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ABSTRACT
In this paper we provide a principled approach to solve a
transductive classification problem involving a similar graph
(edges tend to connect nodes with same labels) and a dis-
similar graph (edges tend to connect nodes with opposing la-
bels). Most of the existing methods, e.g., Information Regu-
larization (IR), Weighted vote Relational Neighbor classifier
(WvRN) etc, assume that the given graph is only a similar
graph. We extend the IR and WvRN methods to deal with
mixed graphs. We evaluate the proposed extensions on sev-
eral benchmark datasets as well as two real world datasets
and demonstrate the usefulness of our ideas.

Categories and Subject Descriptors: I.5 [Pattern Recog-
nition] Design Methodology - Classifier design and evalua-

tion

General Terms: Algorithms, Experimentation

Keywords: Classification, Graph based semi-supervised
learning, Transductive learning, Mixed graphs

1. INTRODUCTION
Consider the problem of transductive classification in a

relational graph consisting of labeled and unlabeled nodes.
Most methods for this problem assume that connected nodes
have the same labels. In many applications this assumption
is violated to varying degrees depending on the underlying
relational graph; that is, many edges can be formed using
pairs of nodes having different class lables (this is referred
to as label dissimilarity). When this happens the perfor-
mance of the methods can deteriorate significantly. If such
‘dissimilar’ edges can be identified via domain knowledge or
other ways, they can be eliminated to improve the perfor-
mance. Even better, it makes sense to collect the identified
dissimilar edges in a dissimilar graph and use it differently
but together with the similar graph (set of edges connecting
nodes having same labels) to improve classification. This
paper is rooted on this point. Let us refer to the combi-
nation of similar and dissimilar graphs simply as a mixed
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graph. Recently Goldberg et al. [3] extended the graph-
based semi-supervised learning method of Sindhwani et al
[7] to deal with mixed graphs. In this method classification
is fundamentally based on content features of nodes, with
the mixed graph strongly guiding the classification. If fi
and fj denote the classifier outputs associated with nodes i
and j that form a dissimilar edge, Goldberg et al.’s method
[3] includes a loss term, (fi + fj)

2 in the training objec-
tive function, thus putting pressure on fi and fj to have
opposing signs. In many applications, content features are
either weak or unavailable. Such problems have to be ad-
dressed in a purely graph transductive setting. In another
related work, Tong and Jin [10] proposed a graph based ap-
proach using semi-definite programming (SDP) to explore
both similar and dissimilar graphs. The problem solved in
their work is a non-convex programming problem whose so-
lution can lead to local optima. In contrast the proposed
methods in this paper are simpler and more efficient. Fur-
ther our extension of the information regularization method
for mixed graph (IR-MG) leads to a convex programming
problem and the proposed algorithm converges to the global
solution.

The main aim of this paper is to extend and explore ex-
isting methods for a transductive setting to deal with mixed
graphs (even when non-content based relational graphs are
available). We only take up binary classification in this
paper. There are many worthy methods in this group of
methods; examples are: Information Regularization (IR)
[1], Weighted vote Relational Neighbor classifier (WvRN)
[5], Local and Global Consistency (LGC) [11] and Gaussian
Function Harmonic Field (GFHF) [12]. To keep the paper
short we take only the first two methods for extension. Both
these methods are based on probabilistic ideas; thus, instead
of the squared loss used by Goldberg et al. [3], we devise a
divergence-based convex loss function to deal with dissimilar
edges. Empirical results show that the extensions are very
effective, although the ideas are simple and straight-forward.

Depending on the way they are formed, the similarity and
dissimilarity graphs in a given problem may differ in pure-
ness. So it is useful to have a hyperparameter (γ) that mixes
the effects of these two graphs (e.g., relative weighting be-
tween the losses corresponding to the two graphs). We make
use of such a parameter; our experiments on the various
datasets point to the importance of this parameter. Though
Goldberg et al. [3] do not use such a parameter, it appears
to be useful for that method too. The quality of the graphs
relating to classification solution can also be approximately
measured using a quantity called node assortativity coeffi-



cient (NAC) [4]. NAC is easy to compute and gives a good
indication of the usefulness of the graphs for classification.
It can also be used to quickly select a decent value for the γ
parameter.

