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Abstract

We consider the problem of learning structured output prob-

abilistic models with training examples having partial labels.

Partial label scenarios arise commonly in web applications

such as taxonomy (hierarchical) classification, multi-label

classification and information extraction from web pages.

For example, label information may be available only at the

internal node level (not at the leaf level) for some pages in a

taxonomy classification problem. In a multi-label classifica-

tion problem, it may be available only for some of the classes

(in each example). Similarly, in a sequence learning prob-

lem, we may have label information only for some nodes in

the training sequences. Conventionally, marginal likelihood

maximization technique has been used to solve these prob-

lems. In such a solution unlabeled examples and any side

information like expected label distribution (or correlation in

a multi-label setting) of the unlabeled part are not used. We

solve these problems by incorporating entropy and label dis-

tribution or correlation regularizations along with marginal

likelihood. Entropy and label distribution regularizations

have been used previously in semi-supervised learning with

fully unlabeled examples. In this paper we develop proba-

bilistic taxonomy and multi-label classifier models, and pro-

vide the ideas needed for expanding their usage to the partial

label scenario. Experiments on real-life taxonomy and multi-

label learning problems show that significant improvements

in accuracy are achieved by incorporating these regulariza-

tions, when most of the examples are only partially labeled.

1 Introduction

Supervised learning algorithms require fully labeled
training examples to learn classifiers. In many struc-
tured output applications such as taxonomy classifica-
tion, multi-label classification, information extraction
or sequence labeling in bio-informatics, getting labeled
examples is expensive. Thus, semi-supervised learning
algorithms ([18],[13]) that make use of a few labeled
examples together with a large number of unlabeled
examples have become popular. However, all of these
semi-supervised learning algorithms assume that label
information for each labeled example is fully available.
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We consider the semi-supervised learning problem with
weak supervision in which only partial label information
is available for the examples. We illustrate the notion of
partial label using some motivating applications below.

1.1 Motivating Applications In hierarchical (tax-
onomy) classification of web pages, we may have label
information only at the internal node level (not at the
leaf node level) for many pages. For example, we may
only know that a particular web page belongs to Sci-

ence category but not whether the page belongs to the
leaf nodes Physics or Chemistry. In practice, such
a situation can arise from the requirement to expand
the taxonomy by splitting leaf nodes further. Then, to
reduce annotation cost, we may label only a few pages
from each such leaf nodes.

In a multi-label classification problem, a web page
or image is associated with multiple categories repre-
sented by a multi-label output vector (with each bit
taking a value in {+1,-1}). For example, a particular
web page may belong to Finance and Politics cate-
gories. Partial labeling in multi-label output means that
labels are known only for a subset of categories in the
multi-label output vector. Following is a practical sce-
nario in which such partial data arise. Suppose there are
multiple annotators who label the examples, and each
annotator judges the label only for a subset of categories
(non-overlapping with other annotators); such a way of
labelling may become a necessity when the number of
categories is large. Furthermore, the set of examples
given to each annotator may overlap. Clearly, when an
example overlaps with all the annotators (thus, cover-
ing all the categories) we have a fully labeled example;
otherwise, we have a partially labeled example. One ad-
vantage of having non-overlapping examples across the
annotators is that we can get more number of labeled ex-
amples (though partial) for the same annotation cost1.

In a web information extraction application, a
record (a sequence of nodes) from a list page has mul-
tiple attributes. For example, a Book record will
have attributes like Name, Author, Publisher etc. Sim-
ilarly, a Restaurant record will have Name, Address,

1We assume that the annotator’s cost is directly proportional
to the total number of class labels he/she assigns for the objects
(e.g., documents or images).



Phone etc, as the attributes. Now assume that we have
some incomplete databases of Restaurant and Book

names. Then, we can use these databases to annotate
the attribute Name in extracted records from list pages2.
Similarly, we may use PersonName, PublisherName

dictionaries and address, phone regular expressions to
annotate other attributes like Author, Publisher, Address

and Phone. In such a situation, the records will only
have partial information since the databases and dic-
tionaries are often incomplete. But, the quality of an-
notation (precision) will be very high. It is clear from
these applications that there is a need to design learning
algorithms that can learn with partial labels.

