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Abstract
In many real world prediction problems the output is a struc-
tured object like a sequence or a tree or a graph. Such
problems range from natural language processing to compu-
tational biology or computer vision and have been tackled
using algorithms, referred to as structured output learning
algorithms. We consider the problem of structured classifi-
cation. In the last few years, large margin classifiers like sup-
port vector machines (SVMs) have shown much promise for
structured output learning. The related optimization prob-
lem is a convex quadratic program (QP) with a large num-
ber of constraints, which makes the problem intractable for
large data sets. This paper proposes a fast sequential dual
method (SDM) for structural SVMs. The method makes re-
peated passes over the training set and optimizes the dual
variables associated with one example at a time. The use
of additional heuristics makes the proposed method more
efficient. We present an extensive empirical evaluation of
the proposed method on several sequence learning problems.
Our experiments on large data sets demonstrate that the
proposed method is an order of magnitude faster than state
of the art methods like cutting-plane method and stochas-
tic gradient descent method (SGD). Further, SDM reaches
steady state generalization performance faster than the SGD
method. The proposed SDM is thus a useful alternative for
large scale structured output learning.

1 Introduction

Support Vector Machines (SVMs) have gained wide
popularity over the last decade. They have exhibited
good generalization performance on problems in numer-
ous applications including text categorization, face de-
tection, speaker identification and many others. SVMs
were originally designed for binary classification prob-
lems where the idea was to design an optimal separating
hyperplane which separates the two classes with maxi-
mum margin [1]. Learning an SVM classifier amounts
to solving a convex quadratic programming problem. In
several data mining applications, the training set has a
large number of labeled examples residing in a high di-
mensional space. Many efficient algorithms have been
proposed to solve such large scale classification prob-
lems [9, 7].

In recent years significant advances have been made
in extending SVMs to other supervised learning prob-
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lems such as multi-category classification, regression
and ordinal regression. In all these problems, the labels
of the training set are discrete or univariate. There,
however, exist many prediction problems in which the
output is structured. Consider the parsing problem in
natural language processing. Here, the input is a sen-
tence and the output is a parse tree. In gene finding
problem in computational biology, the input is a DNA
sequence while the output is a sequence indicating the
presence of genes. Such problems are referred to as
structured classification or structured prediction prob-
lems. Note that in such problems, the components of
the output vector belong to a finite set and are not in-
dependent. Structured output framework has become
very popular and has been adopted in several other ap-
plications such as document summarization or image
segmentation.

In this work, we focus on the problem of training
structural SVMs. Learning structural SVMs amounts
to solving a convex quadratic program (QP) with a
huge number of constraints. The number of con-
straints is typically exponential, which makes the prob-
lem intractable by general purpose optimization meth-
ods. Some algorithms use polynomial-size reformula-
tion of the training problem [23] and use decomposi-
tion methods similar to sequential minimal optimiza-
tion (SMO) [19]. Such algorithms are however restricted
to applications where the polynomial size reformulation
exists. Particularly relevant to the work in this paper
are the algorithms which work directly with the origi-
nal QP with exponential number of constraints. These
algorithms use polynomially-sized subset of constraints
from the original QP and solve this restricted QP to
attain a solution of sufficient accuracy. They are based
on cutting-plane method [25, 10]. Stochastic gradient
method [22] (SGD) can also be used for this purpose.
The algorithm in [25] uses an efficient method to con-
struct cutting-planes. It however needs to solve QPs of
increasing size as the data set size grows.

In a recent work, Joachims et al [10] proposed
an extension of the cutting-plane method, presented
in [9], for training linear structural SVMs. It was
demonstrated that on large data sets, this method is
several orders of magnitude faster than conventional
cutting-plane method [25]. On a benchmark data set



with about 35000 examples and 1.8× 107 features, this
method required about an hour to construct a decision
function on a reasonably fast machine. Thus, there is
a need to design a fast algorithm for structured output
learning.

Contributions: In this work, we present a fast
sequential dual method (SDM) for training structural
SVMs. The method sequentially traverses through all
the examples and optimizes the dual variables associ-
ated with one example at a time. The method is gen-
eral purpose and can be effectively used for any struc-
tured output learning problem. The use of additional
heuristics makes our method even faster. Experiments
on several sequence learning problems demonstrate that
our method is faster than the extended cutting-plane
method of Joachims et al [10] and stochastic gradient
descent method [3] by an order of magnitude. Further,
SDM reaches steady state generalization performance
faster than the SGD method.