To demonstrate the effectiveness of our extended methods
we do detailed experiments, like Goldberg et al. [3], on stan-
dard academic benchmark datasets in which mixed graphs
are constructed systematically but artificially. We also show
usefulness of our methods on real world datasets involving
web pages of shopping domains. In these problems mixed
graphs arise naturally. For example, two web pages that
either have strong structural similarity or have co-citation
links from a common third page may have the same labels,
and, web pages that have extremely poor structural corre-
lation may have opposing labels.

The paper is organized as follows. In section 2 we give the
extensions of IR and WvRN for mixed graphs. In section
3 we define NAC and discuss its usefulness; hyperparame-
ter tuning is also discussed there. Experimental results are
given in section 4 and we conclude with section 5.

The following notations will be used in this paper. Let
G = (V,E,W) be an undirected graph with V =
{v1, · · · , vn} representing the set of nodes, E and W repre-
senting the set of edges and associated weights respectively.
Assume that wi,j ≥ 0, ∀i, j where wi,j represents the edge
weight between the nodes vi and vj . In a graph G typ-
ically we have both similar and dissimilar edges. Similar
edges connect nodes belonging to same class and dissimilar
edges connect nodes belonging to different classes. Since an
edge can be either similar or dissimilar we can separate the
graph G into similar and dissimilar graphs (denoted as GS

and GS̄) respectively. Then the nodes, edges and weights
corresponding to these graphs are appropriately defined as:
GS = (VS ,ES ,WS) and GS̄ = (VS̄ ,ES̄ ,WS̄). Let pi and
qi denote two probability distributions over the set of possi-
ble labels, associated with the node vi. Usually pi represents
any known or a prior distribution for node vi and qi rep-
resents probability distribution estimate obtained from any
given method. In this paper we are interested only in binary
classification problem and so pi and qi are 2-dimensional
vectors. Also, let P = [p1, . . . ,pn] and Q = [q1, . . . ,qn].
Let L and UL denote the set of labeled and unlabeled nodes
respectively.

2. PROPOSED METHODS
In this section we show how two existing methods, namely,

information regularization (IR) and Weighted vote Rela-
tional Neighbor classification (WvRN) can be extended to
handle the mixed graph scenario.

2.1 Information Regularization in a mixed
graph setting

In the conventional setting only similar edges are assumed.
That is, we have G = GS and the edge weights wi,j , ∀(i, j) ∈
E in some sense indicate our belief or confidence in the as-
sumption that the connected nodes belong to same class.
Within that assumption, we consider solving the transduc-
tive classification problem by optimizing the objective func-
tion:

F (Q;P,W) =
∑

i∈L

D(pi||qi) + λS
∑

(i,j)∈E

wi,jD(qi||qj) (1)

where D(·) denotes any divergence measure that measures

the dissimilarity between two distributions. Several diver-
gence measures have been used in the literature. They
include Kullback-Leibler (KL) divergence, Jensen-Shannon
(JS) divergence, Jensen-Renyi (JR) divergence etc. Here, we
consider Jensen-Shannon divergence which is a symmetric
and smoothed version of the KL divergence. When D(·) is
taken as the JS-divergence the regularization term is nothing
but the information regularization proposed by Corduneanu
and Jaakkola [1] in a graph setting. The first term in (1)
is a data fitting term and measures how well the estimate
qi matches the input distribution pi, ∀i ∈ L. The second
term is a regularization term and it regularizes the solution
Q∗ with respect to the underlying relational graph. The
regularization constant λS trades off between the data fit-
ting and regularization terms. When two nodes are strongly
connected their distributions are expected to be similar and
the regularization term enforces this behavior. Clearly, if
the individual terms are convex then the solution is unique.

(1) assumes that all the edges are similarity edges (i.e.,
E = ES). Therefore depending on the extent to which this
assumption is violated the performance suffers. To address
this problem we propose the following modified objective
function:

F (Q;P,W) =
∑

i∈L

D(pi||qi) + λS
∑

(i,j)∈ES

wi,jD(qi||qj)

λS̄

∑

(i,j)∈ES̄

wi,jD(qi||H1,2qj)

(2)

where H1,2 =

(

0 1
1 0

)

is a transformation matrix and λS̄ is

another regularization constant. Let q̃j = H1,2qj . Clearly
q̃j = 1−qj is still a distribution and the transformation fa-
cilitates divergence measurement of the distributions qi with
the distributions 1 − qj for the edges in S̄. Here, 1 repre-
sents a vector of all ones. Therefore the dissimilar edges will
also help in reinforcing the class distributions in a positive
way.

