic and SVM losses.

Although one may have doubting questions such as:
“Why should we penalize (y − t) when, say, t = 1 and y > 1?”,
the method works surprisingly well in practice!

Multi-Class Models

Decision functions

One weight vector wc for each class c . wT
c x is the score for class c .

Classifier chooses arg maxc w
T
c x

Logistic loss (differentiable)

Negative log-likelihood of target class t:

p(t|x) =
exp(wT

t x)

Z
, Z =

∑
c

exp(wT
c x)

Multi-class SVM loss (non-differentiable)

L = max
c

[wT
c x − wT

t x + ∆(c , t)]

∆(c, t) is penalty for classifying t as c .

Multi-Class Models

Decision functions

One weight vector wc for each class c . wT
c x is the score for class c .

Classifier chooses arg maxc w
T
c x

Logistic loss (differentiable)

Negative log-likelihood of target class t:

p(t|x) =
exp(wT

t x)

Z
, Z =

∑
c

exp(wT
c x)

Multi-class SVM loss (non-differentiable)

L = max
c

[wT
c x − wT

t x + ∆(c , t)]

∆(c, t) is penalty for classifying t as c .

Multi-Class Models

Decision functions

One weight vector wc for each class c . wT
c x is the score for class c .

Classifier chooses arg maxc w
T
c x

Logistic loss (differentiable)

Negative log-likelihood of target class t:

p(t|x) =
exp(wT

t x)

Z
, Z =

∑
c

exp(wT
c x)

Multi-class SVM loss (non-differentiable)

L = max
c

[wT
c x − wT

t x + ∆(c , t)]

∆(c, t) is penalty for classifying t as c .

Multi-Class: One Versus Rest Approach

For each c develop a binary classifier wT
c x that helps differentiate

class c from all other classes.

Then apply the usual multi-class decision function for inference:
arg maxc w

T
c x

This simple approach works very well in practice.
Given the decoupled nature of the optimization, the approach also
turns out to be very efficient in training.

Multi-Class: One Versus Rest Approach

For each c develop a binary classifier wT
c x that helps differentiate

class c from all other classes.

Then apply the usual multi-class decision function for inference:
arg maxc w

T
c x

This simple approach works very well in practice.
Given the decoupled nature of the optimization, the approach also
turns out to be very efficient in training.

Multi-Class: One Versus Rest Approach

For each c develop a binary classifier wT
c x that helps differentiate

class c from all other classes.

Then apply the usual multi-class decision function for inference:
arg maxc w

T
c x

This simple approach works very well in practice.
Given the decoupled nature of the optimization, the approach also
turns out to be very efficient in training.

Ordinal Regression

Only difference from multi-class: Same scoring function wT x for
all classes, but different thresholds, which form additional
parameters that can be included in w .

Collaborative Prediction via Max-Margin Factorization

Applications: Predicting users ratings for movies, music

Low dimensional factor model

U (n × k): Representation of n users by the k factors
V (d × k): Representation of d items by the k factors
Rating matrix: Y = UV T

Known target ratings

T (n × d): True user ratings of items.
S (n × d): Sparse indicator matrix of combinations for which
ratings are available for training.

http://people.csail.mit.edu/jrennie/matlab/

http://people.csail.mit.edu/jrennie/matlab/

Collaborative Prediction via Max-Margin Factorization

Applications: Predicting users ratings for movies, music

Low dimensional factor model

U (n × k): Representation of n users by the k factors
V (d × k): Representation of d items by the k factors
Rating matrix: Y = UV T

Known target ratings

T (n × d): True user ratings of items.
S (n × d): Sparse indicator matrix of combinations for which
ratings are available for training.

http://people.csail.mit.edu/jrennie/matlab/

http://people.csail.mit.edu/jrennie/matlab/

Collaborative Prediction via Max-Margin Factorization

Applications: Predicting users ratings for movies, music

Low dimensional factor model

U (n × k): Representation of n users by the k factors
V (d × k): Representation of d items by the k factors
Rating matrix: Y = UV T

Known target ratings

T (n × d): True user ratings of items.
S (n × d): Sparse indicator matrix of combinations for which
ratings are available for training.

http://people.csail.mit.edu/jrennie/matlab/

http://people.csail.mit.edu/jrennie/matlab/

Collaborative Prediction via Max-Margin Factorization

Applications: Predicting users ratings for movies, music

Low dimensional factor model

U (n × k): Representation of n users by the k factors
V (d × k): Representation of d items by the k factors
Rating matrix: Y = UV T

Known target ratings

T (n × d): True user ratings of items.
S (n × d): Sparse indicator matrix of combinations for which
ratings are available for training.

http://people.csail.mit.edu/jrennie/matlab/

http://people.csail.mit.edu/jrennie/matlab/

Collaborative Prediction: Optimization

Optimization: minU,V E = R+ CL
Regularizer R = ‖U‖2F + ‖V ‖2F (F is Frobenius)
Loss L =

∑
(i ,j)∈S L(Yij ,Tij) where L is a suitable loss (e.g. from

ordinal regression)

Gradient evaluations and Hessian times vector operations can be
efficiently done.