The rest of this paper is organized as follows.
The next Section details the structural SVM problem
formulation. The related work is described in Section 3.
In Section 4 we present the proposed SDM for structural
SVM. Section 5 compares our method with other state-
of-the-art methods for sequence learning on different
benchmark data sets. Section 6 concludes the paper.

2 Structural support vector machines

In this section, we describe the structured prediction
problem and give details of the dual solution. Let
X denote the input space and Y denote the space of
structured outputs. The structured output prediction
problem is to learn a function, h,

h : X → Y .

For example, in the case of gene finding, X is the space
of DNA sequences, while Y is the space of sequences
that indicate the presence of genes. We assume that a
training set, S, of input-output pairs is available. Let
S = {(xi,yi)}

n
i=1 ∈ (X × Y )n where xi ∈ X and

yi ∈ Y for every i. Depending on the application a
pair (x,y) can represent different kinds of objects. For
example, in sequence learning y is the output sequence
associated with the input sequence x. In parse tree
learning x corresponds to a sequence of words and y
denotes the associated parse tree. If x is a sequence
of length L, then y can be any sequence of length L
generated from a given set of alphabets. This makes
the cardinality of Y grow exponentially with the size
of x. The goal of structured output learning is to
use the training set S to learn a discriminant function
g : X × Y → R such that the prediction for a input x

is given by
h(x) = argmax

y∈Y

g(x,y). (2.1)

The function g, in some sense, measures how good a
prediction y is for a given input x. In this work, we
assume that g(x,y) takes the form of a linear function

g(x,y) = wT f(x,y)

where w is a parameter vector and f(x,y) is a feature
vector relating input x and y. The feature vector
f(x,y) has a crucial effect on the performance of the
designed structured classifier [13].

Clearly, the argmax computation in (2.1) plays a
key role in structural SVMs. As we will see below, a
slightly modified version of it plays a crucial role in the
training process. For sequential and tree-structured out-
put variables dynamic programming approaches such
as the Viterbi algorithm and the Cook-Kasami-Younger
(CKY) algorithm can be employed to do these compu-
tations efficiently.

A structured output problem can be posed as
an optimization problem that is similar to multi-class
SVMs [5]. Let ∆fi(y) = f(xi,yi) − f(xi,y). Then
the primal optimization problem associated with the
training of structural SVMs is (OP1):

min
w,ξ

1

2
‖w‖

2
+ C

∑

i

ξi

s.t. wT∆fi(y) ≥ li(y) − ξi ∀ i,y (2.2)

where C > 0 is a regularization parameter. li(y) in
(2.2) is a loss function that quantifies the loss associated
with predicting y when the correct output is yi. It is
appropriate to require l to satisfy li(yi) = 0. In sequence
learning problem, a natural choice for the loss function
is the Hamming distance,

li(y) =

L
∑

j=1

I(yji 6= yj)

where I(·) is the indicator function and y =
(y1, y2, . . . , yL)T . The objective function in (2.2) is
an extension of the one used in SVMs for classification.
The constraints ensure that for each example (xi,yi),
wT f(xi,yi) must be greater than wT f(xi,y) for every
incorrect y ∈ Y by a required margin li(y). Note also
that the constraint corresponding to the correct label
yi for the i-th example ensures non-negativity of ξi.

The dual problem of (OP1) involves dual variables
αi(y),y ∈ Y ∀ i. The w vector used in the prediction
is defined as

w(α) = C
∑

i,y

αi(y)∆fi(y). (2.3)



For notational convenience, we write this simply as w.
A scaled version of the dual of (OP1) is (OP2):

min C
2 ‖

∑

i,y αi(y)∆fi(y)‖2 −
∑

i,y αi(y)li(y)

s.t.
∑

y
αi(y) = 1 ∀ i

αi(y) ≥ 0 ∀ i,y

At optimality the objective function of (OP1) is −C
times the objective function in (OP2). (OP2) is a
convex quadratic programming problem with linear
constraints. Optimality of α for (OP2) can be checked
using the quantity

ψi = max
y

Fi(y) − min
y:αi(y)>0

Fi(y) (2.4)

where
Fi(y) = li(y) − wT∆fi(y). (2.5)

Fi(y) is the negative of the derivative of the objective
function in (OP2) with respect to αi(y). From (2.4) it
is clear that ψi ≥ 0. Further, at optimality,

ψi = 0 ∀ i.