Corduneanu and Jaakkola [1] proved that the solution to
(1) with information regularization is unique. Using the
constraint qi = pi, ∀i ∈ L they suggested a distributed
propagation algorithm that finds the solution in an iterative
fashion. In a similar way one can show that (2) is also convex
and that the solution can be found in an iterative fashion.
The proof is based on a standard log sum inequality and
properties of KL-divergence measure [2]. Therefore (2) is a
natural extension of the information regularization approach
in the mixed graph setting; we will refer to this method as
information regularization for mixed graphs (IR-MG). The
algorithm is given in 2.1.

We note that when we set qi = pi, ∀i ∈ L and optimize
qi only for i ∈ UL then the solution Q∗

UL is dependent only
on the second term in (1), and, second and third terms in
(2). Such a setting is useful when the labels are clean and
the graph is not extremely dense in some regions [9]. Both
these requirements can be often met in many practical ap-
plications. When they cannot be met, methods proposed
in [9] are useful to solve (1). Such methods can be appropri-
ately extended to find the solution for our problem of mixed
graphs.

In a normalized graph setting, one way to normalize is
to do node level normalization using its degree separately



Algorithm 2.1 IR-MG Algorithm

t← 0 and ε = 0.001
For all nodes i ∈ UL, initialize q

(t)
i to the class prior

(obtained from known labeled nodes) and fix qi = pi ∀i ∈
L.
repeat

for each edge (i, j) ∈ ES do

ui,j ← 0.5(q
(t)
i + q

(t)
j )

end for
for each edge (i, j) ∈ ES̄ do

zi,j ← 0.5(q
(t)
i + 1− q

(t)
j )

end for
for each element i ∈ UL do

q
(t+1)
i ← 1

ψ
exp(γ

∑

j|(i,j)∈ES
wi,j log(ui,j) + (1 −

γ)
∑

j|(i,j)∈ES̄
wi,j log(zi,j))

end for
t← t+ 1

until maxi∈UL,k=1,2 |q
(t−1)
i,k − q

(t)
i,k| < ε

in each graph. That is, set WS = D−1
S WS and WS̄ =

D−1
S̄

WS̄ where [DS ]ii =
∑

j|(i,j)∈ES) wi,j and [DS̄ ]ii =
∑

j|(i,j)∈ES̄
wi,j . Then, we can set λS = λγ and λS̄ = λ(1−

γ) where λ > 0 and 0 ≤ γ ≤ 1. In such a case, λ is the
overall regularization constant and γ weighs the similar and
dissimilar contributions. When we set qi = pi, ∀i ∈ L, we
have only one parameter γ. In practice since the graphs are
impure (i.e., it may not be possible to construct pure similar
and dissimilar graphs) to varying degrees, the γ parameter
plays an important role in achieving improved performance.

2.2 WvRN Classification in a mixed graph set-
ting

The original probabilistic Weighted vote Relational Neigh-
bor classifier (with relaxation labeling) method [5] was for-
mulated to solve the collective classification problem (for
only similar graphs) where class distributions of a subset of
nodes are known and fixed. Then the class distributions of
the remaining (unlabeled) nodes are obtained by an itera-
tive algorithm. It has two components, namely, weighted
vote relational neighbor classifier component and relaxation
labeling (RL) component. The relaxation labeling compo-
nent performs collective inferencing and keeps track of the

current probability estimates q
(t)
i for all unlabeled nodes at

each time instant t. These frozen estimates q
(t)
i are used by

the relational classifier. The relational classifier computes
the probability distribution for each unlabeled node as the

weighted sum probability distributions q
(t)
j of its neighbors

with weight wij ; that is,

q
(t+1)
i,k =

1

ψ

∑

j

wi,jq
(t)
j,k (3)

where k = 1, 2 and ψ is a normalizing constant. Since re-
laxation labeling may not converge, sometimes simulated
annealing is performed to ensure convergence [5].