1.2 Use of side information and Regulariza-
tions in Semi-supervised Learning Side informa-
tion or constraints (on the labels of unlabeled data) that
come from domain knowledge play a key role in getting
significantly improved performance in semi-supervised
learning. Joachims [13] uses label distribution of the
unlabeled data as a hard constraint, to avoid the trivial
(bad) solution of labeling the entire unlabeled data with
same label. In [16], a soft constraint (regularization)
to match the model predicted label distribution with a
prior label distribution is used. Entropy regularization
is another form of regularization that prefers a solu-
tion providing predicted label distribution with less en-
tropy (see [9],[16],[11]). In [16], experiments conducted
on multi-class problems show that label regularization
is crucial to get good performance; entropy regulariza-
tion can further enhance the performance when included
with label regularization, but it gives poor performance
when used alone. While all the above mentioned works
deal with semi-supervised learning where the unlabeled
examples are fully unlabeled, our focus is on the prob-
lem of learning with partial labels that often arise in
structured output problems.

1.3 Our Contributions The main contributions of
this paper are:

• we provide the ideas needed for expanding the us-
age of entropy and side information based label reg-
ularizations to the partial label scenario for struc-
tured output problems.

• we propose a probabilistic taxonomy classifier
model using Cai and Hoffmann [7] attribute vec-
tor taxonomy representation (where each class is
characterized by an attribute vector). In this rep-
resentation, we introduce the notion of conditional

2Any standard unsupervised technique such as [1] can be used
to extract records from list pages.

class distribution that is useful in solving the prob-
lem of learning with partial labels.

• we introduce a probabilistic multi-label classifier
model based on the linear (label) correlation model
proposed in [10], and show how different regular-
izations can be used in the partial label scenario.

• we conduct extensive experiments on real-life tax-
onomy and multi-label learning problems and
demonstrate that significant improvements in ac-
curacy are achieved by incorporating entropy and
label (distribution or correlation) regularizations,
when most of the examples are only partially la-
beled.

The paper is organized as follows. In Section 2,
we present related work. Section 3 covers background
on likelihood and marginal likelihood maximization ap-
proaches. In Section 4, we present our approach of using
entropy and label regularizations in the partial label sce-
nario; we take up two structured output problems, viz.,
taxonomy (hierarchical) and multi-label classification,
and develop necessary probabilistic classifier models for
these problems, and show how various regularizations
can be incorporated. Experimental results on real-life
benchmark datasets of these two problems are presented
in Section 5. We briefly discuss in Section 6, how the
proposed approach can be used in a more complex se-
quence learning problem. Section 7 concludes the paper.

2 Related Work

As annotation is an expensive process due to the human
effort involved, significant attention has been given to
the problem of learning with limited or no labeled
examples by researchers from various communities viz.,
artificial intelligence, machine learning, statistics and
data mining. Semi-supervised learning [18] refers to the
problem of learning when both labeled and unlabeled
examples are available. In practice, depending on the
problem and application at hand, different degree of
labeling (that is, fully and partial) arises. For instance,
in a binary or multi-class problem, an example is fully
labeled when the label is exactly known; in a multi-
label classification problem, an example is fully labeled
when labels of all the outputs (classes) are known. Our
interest in this paper is in learning with partial labels.
Next we discuss works related to such learning.

Grandvalet and Bengio [9], and Jin and Ghahra-
mani [12] consider the partial labeling problem in the
multi-class probabilistic modeling setting, where each
training input is associated with a subset of class la-
bels. It is assumed that the true label is a member
of this set. Grandvalet and Bengio [9] propose a min-



imum entropy regularization based solution; however,
there are no detailed experimental studies specific to
the partial labeling problem. Jin and Ghahramani [12]
solve the problem using the expectation-maximization
(EM) approach. Nguyen and Caruana [17] propose a
large margin approach for the same problem setting.
Our work differs from the above mentioned works in
two ways. First, our work is focused on structured out-
put problems. Second, none of these works make use
of label regularization which is crucial in getting signif-
icant improvement in performance - particularly, when
the degree of labeling is low (for example, when the
percentage examples for which labeling information is
available at the leaf node level in the taxonomy classifi-
cation problem is, say, less than 5%).