For practical purposes we can approximately check the
dual optimality using a positive tolerance parameter, τ :

ψi < τ ∀ i. (2.6)

We refer to the above condition as τ -optimality.
Clearly, the computation of maxy Fi(y) (needed for

checking optimality via (2.4)) plays a crucial role in
the training of structural SVMs. The computation is a
slight modification of (2.1); under mild conditions dy-
namic programming based algorithms such as Viterbi
and CKY can be employed for efficiently doing this com-
putation too. Still, the computation is comparatively
expensive and hence it has to be used sparsely.

3 Related Work

We now describe various approaches for training struc-
tural SVMs.

In general finding the solution of (OP1) is not
trivial. The key challenge in solving (OP1) is the
extremely large number, O(n|Y |), of constraints. The
size of the output space Y , that is the number of
possible assignments y given x, grows exponentially
in the description length of y. For example, in the
sequence learning problem, Y consists of all possible
output sequences of length L for the input x of the same
length. This makes (OP1) intractable using any off-the-
shelf technique.

Making use of the fact that a polynomially-sized
subset of the constraints from the quadratic program
(OP1) is sufficient for obtaining a solution of arbitrary

accuracy, algorithms were developed which work di-
rectly with (OP1). Tsochantaridis et al [25] exploited
the special structure of (2.2) and proposed an efficient
cutting plane algorithm which aims at finding a small
set of constraints that ensures a sufficiently approximate
solution in polynomial time. The algorithm merely re-
quires a separation oracle that efficiently finds the most
violated constraint, ŷ = arg maxy Fi(y). For each train-
ing set example, the algorithm maintains a working set
Wi which is empty initially. Iterating through the train-
ing set examples, the algorithm finds the most violated
constraint involving some output ŷ, checks if the con-
straint is violated by more than some desired precision ǫ,
and adds it to the respective working set. The above op-
timization problem is solved with respect to the working
set W = ∪ni=1Wi. This procedure is repeated until no
constraint is added to the set W in one loop through the
training set examples. Although the learning problem
is exponential in size, this algorithm has been proved
to have polynomial time convergence on a large class
of problems [25]. In practice, the cutting plane model
size grows linearly with the data set size [25], which
in turn requires solutions of Quadratic Programs (QPs)
of increasing size. This causes the algorithm to have
superlinear runtime [10].

Joachims et al [10] proposed an equivalent reformu-
lation of the problem (2.2) and presented a cutting-
plane algorithm whose runtime is O(n) and is signif-
icantly faster than the method proposed by Tsochan-
taridis et al [25] on large scale problems. They consid-
ered the following problem:

min
w,ξ

1

2
‖w‖

2
+ Cξ

s.t.
1

n
wT

n
∑

i=1

∆fi(ȳi) ≥
1

n

n
∑

i=1

li(ȳi) − ξ,

∀ (ȳ1, . . . , ȳn) ∈ Y
n (3.1)

Note that in the above formulation, there is only one
slack variable ξ shared across all constraints. But, the
number of constraints is |Y |n. This formulation is also
referred to as “1-slack structural SVM (with margin
rescaling)”. Joachims et al [10] showed that the dual
problem of (3.1) has a sparse solution, i.e., the solution
has a small number of non-zero dual variables. It was
also shown that the number of cutting-planes and the
number of iterations are independent of the training set
size n. Empirically, it was observed that the size of the
QPs that need to be solved is very small, even for very
large data sets.

Taskar [24] proposed a structured SMO algorithm
to solve (OP2). Instead of working with the exponen-
tially large number of dual variables αi, he suggested



to use polynomially many “marginal” variables. These
variables are used to identify a pair αi(y1) and αi(y2)
for joint optimization, based on KKT violation. After
the SMO update the dual variables are projected back
to the marginal variables. This procedure is repeated
until KKT optimality conditions are satisfied.