In a mixed graph setting, we can modify (3) as:

q
(t+1)
i,k =

1

ψ
(γ

∑

j|(i,j)∈ES

wi,jq
(t)
j,k+(1−γ)

∑

j|(i,j)∈ES̄

wi,j(1−q
(t)
j,k))

(4)

Algorithm 2.2 WvRN-MG Algorithm

t← 0, β(t) ← 1, ν ← 0.95 and ε = 0.001

For all nodes i ∈ UL, initialize q
(t)
i to the class prior

(obtained from known labeled nodes) and fix qi = pi ∀i ∈
L.
repeat

for each element i ∈ UL and k = {1, 2} do

q̃i,k ← 1
ψ

(γ
∑

j|(i,j)∈ES
wi,jq

(t)
j,k + (1 −

γ)
∑

j|(i,j)∈ES̄
wi,j(1− q

(t)
j,k))

q
(t+1)
i,k ← β(t)q̃i,k + (1− β(t))q

(t)
i,k

end for
t← t+ 1 and β(t+1) ← β(t) ∗ ν

until maxi∈UL,k=1,2 |q
(t−1)
i,k − q

(t)
i,k| < ε

where k = 1, 2. As in the case of IR-MG method, the pa-
rameter γ weighs the similar and dissimilar graphs. With
the modification given in (3), we refer to this method as
WvRN-MG. The algorithm is given in 2.2.

3. GRAPH CHARACTERISTICS AND SET-
TING γ

Characteristics of graphs play a major role in achieving
good classification performance. One of the key characteris-
tics of a relational graph is the correlation of the class vari-
able of related entities. A graph is said to have homophily

characteristics when the related entities in the graph have
the same label; this was studied by early social network re-
searchers. All the methods that make use of this assumption
are essentially homophily based methods [5]. There is also
a link-centric notion of homophily known as assortativity

studied in [6]. The assortativity coefficient [6] measures the
homophily characteristics based on the correlation between
the classes linked by edges in the graph. Macskassy and
Provost [5] developed a variant of this coefficient. It is based
on the graph’s node assortativity matrix C where Cij repre-
sents, for all nodes of class yi, the average weighted fraction
of their weighted edges that connect them to nodes of class
yj such that

∑

i,j
Cij = 1. Then the node assortativity co-

efficient (NAC) N is defined as: N =
∑

i Cii−
∑

i ai.bi
1−

∑

i ai.bi
where

ai and bi denote the sum of the i-th row and i-th column
respectively. This coefficient takes values in [-1,1] with the
extremes indiciating strong connectivity between dissimilar
and similar classes respectively. Macskassy and Provost [5]
used this coefficient to study its usefulness in edge selection
[5]. Macskassy [4] used this coefficient to weigh different edge
types when there are multiple graphs. Specifically, each edge
was scaled by its graph’s N value; if it is negative the scal-
ing factor for that edge type (graph) was set to zero. Since
the original WvRN is a homophily based method, Macskassy
and Provost [5] set the weight to zero for graphs having neg-
ative N values. We illustrate below how this coefficient can
be used to set γ in the mixed graph scenario.

In our proposed methods, the mixture parameter γ plays
an important role since it decides the degree to which each
graph controls the performance. In practice this parame-
ter can be set in two ways. One way is to set γ using the
NAC values of similar and dissimilar graphs. Let NS and
NS̄ denote estimates of the NAC values of the similar and
dissimilar graphs respectively. Note that, if the dissimilar



graph is pure (for example, as in section 4.1 below) then

NS̄ = −1. Therefore, we can set γ = NS

NS−NS̄
. If NS < 0

and/orNS̄ > 0 it is not a good idea to use the above estimate
of γ. For best performance it is a good idea to set γ using
cross-validation. However, unlike NAC based γ estimation,
the CV technique is expensive since we need to run the train-
ing algorithm several times. Finally, note that, since both
methods are based on labeled nodes, a good estimate of γ
can be obtained only when the number of labeled nodes is
not too small. In section 4.3 we illustrate the usefulness of
these techniques on several benchmark datasets.

4. EXPERIMENTS
In this section we present results obtained from various ex-

periments conducted on several academic benchmark datasets
as well as real world datasets formed from web pages of shop-
ping web sites. First we study the performances of the pro-
posed methods, namely, IR-MG and WvRN-MG on mixed
graphs constructed from already available relational graphs
of benchmark datasets; these results demonstrate gains that
accrue as a result of moving from a noisy similar graph
towards a quite pure similar-dissimilar graph combination.
Next, we evaluate the performances on similar and dissimi-
lar graphs that arise naturally from web pages of shopping
sites. Finally, we compare the relative performances of our
methods as well as evaluate them against the method of
Goldberg et al.[3].