Liu et al. [6] proposed a semi-supervised learning
method for the multi-label classification problem where
the class label assignments for the fully unlabeled data
are set such that the Frobenius norm between input
similarity matrix and class similarity matrix3 is mini-
mized. Chen et al. [3] presented a graph regularized
semi-supervised multi-label learning method that make
use of input similarity matrix and category similarity
matrix that captures the correlation information be-
tween the labels. In their method, the labels for the fully
unlabeled data were obtained by solving a Sylvester
equation. However, these methods do not solve the
problem of learning with partial labels.

Mann and McCallum [16] devised a method called
generalized expectation criteria (GE) to make use of
prior or side information in semi-supervised learning.
The GE criteria method essentially fits model parame-
ters W in such a way that the model’s predictions match
certain expectation constraints. An important type of
expectation constraint is to match the model predicted
marginal label distribution on the unlabeled data with
the expected label distribution. Such constraints play a
very important role in semi-supervised learning to get
improved generalization performance; this has also been
demonstrated in applications like text classification [13].
Mann and McCallum [16] explored the above mentioned
label distribution constraint by adding a label regular-
ization function to the objective function. They demon-
strate its usefulness on both multi-class and sequence
labeling problems. Jiao et al., [11] propose to use en-
tropy regularization for structured prediction problems.
However, all these works consider the problem in the

3For example, the input similarity matrix is computed using
cosine similarity measure between the term frequency vectors

documents and the class similarity matrix is computed as the
inner product of the confidence scores of the output (class) vector
between the documents in a transformed space that captures the
label correlation.

fully labeled setting whereas our focus and approach is
for the partially labeled setting.

Kedar and McCallum [2] propose marginal likeli-
hood maximization for the sequence learning problem
with partially labeled nodes. Carlson et al., [8] propose
partial perceptron learning for the same problem. Nei-
ther use entropy and label regularizations as proposed
in this paper. Our experimental results show that these
regularizations are extremely useful in getting signifi-
cant performance improvements.

3 Background

In this work, we are interested in learning discriminative
probabilistic models specified by the class conditional
probability distribution function p(y|x;W), where x
and y respectively denote the input and output rep-
resentations of an example, and W denotes the model
parameter vector.

Suppose we are given a set of fully labeled examples
{xi,yi : i = 1, . . . , n} which are independently chosen
from the underlying distribution. The model parameter
W is learned by maximizing the regularized log likeli-
hood function given by:

(3.1) L(W) = −
1

2σ2
||W||2 +

λML

n

n
∑

i=1

log p(yi|xi;W)

where the first term is a weight regularization term and
λML is a regularization constant that trades-off data
fitting with function smoothness for a fixed σ2. In
structured output problems, yi involves multiple nodes
and each node (j) is assigned a label yi,j ∈ Y where Y
is the output label space.

3.1 Marginal Likelihood In the partial labeling
scenario, labels are known only for a subset of nodes;

that is, y
(o)
i ∈ yi = [y

(o)
i y

(u)
i ] where the superscripts

o and u respectively denote observed and unobserved
nature of the node labels. When the examples are
partially labeled, the likelihood p(yi|xi;W) is replaced

with the marginal likelihood function p(y
(o)
i |xi;W) =

∑

y
(u)
i

p(yi|xi;W) in equation (3.1) [2]. This results in:

(3.2)

LML(W) = −
1

2σ2
||W||2 +

λML

n

n
∑

i=1

log(p(y
(o)
i |xi;W)).

Unlike full likelihood, marginal likelihood is not neces-
sarily convex; hence LML(W) in equation (3.2) may not
be convex. This results in the problem of local minima.