While the linear models discussed so far are margin
based, there also exist probabilistic linear discriminative
models. Such models are based on extensions of logistic
regression. Particularly relevant to the work in this
paper is the conditional random field (CRF) model [15],
originally proposed by Lafferty et al [15] for sequence
learning and later extended to more complex graphical
models. The close connection to logistic regression can
be utilized effectively for training a CRF.

Memisevic [17] proposed an SMO algorithm to solve
the dual of the kernelized version of the following primal
problem:

min 1
2‖w‖2 + C

∑

i log
∑

y
exp(−ξi

y
)

s.t. ξi
y

= wT∆fi(y) ∀ i,y

SMO algorithm requires a strategy to select two dual
variables for optimization at any point of time. The
author [17] proposed a method for choosing these vari-
ables and it performed well on multi-class classification
problems.

Gradient based online methods like stochastic gra-
dient descent (SGD) and others [4, 20] can be used for
solving the primal problem. SGD methods are fast and
are especially useful when the training data set size is
large [3]. A thorny issue associated with online methods
is the choice of the learning rate value. The sequential
dual method that we propose in this paper has an on-
line feel to it, even though it is fundamentally a batch
algorithm. Adjustments of weight parameters are au-
tomatically inbuilt into it. As we will see later SDM
reaches steady state generalization performance much
faster than SGD. OLaRank [2] is a semi-online algo-
rithm which revisits old examples and improves their
dual variables. It is mainly set up for achieving very
good performance within one pass over a given set of ex-
amples. On hard data sets OLaRank does not achieve
steady state generalization performance after a single
pass over the training set.

The work in this paper can be viewed as an exten-
sion, to structural SVMs, of the ideas given in [7, 12] for
binary and multi-class problems. The extension is chal-
lenging due to the complex nature of the subproblem
associated with each example.

In this work, we compare our method with state-
of-the-art approaches like the cutting plane method
proposed in [11] and the stochastic gradient descent
method [3] whose implementations are available online.

4 SDM for Structural SVM

We now present our sequential dual method for struc-
tural SVMs. The idea is to traverse through the training
set examples sequentially and solve the sub-problem of
(OP2) restricted to the i-th example. This procedure
is repeated until KKT optimality conditions are satis-
fied. We first give the basic algorithm of SDM and then
propose different heuristics to enhance its speed.

A generic step is to pick a single example i, and
solve the following optimization problem which is the
restriction of OP2 to the block of dual variables αi,
associated with that example:

min
δαi

C

2
‖

∑

y

δαi(y)∆fi(y)‖
2
−

∑

y

δαi(y)Fi(y)

s.t.
∑

y

δαi(y) = 0

δαi(y) ≥ −αi(y) ∀y (4.1)

where the vector δαi denotes the change in αi. Note
that the constraints in the above problem ensure dual
feasibility. The solution of (4.1) is done till τ -optimality
in (2.6) is achieved. Algorithm 1 presents the details
of the overall algorithm. The value τ = 0.25 is a
good choice for a practical implementation of SDM for
structural SVMs.

Algorithm 1 SDM Algorithm to solve OP2

1: Input S = {(xi,yi)}
n
i=1, C, τ

2: Initialize αi(y) = 0 ∀ i,y
3: repeat
4: for i = 1, . . . , n do
5: Solve (4.1)
6: αi(y) := αi(y) + δαi(y)
7: w := w + C

∑

i,y δαi(y)∆fi(y)
8: end for
9: Compute ψi ∀ i using (2.4)

10: ψmax = max1≤i≤n ψi
11: until ψmax ≤ τ

Note that in Algorithm 1, the solution of (4.1) and
computation of ψi ∀ i are needed repeatedly. Both are
computationally expensive especially when the number
of possible y’s is large.