4.1 Experiments on partitions of given graph
into dissimilar and similar graphs

Usually a given relational graph (G) with partially labeled
nodes is impure and consists of both similar and dissimilar
edges. For our experiments we extract similar and dissimilar
graphs (denoted as GS and GS̄) from G using the following
model. Similar to the work of Goldberg et al. [3] we use
an oracle which takes a pair of nodes and tells whether the
edge formed by them is similar or dissimilar. We construct
GS̄ by randomly picking a percentage of dissimilar edges

(P ) connecting only unlabeled nodes in G by querying the
oracle. Note that the learner only knows that the edges are
dissimilar; it does not know the actual labels of the nodes.
Thus, the dissimilar graph is a pure graph consisting of only
unlabeled nodes. Then the similar graph GS is obtained as
G - GS̄ . Note that, unlike GS̄ , GS may not be pure. This
is because we vary the percentage of edges picked from G to
construct GS̄ ; also, even if we pick all the dissimilar edges
connecting unlabeled nodes, there can still be some dissimi-
lar edges connecting labeled and unlabeled nodes left in GS .
This model is different from the model used by Goldberg et
al. [3]. In that work, the original graph G is taken as GS

and, GS̄ is constructed by taking random pairs of nodes
having opposing labels using the oracle. Our model is ap-
propriate when we are given a graph and there is some way
of filtering out dissimilar edges from it. On the other hand,
the model used by Goldberg et al. [3] is appropriate when
we are given a similar graph and, additionally one can con-
struct a dissimilar graph using domain knowledge. In both
models the dissimilar graph is pure; one can also think of
experimenting with alternate models which introduce some
noise in the dissimilar graph.

A summary description of various benchmark datasets
used in the experiments is given in Table 1. All the datasets

indicated correspond to binary classification problems. The
datasets G50C, WINDOWSMAC, WebKB-PAGELINK and
WebKB-LINK used in [7] are taken from http://people.

cs.uchicago.edu/~vikass/research.html. G50C is an ar-
tificial dataset generated from two unit covariance normal
distributions with equal probabilities; the means are ad-
justed so that the true Bayes error is 5% [7]. WINDOWS-
MAC dataset is a subset of 20-newsgroup dataset with the
documents belonging to two categories windows and mac.
The WebKB dataset arises from hypertext-based catego-
rization of web documents with two classes course and non-

course. The WebKB-LINK dataset uses features derived
from the anchortext associated with links on other webpages
that point to a given web page. The WebKB-PAGELINK
dataset uses both PAGE and LINK features where PAGE
features are derived from the content of a page. In each
of these four datasets mentioned above, following [7, 3], we
construct the relational graph with k-nearest neighbors us-
ing Gaussian weights. Specifically, the weight between kNN

points xi and xj is e
−

||xi−xj ||2

2σ2 , while other weights are zero;
k is set to 50, 10 and 200 for G50C, WINDOWSMAC and
WebKB datasets respectively. We also consider the datasets,
CORAALL and IMDBALL that do not have any input fea-
ture representation. They have the relational graph ma-
trix W constructed purely from underlying relations. The
CORAALL dataset is derived from the CORA dataset which
comprises of computer science research papers; the rela-
tional graph is constructed using both co-citation and com-
mon author relationships between papers. This dataset has
seven classes with each class representing topics like Neu-

ral Networks, Genetic Algorithms etc. We converted this
seven class problem into 7 one versus all binary classifica-
tion problems and the corresponding datasets are referred as
CORAALL1, CORAALL2 and so on, with the number indi-
cating the positive class. The IMDBALL dataset is based on
networked data from the Internet Movie Database (IMDb)
(http://www.imdb.com); here classification is about predict-
ing movie success determined by box-office receipts (high-
revenue versus low-revenue) and the relational graph is con-
structed between movies by linking them when they share
a production company. The weight of an edge in the re-
sulting graph is the number of production companies two
movies have in common [5]. The CORAALL and IMDBALL
datasets are available with the toolkit described in [5].

Next we give more details on the experiments. We provide
plots only for a few datasets and comment on other datasets
when needed. For each dataset, we varied the number of
labeled nodes (L), the mixture parameter γ and the per-
centage of dissimilar edges (P ) in G used for forming the
dissimilar graph. In all our experiments we considered 25
realizations where each realization corresponds to one ran-
dom stratified labeling of nodes.