Collaborative Prediction: Optimization

Optimization: minU,V E = R+ CL
Regularizer R = ‖U‖2F + ‖V ‖2F (F is Frobenius)
Loss L =

∑
(i ,j)∈S L(Yij ,Tij) where L is a suitable loss (e.g. from

ordinal regression)

Gradient evaluations and Hessian times vector operations can be
efficiently done.

Complex Outputs: e.g. Sequence Tagging

One example: Input and Target

x = {xj} is sequence of tokens (e.g. properties of word in sentence)
t = {tj} is a sequence of tags (e.g. part of speech)

Basic Token Weights

Tags (classes) ∈ C . For each c have a weight vector wc to
compute wT

c xj (view it as the base score for class c for word xj).

Transition Weights

For each c, c̃ ∈ C , have a weight w transition
cc̃ : the strength of

transiting from tag c at j − 1 to tag c̃ at the next sequence point j .

Note: If the transition weights are absent then the problem is a
pure multi-class problem with the individual tokens acting as
examples.

Complex Outputs: e.g. Sequence Tagging

One example: Input and Target

x = {xj} is sequence of tokens (e.g. properties of word in sentence)
t = {tj} is a sequence of tags (e.g. part of speech)

Basic Token Weights

Tags (classes) ∈ C . For each c have a weight vector wc to
compute wT

c xj (view it as the base score for class c for word xj).

Transition Weights

For each c, c̃ ∈ C , have a weight w transition
cc̃ : the strength of

transiting from tag c at j − 1 to tag c̃ at the next sequence point j .

Note: If the transition weights are absent then the problem is a
pure multi-class problem with the individual tokens acting as
examples.

Complex Outputs: e.g. Sequence Tagging

One example: Input and Target

x = {xj} is sequence of tokens (e.g. properties of word in sentence)
t = {tj} is a sequence of tags (e.g. part of speech)

Basic Token Weights

Tags (classes) ∈ C . For each c have a weight vector wc to
compute wT

c xj (view it as the base score for class c for word xj).

Transition Weights

For each c, c̃ ∈ C , have a weight w transition
cc̃ : the strength of

transiting from tag c at j − 1 to tag c̃ at the next sequence point j .

Note: If the transition weights are absent then the problem is a
pure multi-class problem with the individual tokens acting as
examples.

Complex Outputs: e.g. Sequence Tagging

One example: Input and Target

x = {xj} is sequence of tokens (e.g. properties of word in sentence)
t = {tj} is a sequence of tags (e.g. part of speech)

Basic Token Weights

Tags (classes) ∈ C . For each c have a weight vector wc to
compute wT

c xj (view it as the base score for class c for word xj).

Transition Weights

For each c, c̃ ∈ C , have a weight w transition
cc̃ : the strength of

transiting from tag c at j − 1 to tag c̃ at the next sequence point j .

Note: If the transition weights are absent then the problem is a
pure multi-class problem with the individual tokens acting as
examples.

Complex Outputs: Decision function

arg max
y={yj}

f (y) =
∑
j

[wT
yj
xj + w transition

yj−1yj
]

Note: y0 can be taken as the special tag denoting the beginning of
a sentence.
Decision function efficiently evaluated using the Viterbi algorithm.

Models

Conditional Random Fields (CRFs) (involves differentiable
nonlinear optimization)
SVMs for structured outputs (involves non-differentiable
optimization)

Complex Outputs: Decision function

arg max
y={yj}

f (y) =
∑
j

[wT
yj
xj + w transition

yj−1yj
]

Note: y0 can be taken as the special tag denoting the beginning of
a sentence.
Decision function efficiently evaluated using the Viterbi algorithm.

Models

Conditional Random Fields (CRFs) (involves differentiable
nonlinear optimization)
SVMs for structured outputs (involves non-differentiable
optimization)

CRFs

A good tutorial: https://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf

Probability of t = {tj}: p(t) = exp(f (t))/Z Z =
∑

y exp(f (y))
Z is called the partition function. Note its complexity: it involves
summation over all possible y = {yj}.

Computation of Z as well as the gradient of E = R+ CL (as in
logistic models, L is the negative log-likelihood of all examples)
can be efficiently done using forward-backward recursions.
Hd computation by using complex arithmetic:
∇E (w + iεd) = ∇E (w) + iεHd + O(ε2)
See eqn (12) of http://www.cs.ubc.ca/~murphyk/Papers/icml06_camera.pdf.

https://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf
http://www.cs.ubc.ca/~murphyk/Papers/icml06_camera.pdf

CRFs

A good tutorial: https://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf

Probability of t = {tj}: p(t) = exp(f (t))/Z Z =
∑

y exp(f (y))
Z is called the partition function. Note its complexity: it involves
summation over all possible y = {yj}.