We first address the problem of solving (4.1). It
is most often the case that, at optimality the set Vi =
{y : αi(y) > 0} is quite small in size; in many cases Vi
is just a singleton. Thus, instead of solving the large
dimensional problem (4.1) involving all the variables it
is more efficient to maintain a small set Vi and solve the



following optimization sub-problem (OP-SUB)1:

min
δαi

C

2
‖

∑

y∈Vi

δαi(y)∆fi(y)‖
2
−

∑

y∈Vi

δαi(y)Fi(y)

s.t.
∑

y∈Vi

δαi(y) = 0

δαi(y) ≥ −αi(y) ∀ y ∈ Vi

One could employ any off-the-shelf QP solver for solv-
ing this problem. Alternatively, a simple decomposition
algorithm like Sequential Minimal Optimization (SMO)
could be deployed to solve (OP-SUB). We prefer this
method since it is efficient, simpler to implement and
avoids dependence on external QP solvers. Note the
presence of a linear equality constraint in (OP-SUB).
The SMO algorithm breaks the problem down into two-
dimensional sub-problems that may be solved analyt-
ically. The variables involved in the two-dimensional
optimization sub-problem can be chosen by using the
“maximum violating pair” strategy. LetK denote a ma-
trix whose (p, q)-th entry is the inner product of ∆fi(yp)
and ∆fi(yq), and let Kq,· denote its q-th row. The size
of K is |Vi| × |Vi|. Also, let

Mq = C(Kq,·δαi) − Fi(yq)

∀ q s.t. yq ∈ Vi,−αi(yq) < δαi(yq)

mp = C(Kp,·δαi) − Fi(yp) ∀ p ∋ yp ∈ Vi (4.2)

Using these variables, we define

q∗ = arg max
q
Mq and p∗ = arg min

p
mp. (4.3)

Then, KKT optimality conditions for (OP-SUB) can be
written as

ψ̃i
∆
= Mq∗ −mp∗ = 0. (4.4)

For practical implementation, one can use the following
τ̃ -optimality condition:

ψ̃i ≤ τ̃ . (4.5)

where τ̃ is a suitable tolerance parameter, chosen to be
smaller than τ . The SMO algorithm finds q∗ and p∗ and
solves the restricted subproblem (OP-SUB) with respect
to δαi(yp∗) and δαi(yq∗). This procedure is repeated
until the τ̃ -optimality condition (4.5) is satisfied. If
δ denotes the change in δαi(yp∗), then the change in
δαi(yq∗) will be −δ subject to the feasibility given by
the constraints. Therefore, the restricted sub-problem

1This approach of solving the optimization sub-problem with
respect to the variables associated with the set Vi makes the
proposed method significantly different from the sequential dual
method for multi-class SVMs.

in (OP-SUB) reduces to a one-dimensional linearly
constrained quadratic programming problem in δ. It is
easy to verify that the optimal solution of this restricted
sub-problem is δ∗ given by

max(−αi(yp∗),min(αi(yq∗),
Fi(yp∗) − Fi(yq∗)

‖∆fi(yp∗) − ∆fi(yq∗)‖2
)).

(4.6)
Algorithm 2 describes this procedure.

Algorithm 2 SMO Algorithm to solve OP-SUB

1: Input (xi,yi), Vi, C, τ̃
2: Initialize δαi(y) = 0 ∀ y ∈ Vi
3: Find p∗ and q∗ using (4.3) and ψ̃i using (4.4)
4: while the condition (4.5) is not satisfied do
5: Calculate δ∗ using (4.6)
6: δαi(yp∗) := δαi(yp∗) + δ∗

7: δαi(yq∗) := δαi(yq∗) − δ∗

8: Find p∗ and q∗ using (4.3) and ψ̃i using (4.4)
9: end while

Note that the optimality condition (4.5) is with
respect to the set Vi and does not ensure that the
optimality condition in (2.6) is satisfied. The condi-
tion (2.6) requires computation of ψi, which in turn
needs maxy Fi(y) (see (2.4)), a quantity that is com-
putationally expensive to compute; therefore, from the
efficiency viewpoint doing this computation in every it-
eration should be avoided.

We therefore resort to a two-loop approach that
is described in Algorithm 3. The difference between
the two loops is that the type-I loop (indicated by
GetMaxY = 1) computes ŷ using argmaxy∈Y Fi(y)
(step 9 in Algorithm 3) and adds it to the set Vi,
if necessary, before solving the restricted sub-problem
(OP-SUB) (step 15). On the other hand, the type-
II loop (GetMaxY = 0) uses the sets Vi to solve the
problem (OP-SUB) (step 19). As mentioned earlier,
the computation of maxy∈Y Fi(y) is expensive and
therefore, ŷ should be found as and when needed. The
proposed SDM spends more time in executing the type-
II loop compared to the type-I loop, thereby avoiding
the frequent computation of ŷ.