We present various observations from the experimental
study conducted on all the academic benchmark datasets
given in Table 1. Compared to using the original graph GS

significant performance improvements were observed with
the use of the mixed graph, in a vast majority of cases of
varying P , γ and L on all the datasets. Performance re-
sults on two representative datasets, viz. IMDBALL and
CORAALL1 are given in figure 1. It is clearly seen that the
best performance is achieved for some intermediate values of
γ; see for instance the results of CORAALL1, IR-MG, L=80



Table 1: Properties of datasets: n and e denote the number of nodes and edges in G respectively; L, nf , b and
Ns denote the number of labeled nodes, the number of (content) features, percentage of positive examples
and node assortativity coefficient values respectively.

Dataset n e nf b Ns L−Range
G50C 550 40940 550 50 0.47 10-50
WINDOWS-MAC 1946 124806 7511 50.62 0.49 50-400
WebKB-PAGELINK 1051 269044 4840 21.88 0.57 10-50
WebKB-LINK 1051 72446 1840 21.88 0.55 10-50
IMDBALL 1441 48371 - 57.32 0.36 50-400
CORAALL1 4240 71802 - 6.25 0.69 50-800
CORAALL2 4240 71802 - 8.28 0.59 50-800
CORAALL3 4240 71802 - 12.33 0.60 50-800
CORAALL4 4240 71802 - 32.17 0.67 50-800
UG-Product (GS) 1166 54462 - 39.71 0.99 40-160
UG-Product (GS̄) 1166 47327 - 39.71 0.76 40-160
UG-Listing (GS) 1166 54462 - 54.55 0.96 40-160
UG-Listing (GS̄) 1166 47327 - 54.55 0.52 40-160
CU-Product (GS) 1433 26201 - 46.55 0.44 40-160
CU-Product (GS̄) 1433 71650 - 46.55 0.23 40-160
CU-Listing (GS) 1433 26201 - 35.03 0.96 40-160
CU-Listing (GS̄) 1433 71650 - 35.03 0.46 40-160

and 200. This demonstrates that although the similar graph
is noisy, it is still useful in the mixed graph setting to get im-
proved performance. In the case of IMDBALL dataset, the
best performance is achieved at low value of γ and smaller P
values; this is because the similar graph is more noisy (with
the original graph having a node assortativity coefficient of
only 0.36). However, for large P values, the similar graph
becomes purer (but still noisy) and the best performance is
achieved again for some intermediate values of γ.

We also conducted paired-t statistical significance tests to
compare IR-MG and WvRN-MG methods on each dataset.
On the original graph, the WvRN-MG method was slighly
better on WebKB-PAGELINK, CORAALL1, CORAALL2,
CORAALL3 and CORAALL4 datasets and the significance
reduces as the number of labeled nodes is increased. Next we
consider the mixed graph case. In the case of CORAALL1
dataset, we observed that the IR-MG method started per-
forming better in an intermediate range of values of γ as the
graph becomes purer. At higher γ values (corresponding
to the original graph when P = 0 and subsequently purer
similar graph as P increases), there was no statistical sig-
nificance found. Similar observations were found in the case
of IMDBALL dataset. Overall we found that the IR-MG
method performs better on purer graphs.

In practice we need automatic ways of using domain knowl-
edge or otherwise to identify similar and dissimilar edges.
This is an important research topic; but it is beyond the
scope of this paper. In several applications similar and dis-
similar graphs occur naturally, and both the graphs are typ-
ically noisy. We demonstrate the usefulness of the proposed
methods on one such application next.

4.2 Evaluation on natural graphs from shop-
ping sites

We also evaluated the proposed methods on natural graphs
constructed using structural signature (shingle) of web pages
from shopping sites http://www.uncommongoods.com (referred
as UG) and http://www.compusa.com (referred as CU). The

similar and dissimilar graphs were constructed as follows. A
similar edge between two pages was formed when their struc-
tural signatures had a match score of at least 6 (the values
are in the range [0,8]) and, a dissimilar edge was put when
the match score was 01. In practice both the dissimilar and
similar graphs have noise since the signatures are not accu-
rate. We considered two binary classification problems. In
the first problem, the goal was to differentiate product de-

tail pages from the rest. In the second problem, the intent
was to distinguish product listing pages from others. The
properties of the datasets are given in Table 1.