Computation of Z as well as the gradient of E = R+ CL (as in
logistic models, L is the negative log-likelihood of all examples)
can be efficiently done using forward-backward recursions.
Hd computation by using complex arithmetic:
∇E (w + iεd) = ∇E (w) + iεHd + O(ε2)
See eqn (12) of http://www.cs.ubc.ca/~murphyk/Papers/icml06_camera.pdf.

https://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf
http://www.cs.ubc.ca/~murphyk/Papers/icml06_camera.pdf

CRFs

A good tutorial: https://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf

Probability of t = {tj}: p(t) = exp(f (t))/Z Z =
∑

y exp(f (y))
Z is called the partition function. Note its complexity: it involves
summation over all possible y = {yj}.

Computation of Z as well as the gradient of E = R+ CL (as in
logistic models, L is the negative log-likelihood of all examples)
can be efficiently done using forward-backward recursions.
Hd computation by using complex arithmetic:
∇E (w + iεd) = ∇E (w) + iεHd + O(ε2)
See eqn (12) of http://www.cs.ubc.ca/~murphyk/Papers/icml06_camera.pdf.

https://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf
http://www.cs.ubc.ca/~murphyk/Papers/icml06_camera.pdf

Other models that use Nonlinear optimization

Neural networks

Training of weights of multi-layer perceptrons and RBF networks.
Gradient evaluation efficiently done by backpropagation. Efficient
Hessian operations can also be done.

Hyperparameter tuning

In SVM, Logistic and Gaussian Process models (particularly in
their nonlinear versions) there can be many hyperparameters
present (e.g. individual feature weighting parameters) which are
usually tuned by optimizing a differentiable validation function.

Semi-supervised learning

Make use of unlabeled examples to improve classification.
Involves an interesting set of nonlinear optimization problems.
http://twiki.corp.yahoo.com/view/YResearch/

SemisupervisedLearning

http://twiki.corp.yahoo.com/view/YResearch/SemisupervisedLearning
http://twiki.corp.yahoo.com/view/YResearch/SemisupervisedLearning

Other models that use Nonlinear optimization

Neural networks

Training of weights of multi-layer perceptrons and RBF networks.
Gradient evaluation efficiently done by backpropagation. Efficient
Hessian operations can also be done.

Hyperparameter tuning

In SVM, Logistic and Gaussian Process models (particularly in
their nonlinear versions) there can be many hyperparameters
present (e.g. individual feature weighting parameters) which are
usually tuned by optimizing a differentiable validation function.

Semi-supervised learning

Make use of unlabeled examples to improve classification.
Involves an interesting set of nonlinear optimization problems.
http://twiki.corp.yahoo.com/view/YResearch/

SemisupervisedLearning

http://twiki.corp.yahoo.com/view/YResearch/SemisupervisedLearning
http://twiki.corp.yahoo.com/view/YResearch/SemisupervisedLearning

Other models that use Nonlinear optimization

Neural networks

Training of weights of multi-layer perceptrons and RBF networks.
Gradient evaluation efficiently done by backpropagation. Efficient
Hessian operations can also be done.

Hyperparameter tuning

In SVM, Logistic and Gaussian Process models (particularly in
their nonlinear versions) there can be many hyperparameters
present (e.g. individual feature weighting parameters) which are
usually tuned by optimizing a differentiable validation function.

Semi-supervised learning

Make use of unlabeled examples to improve classification.
Involves an interesting set of nonlinear optimization problems.
http://twiki.corp.yahoo.com/view/YResearch/

SemisupervisedLearning

http://twiki.corp.yahoo.com/view/YResearch/SemisupervisedLearning
http://twiki.corp.yahoo.com/view/YResearch/SemisupervisedLearning

Some Concluding Remarks

Optimization plays a key role in the design of ML models. A good
knowledge comes in quite handy.

Only differentiable nonlinear optimization methods were covered.

Quadratic programming, Linear programming and
Non-differentiable optimization methods also find use in several
ML situations.

Some Concluding Remarks

Optimization plays a key role in the design of ML models. A good
knowledge comes in quite handy.

Only differentiable nonlinear optimization methods were covered.

Quadratic programming, Linear programming and
Non-differentiable optimization methods also find use in several
ML situations.

Some Concluding Remarks

Optimization plays a key role in the design of ML models. A good
knowledge comes in quite handy.

Only differentiable nonlinear optimization methods were covered.

Quadratic programming, Linear programming and
Non-differentiable optimization methods also find use in several
ML situations.