The type-I loop iterates through all the examples
sequentially. For each example i, it finds ŷ and com-
putes ψi.

2 If ψi > τ , it modifies Vi as follows.

ŷ = argmax
y

Fi(y)

αi(ŷ) = 0 if ŷ /∈ Vi (4.7)

Vi = Vi ∪ {ŷ}

2The KKT conditions at optimality ensure that one can
compute ψi as mentioned in step 10 (Algorithm 3) instead of
using (2.4).



Algorithm 3 SDM Algorithm (with heuristics) to solve
OP2
1: Input S = {(xi,yi)}

n
i=1, C

2: w = 0, Vi = {yi}, αi(yi) = 1 ∀i = 1, 2, · · · , n
3: τ = .25, τ̃ = .15, κ1 = 10, κ2 = 5
4: iter = 0, GetMaxY = 1, stopflag = 0, τv = 0
5: repeat
6: ChangedInOuterLoop=0
7: for i = 1, . . . , n do
8: if GetMaxY == 1 then
9: ŷi = argmaxy Fi(y).

10: ψi = Fi(ŷi) − miny∈Vi
Fi(y).

11: if ψi > τ then
12: if ŷi /∈ Vi then
13: Vi = Vi ∪ {ŷi}, αi(ŷi) = 0.
14: end if
15: Solve (OP-SUB) using Algorithm 2.
16: ChangedInOuterLoop := 1
17: end if
18: else
19: Solve (OP-SUB) using Algorithm 2.
20: end if
21: αi(y) := αi(y) + δαi(y) ∀ y ∈ Vi
22: w := w + C

∑

y∈Vi
δαi(y)∆fi(y)

23: Vi = Vi \ {y : αi(y) = 0}
24: end for
25: Calculate ψ̂i ∀ i using (4.9)

26: ψ̂max = maxi ψ̂i
27: if GetMaxY == 1 then
28: if ChangedInOuterLoop == 0 then
29: stopflag=1
30: else
31: if iter ≥ κ1 and ψ̂max > τ then

32: τv = ψ̂max

2
33: GetMaxY=0
34: end if
35: end if
36: else
37: if ψ̂max < τv or (iter − κ1)%κ2 == 0 then
38: GetMaxY=1
39: end if
40: end if
41: iter := iter + 1
42: until stopflag == 1

Then it solves (OP-SUB), and updates αi(y) and w as:

αi(y) := αi(y) + δαi(y) ∀ y ∈ Vi

w := w + C
∑

y∈Vi

δαi(y)∆fi(y). (4.8)

If the optimality conditions (2.6) are satisfied the algo-
rithm exits. Otherwise it enters the type-II loop, iter-

ates through all the examples and solves the problem
(OP-SUB) until (4.5) is satisfied. The control then goes
back to the type-I loop. The type-I loop terminates
when ψi ≤ τ (indicated by, ChangedInOuterLoop = 0,
step 28 in Algorithm 3). Note also that if τ -optimality
condition is satisfied with respect to the set Vi for every
example i, that is, ψ̂i ≤ τ (or ψ̂max ≤ τ) where

ψ̂i = max
y∈Vi

Fi(y) − min
y∈Vi

Fi(y) ∀ i, (4.9)

the algorithm executes the type-I loop again to ensure
that ψi ≤ τ for every example i before it terminates.

4.1 Heuristics for improving efficiency We now
discuss various heuristics deployed in Algorithm 3 to
make it more efficient.

The algorithm traverses through the training set ex-
amples in the order i = 1, . . . , n for updating the cor-
responding dual variables. Any systematic regularities
in this order may lead to slow convergence of the algo-
rithm. So, in our SDM implementation, we randomly
permute the training set examples in every iteration.

The initial κ1 iterations of the type-I loop are used
to build the sets Vi to a reasonable size. During these
iterations, the type-II loop iterations are not executed.
This avoids fast switching between the type-I and type-
II loops, especially during the initial stages of the
algorithm. κ1 was set to 10 in our experiments.