Since the similar and dissimilar graphs are fixed we var-
ied only the number of labeled nodes (L = 40, 80, 160). We
evaluated the AUC performance of the IR-MG and WvRN-
MG methods on the similar graph (γ = 1) and dissimilar
graph (γ = 0) separately. Further, we evaluated the perfor-
mance on the mixed graph for the values of γ set by the NAC
and CV based estimation techniques. To study the quality
of these two estimation techniques, we also found the best
AUC score given by the optimal γ (searched over a grid of
γ values in the interval [0, 1] used in the cross-validation).
The average performance over 25 partitions for each of these
settings is presented in figure 2. It is clearly seen that the
performance with the dissimilar graph is inferior compared
to the performance with the similar graph, particularly when
L is small. This correlates well with the NAC values given
in Table 1. Although the dissimilar graph is quite impure,
it is still useful. This is clearly seen in figure 2 where the
performance with the mixed graph is better than the per-
formance with similar and dissimilar graphs used alone; see
for instance the results for CU-Listing, WvRN, L=40. This
improvement is quite significant when L is small. Further,
the performance with the cross-validation choice of γ is very
close to the best performance and is only slightly inferior
when L = 40. The NAC based estimate of γ becomes use-

1We used binary representation (i.e., edge with unit weight
or no edge) for the graphs since the signatures are not ac-
curate.
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Figure 1: AUC score performance the of IR-MG and WvRN-MG methods on IMDBALL and CORAALL1
datasets under two different label size conditions. The numbers in the legend (applicable for all plots) indicate
the percentage of dissimilar edges (with respect to the total number of dissimilar edges connecting unlabeled
nodes) in GS̄. The dotted black line indicate the performance with the original graph G.

1 2 3
0.85

0.9

0.95

1

A
U

C
 S

c
o
re

UG Listing: WvRN−MG

1 2 3
0.7

0.75

0.8

0.85

A
U

C
 S

c
o
re

CU Product: WvRN−MG

1 2 3
0.85

0.9

0.95

1

A
U

C
 S

c
o
re

CU Listing: WvRN−MG

1 2 3
0.85

0.9

0.95

1

A
U

C
 S

c
o
re

UG Listing: IR−MG

1 2 3
0.7

0.75

0.8

0.85

A
U

C
 S

c
o
re

CU Product: IR−MG

1 2 3
0.85

0.9

0.95

1

A
U

C
 S

c
o
re

CU Listing: IR−MG

Figure 2: AUC score performance of the IR-MG and WvRN-MG methods on two shopping domain datasets
under three different label sizes (40, 80 and 160 - indicated as 1, 2 and 3) for dissimilar (dark blue), similar
(blue) and mixed graph (3 cases - with NAC (green), CV (orange) and the best (maroon) γ values) (in that
order).



Table 2: AUC Performance comparison of Goldberg et al., IR-MG and WvRN-MG methods on various
datasets. The number of labeled examples (L) used in each dataset is indicated in parentheses. The number
of realizations in each case was 25. The γ values used in IR-MG and WvRN-MG are indicated in parentheses
- here, NAC and CV indicate the techniques that were used to set γ.

Dataset Method P = 5 P = 10 P = 20
G50C (50) WvRN-MG (NAC) 0.9844 ± 0.0043 0.9886 ± 0.0040 0.9983 ± 0.0014

WvRN-MG (CV) 0.9916 ± 0.0042 0.9930 ± 0.0061 0.9970 ± 0.0043
IR-MG (NAC) 0.9851 ± 0.0042 0.9892 ± 0.0039 0.9986 ± 0.0012

IR-MG (CV) 0.9914 ± 0.0055 0.9938 ± 0.0059 0.9967 ± 0.0048
Goldberg et al. 0.9886 ± 0.0016 0.9946 ± 0.0011 0.9980 ± 0.0007

WINDOWSMAC (100) WvRN-MG (NAC) 0.9632 ± 0.0056 0.9714 ± 0.0050 0.9927 ± 0.0026
WvRN-MG (CV) 0.9811 ± 0.0091 0.9887 ± 0.0084 0.9938 ± 0.0061