As pointed out by Grandvalet and Bengio [9], semi-
supervised learning is a special case of learning with

partial labels. For example, when y
(o)
i = φ (that is, no

labels are observed) we have the fully unlabeled scenario



for i-th sequence. Then, it is seen that such an example
does not contribute to the likelihood term in equation
(3.2) with the marginal probability summing to 1 (since

y
(u)
i = yi). When y

(u)
i = φ (that is, all the labels are

observed), we have the fully labeled scenario. Then, the
summation within the log term involves only one term,
resulting in the standard likelihood function.

4 Our Approach

We are interested in getting improved generalization
performance while learning with partial labels. For this
purpose, we enhance equation (3.2) by providing ad-
ditional regularizations. In particular, we propose to
extend and use two types of regularizations commonly
known as entropy and label regularizations (see [9] and
[16]). The key idea in our work is to use these regular-
izations along with marginal likelihood for structured
output learning with partial labels, when partial label-
ing is available for some or all of the training examples.
As we will see, our experimental results show that sig-
nificant improvement in generalization performance is
achieved in the partial labeled scenario with these reg-
ularizations. Although a big chunk of the improvement
comes from using only label regularization, further im-
provement is achieved when label regularization is com-
bined with entropy regularization.

4.1 Entropy Regularization We define the entropy
regularization (ER) function Hi(W) for the partial
labels scenario as:

(4.3) −
∑

y
(u)
i

p(y
(u)
i |y

(o)
i ,xi;W) log p(y

(u)
i |y

(o)
i ,xi;W)

where p(y
(u)
i |y

(o)
i ,xi;W) is the class probability distri-

bution of the unobserved variable y
(u)
i conditional on

the observed variable y
(o)
i . This function is a general-

ized version of the function used in the fully unlabeled

example scenario [16] where y
(u)
i = yi; so, the sum-

mation in equation (4.3) runs over all possible assign-

ments of yi (i.e. y
(o)
i = φ and equation (4.3) becomes

−
∑

yi
p(yi|xi;W) log p(yi|xi;W)). When we add the

entropy regularization function to equation (3.2), we
get:

(4.4) LML−ER(W) = LML(W) −
λER

n

n
∑

i=1

Hi(W)

where λER is an entropy regularization constant which
controls the amount of regularization. Note that maxi-
mizing entropy regularized marginal likelihood function
(equation (4.4)) tries to decrease the conditional entropy
function

∑n
i=1 Hi(W). Of course, this happens jointly

with maximizing the model prediction probability on
the observed part (i.e., the first term). Essentially, de-
creasing the conditional entropy function drives the pre-
diction on the unlabeled part of the structure to be more
confident.

4.2 Label Regularization Label regularization is a
simple and powerful idea that has been found to be very
useful in semi-supervised learning with fully labeled and
fully unlabeled examples [16]. Here, we propose to use
label regularization in the partial labeled scenario. We
add a label regularization term LLR(W) to equation
(4.4) and get:

(4.5) LML−LR−ER(W) = LML−ER(W) − LLR(W).

The label regularization term can be defined in different
ways depending on the side information available. For
illustrative purpose, we present a simple label distribu-
tion based regularization function here; later, we show
how label correlation information in a multi-label classi-
fication setting can be used to define the regularization
function.

4.2.1 Label Distribution Regularization (LDR)
Let q denote the expected label distribution in the par-
tial labeled scenario where the distribution is defined
over the label space Y. Let p(W) denote the model
predicted marginal label distribution4 in the unobserved
part of the structured outputs; that is, p = 1

|U |

∑

i∈U pi

where U and |U | respectively denote the set and size of
the unobserved nodes, and pi denotes the model pre-
dicted marginal probability for i-th node. For nota-
tional simplicity, we drop the dependence on W. Then,
we define5:

(4.6) LLR(W) = LLDR(W) = λLDRG(q;p)

where λLDR is a regularization constant, and G(q;p)
measures the difference between the expected and pre-
dicted distributions. For instance, G(·) may be a
Kullback-Leibler divergence or squared error loss mea-
sure; e.g., G(q,p) = ||q−p||2. Note that when λER = 0
in equation (4.5) (via equation (4.4)), we refer the ob-
jective function as LML−LDR (with label distribution
regularization).