Also, the type-II loop iterations are not executed till
τ̃ -optimality is achieved as this would require large num-
ber of type-II loop iterations. Therefore we terminate
the type-II loop when τv-optimality is achieved, where

τv = ψ̂max

2 and ψ̂max is the maximum violation when
the algorithm enters the type-II loop. On some data
sets, the dual objective function changes very slowly,
resulting in a large number of type-II loop iterations
that is disproportional to the change in the dual ob-
jective function value. Therefore we limit the number
of type-II loop iterations to κ2, thereby maintaining a
balance between the number of type-I and type-II loop
iterations. In our experiments, κ2 was set to 5.

To concentrate the algorithm’s effort on those αi(y)
which are non-zero, we remove all those y’s in the set
Vi for which the associated αi(y) are zero. Some times,
towards the end of the algorithm, the relative change
in the dual objective function is small. In such cases,
it may be a good idea to introduce an additional check
in step 28 of Algorithm 3 which ensures that the type-I
loop terminates even if ψ̂max ≤ τ .

5 Experiments

To demonstrate the efficacy of the proposed method for
learning structural SVMs, we considered the problem



Table 1: Summary of data sets. n and ntest denote
the sizes of the training and test data respectively, d is
the input dimension, k denotes the number of alphabets
and N is the feature vector dimension

Data set n ntest d k N
POS 7200 1681 404990 42 17011344
WSJPOS 35531 1681 446180 42 18741324
BioNLP 18546 3856 513932 11 5653373
BioCreative 7500 5000 102409 3 307236
CoNLL 8936 2012 1679679 22 36953422

of sequence learning. Five data sets, Part-of-Speech
(POS) [18], Wall Street Journal POS (WSJPOS) [16],
BioNLP [14], BioCreative [6] and CoNLL [21], were used
in our experiments. A summary of these data sets is
given in Table 1. The arg maxy Fi(y) in Algorithm 3
was computed using the Viterbi algorithm. All exper-
iments were run on a 1.81 GHz AMD processor with
10GB of shared main memory under Linux.

In the rest of this section, we first describe the
feature functions used in our experiments. Comparison
of SDM with the cutting-plane method and the SGD
method will then be presented.
Feature Functions

In a sequence learning problem, each input, x =
(x1, x2, . . . , xL)T is a sequence of feature vectors and
y = (y1, y2, . . . , yL)T is a sequence of labels, where
xt ∈ Rd and yt ∈ {1, 2, . . . , k}. At each node t of
the sequence, a bunch of feature functions f(xt, yt)
is formed. These are then combined to get the joint
feature vector

f(x,y) =

L
∑

t=1

f(xt, yt).

For our experiments, we used the combination of first
order and token-independent second order functions to
construct the joint feature vector [13]. In the case of
first order functions the feature vector xt is stacked into
the position yt (similar to the plain multi-class case)
yielding

fmulti(x
t, yt) =

















0
...
xt

...
0

















.

Second order token independent functions use the de-
pendencies between yt and yt−1 and result in the feature

vector

fso(y
t, yt−1) =











I(yt = 1)I(yt−1 = 1)
I(yt = 1)I(yt−1 = 2)

...
I(yt = k)I(yt−1 = k)











.

A dummy start node y0 (which takes a fixed value) can
be introduced so that fso(y

1, y0) is defined. The joint
feature vector can be written by combining these two
feature vectors:

f(x,y) =
L

∑

t=1

(

fmulti(x
t, yt)

fso(y
t, yt−1)

)

.

The dimension N of this feature vector is k2+dk. Ham-
ming distance was used as the loss function. Joachims
et al [10] used the same set of features and loss function
in their experiments on sequence learning.

Comparison with the Cutting Plane Method

Experiment setup We first compared SDM with the
cutting-plane method on the five data sets mentioned
above. For comparison we used the “1-slack” implemen-
tation available at [11]. The regularization parameter C
in (OP1) was scaled so that the objective functions in
(OP1) and (3.1) are same. The speed of convergence of
the two methods was compared with respect to the rela-
tive function value difference, η−η

∗

η∗
where η∗ is the opti-

mal dual objective function value given by the cutting-
plane method and η denotes the dual objective function
value attained by a method at any point of time. While
comparing SDM with the cutting-plane method, SDM
was terminated when it attained the dual objective func-
tion value of η∗. The two methods were also compared
in terms of their ability to reach steady state test set
performance fast. The regularization parameter C was
set to 0.1 in our experiments.