IR-MG (NAC) 0.9639 ± 0.0056 0.9722 ± 0.0050 0.9933 ± 0.0024
IR-MG (CV) 0.9815 ± 0.0090 0.9883 ± 0.0082 0.9940 ± 0.0015

Goldberg et al. 0.9714 ± 0.0029 0.9863 ± 0.0012 0.9950 ± 0.0003
WebKB-LINK (40) WvRN-MG (NAC) 0.9465 ± 0.0120 0.9524 ± 0.0120 0.9696 ± 0.0074

WvRN-MG (CV) 0.9626 ± 0.0073 0.9723 ± 0.0059 0.9800 ± 0.0041
IR-MG (NAC) 0.9432 ± 0.0113 0.9499 ± 0.0118 0.9693 ± 0.0074

IR-MG (CV) 0.9614 ± 0.0077 0.9718 ± 0.0062 0.9801 ± 0.0042
Goldberg et al. 0.9451 ± 0.0260 0.9545 ± 0.0230 0.9607 ± 0.0201

ful for sufficiently large values of L. The performance dif-
ference between the IR-MG and WvRN-MG methods was
statistically significant at the level of 0.05 only on the CU-
Product and CU-Listing datasets when L = 40. We have
not reported the results for the UG-Product dataset since
the AUC scores were almost same (around 0.99) for all the
graphs and methods.

4.3 Comparison with Goldberg et al.’s method
Since Goldberg et al.’s method [3] depends on content fea-

tures we restrict our comparison to the four datasets, G50C,
WINDOWSMAC, WebKB-PAGELINK and WebKB-LINK.
Goldberg et al. give two methods: one is based on regu-
larized least squares (Lap-RLSC) and the other is based on
SVMs (Lap-SVM) [7]. Both methods perform similarly. We
use Lap-RLSC for comparing against IR-MG and WvRN-
MG. For IR-MG and WvRN-MG we tuned γ using both
cross validation (CV) and NAC values; CV tuning is ob-
viously better and it is the one that should be used. The
results for the methods are given in Table 2 for various val-
ues of P . Clearly all three methods give competitive perfor-
mance. The results are statistically significant for lower val-
ues of P . As in [3], for Goldberg et al.’s method we did not
tune the hyperparameters for each choice of P . In the next
section we show how tuning can be done and demonstrate
its usefulness. In terms of computational speed Goldberg et
al.’s method is comparable with IR-MG; WvRN-MG has an
advantage over the other two methods because it is much
faster (> 10 times) and also provides decent competitive
performance.

4.4 Setting upγ parameter in Goldberg et al.’s
method

The above experiments clearly indicate the importance
of γ in the mixed graph to get improved performance. It
would be useful to introduce such a parameter in Goldberg
et al.’s method [3] also. One way of doing this is as follows.
In their method there is a graph regularization term fTMf

which smoothens the decision function. Here, f corresponds
to a vector of function values at the nodes of the graph
and the matrix M is a mixed graph analog of the graph
Laplacian L. The combinatorial graph Laplacian matrix L is
defined as L = D−W where D is the diagonal degree matrix
with Dii =

∑n

j=1 wij and its normalized version is given as:

LN = I−D− 1

2 WD− 1

2 . M is defined as: M = L+ (1−J) •
W where 1 is a matrix of all ones and • is the Hadamard
(elementwise) product. J is an edge type matrix with (i,j) th
element Jij = 1 if there is a similarity edge between i, j;
Jij = −1 if there is a dissimilarity edge. To introduce γ
we can modify M to be a convex combination of matrices
MS and MS̄ corresponding to the similar and dissimilar
graphs; that is, we set M = γMS + (1 − γ)MS̄ . Using
convex combination of Laplacian has been studied [8] in the
context of multiview learning. Here, MS is nothing but the
graph Laplacian LS obtained using WS and MS̄ = LS̄ +
2WS̄ . To verify the usefulness of this we conducted a simple
experiment on the LINK dataset by setting γ=0.7, P=1.0
and L=20. While the original method gave an average AUC
score of 0.93, the modified method gave a value of 0.96. Like
earlier, γ can be tuned using cross-validation along with the
other hyperparameters.

5. CONCLUSION
In this paper we provided a principled approach to extend

probabilistic scores based transductive classification meth-
ods for mixed graphs. The proposed methods are simple
and efficient. We highlighted the importance of hyperpa-
rameter optimization and showed how this parameter can
be optimized particularly when the number of labeled nodes
is not too small. Experiments on several benchmark and real
world datasets show the usefulness of the proposed methods.
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