Relative dual objective function difference and general-
ization performance Figure 4 (see the last page of
the paper) gives plots of relative function value differ-
ence and test set accuracy as a function of training time
for the five data sets. It can be seen from this figure that
SDM is much faster than the cutting-plane method. On
most of the data sets it is faster by an order of magni-
tude. Further, SDM also achieves the steady state test
set performance faster.

Effect of the regularization parameter on the training
time The two methods were also compared for
different values of the regularization parameter C (0.1,
1 and 10) on two data sets, BioNLP and WSJPOS. The
results are shown in Figures 2 and 3. It is clear from



Table 2: Training time comparison of SDM and
the Cutting-Plane (CP) method on different
data sets

Data set Train time(sec) Train time(sec)
C = 0.1 C = 1

SDM CP SDM CP
WSJPOS 285 2771 710 4616
BioNLP 77 696 188 999
CoNLL 55 1015 110 1372
BioCreative 15 51 43 91
POS 77 844 160 1367

Table 3: Training time comparison of SDM and
SGD to achieve the same test set performance

Data set Train Time(sec)
SDM SGD
C = 0.1

WSJPOS 207 7656
BioNLP 67 700
CoNLL 65 865
BioCreative 31 79
POS 65 1928

these figures that SDM reaches the optimal objective
function value and steady state test set performance
faster than the cutting-plane method even at larger
values of C.

Training time comparison The training times re-
quired by both the methods, to reach the optimal ob-
jective function value attained by the cutting plane
method, are given in Table 2. SDM was observed to
be an order of magnitude faster than the cutting-plane
method on most of the data sets.

Comparison with the SGD Method

Experiment setup Stochastic gradient descent
method is known to achieve steady state test set per-
formance fast. In our experiments we used the SGD
implementation available for CRFs at [3]. The default
parameters in the implementation were used. For SDM
C was set to the default value of 0.1. Since the two
methods optimize different objective functions we did
not compare them.

Generalization performance comparison Figure 1
compares SDM and SGD on the five data sets in terms
of test set performance. This implementation of SGD
does parameter tuning before doing online learning.
During this time period, the test set performance is not
evaluated and therefore, the plots shown start at a later
point of time. From this figure it is clear that SDM
achieves steady state test set performance faster than
the SGD method on all the data sets.

Table 4: Scalability of SDM on the POS data set

Data set size Train Time(sec)
C = 0.1 C = 1

450 12 14
900 18 28
1800 32 45
3600 53 92
7200 77 160

Training time comparison The SGD method
was run for 50 (default) iterations and its training time
and test set performance at the end of these iterations
were noted. SDM was run until it attained the test set
performance given by the SGD method. The training
times of these methods are reported in Table 3. On
most of the data sets, SDM was observed to be at least
an order of magnitude faster than the SGD method.

Scalability

Next we examined the scalability of SDM. For this
purpose, we used the POS data set and varied the
training set size from 450 to 7200 as a multiple of 2. The
training times (to reach τ -optimality) were measured as
the size of the training set was increased. The results
are reported in Table 4. From this table it is clear that
SDM scales well under different parameter settings.

6 Conclusion

In this paper we proposed a sequential dual method for
structural SVMs. It is based on the idea of sequentially
looking at one example at a time and optimizing the
dual variables associated with it. The proposed method
is fast and easy to implement. Experiments on several
benchmark data sets demonstrated that it is an order
of magnitude faster than state-of-the-art approaches for
structured learning. The proposed SDM also reaches
steady state test set performance quite fast and scales
well. Thus, it is a good alternative to the cutting-plane
and SGD methods for structured output learning. In
this work, SDM was evaluated on sequence learning
problems. On the experiments conducted, it converged
to a τ -optimal solution. More details related to the
evaluation of SDM on other structured output problems
and the convergence of this method will be reported in
a future paper.
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Figure 2: Comparison of SDM and the Cutting plane method on the BioNLP data set for different C
values. Row 1: C=0.1, Row 2: C=1.0, Row 3: C=10.0.
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Figure 3: Comparison of SDM and the Cutting plane method on the WSJPOS data set for different
C values. Row 1: C=0.1, Row 2: C=1.0, Row 3: C=10.0.
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Figure 4: Comparison of SDM and the Cutting plane method for C=0.1. The rows correspond to the
data sets POS, WSJPOS, BioNLP, BioCreative and CoNLL in that order.