4Note that if we have expected label distribution information
for the entire training data then the expected label distribution
in the unlabeled part is specified as conditional distribution.

5We use the abbreviation LR to refer to general label regu-

larization setting. Whenever we use the abbreviation LDR, we
specifically refer to label distribution regularization. We have in-
troduced the function LLDR(W) to distinguish from other types
of label regularizations.



Illustrative Examples In the taxonomy classification
problem, we may specify the expected label distribution
over the classes represented by the leaf nodes. For in-
stance, this distribution may be just uniform; this is the
case in one of the datasets News20 used in our experi-
ment explained later. Alternately, one could also define
constraints at the internal node levels, if only such in-
formation is available. For example, we may just specify
the expected fraction of documents in some of the in-
ternal nodes. Thus, in a general setting, p need not be
a distribution.

In the multi-label classification problem, the ex-
pected fraction of documents may be specified for each
output (class) independently. In this case, the label reg-
ularization term can be written as the sum of the label
regularization term for each output:

∑K
k=1 G(qk;pk)

where K denotes the number of outputs, qk and pk

denote the expected and predicted label distribution re-
spectively for kth output in the label space {−1,+1}.

In the sequence learning problem, one can define
label constraints in several ways. For example, the
expected label distribution can be defined over the label
space Y for the entire collection of n sequences. As
an illustration, we may have information, such as the
average number of label type Author is 2 per publication
sequence. In this case, we expect 2n nodes to be
labeled as Author and if there are total M nodes then
p(Author) = 2n

M
. Alternately, we may also impose

constraint for each partially labeled sequence. In this
case, G(q;p) in (4.5) would be

∑n
i=1 g(qi;pi) where

g(·) is again a divergence measure and i indexes the
sequences.

4.3 Taxonomy Classifier Model Consider a hier-
archical tree structure with root node R and each leaf
node representing a class. Following [7], we associate a
weight vector wr, r = 1, . . . , s where s denotes the num-
ber of nodes in the tree (with a specific order to index
each node), and use an attribute vector representation
model for each leaf node v ∈ L (L denotes the set of
leaf nodes). Let Λ(yv) = [λ1(yv) · · ·λs(yv)] denote the
attribute vector representation for vth node where yv

denotes the path from R, and λrs take binary value (1
if a node lies in the path and 0 otherwise). We define a
scoring function6 for vth (leaf) node as:

F (x,yv;W) =

s
∑

r=1

λr(yv)wT
r x.

6In document categorization problems linear kernel is often
sufficient.

Then, inference is made as:

y∗ = argmax
yv :v∈L

F (x,yv;W).

While [7] studies the support vector machine model, we
are interested in building a probabilistic model. There-
fore, we work with an extended multinomial logistic re-
gression model, and define the class probability of a leaf
node v ∈ L as:

(4.7) p(yv|x;W) =
exp(F (x,yv;W))

∑

v̄∈L exp(F (x,yv̄;W))
.

We see that the conditional probability of a document
belonging to a child node (v) given that it belongs to a
parent node r is:

(4.8) p(yv|yr,x;W) =
p(yr|yv,x;W)p(yv|x;W)

p(yr|x;W)
.

From the observations that a child has only one parent
and a parent has more than one child7, the following
properties hold:

1. p(yr|yv,x;W) = 1

2. Probability of a document belonging to a parent
(i.e., internal node) is nothing but the sum of the
class probabilities of its children given by:

(4.9) p(yr|x;W) =
∑

v̄∈child(r)

p(yv̄|x;W).

As we propagate the probabilities upward to the
root, the probability at the root node R becomes
1.

Using these properties we can rewrite equation (4.8) as:
(4.10)

p(yv|yr,x;W) =
exp(F (x,yv;W))

∑

v̄∈child(r) exp(F (x,yv̄;W))
.

Furthermore, the conditional probability is not depen-
dent on the weight vectors shared by the children (as
the common terms in the numerator and denominator
cancels out).

4.3.1 Likelihood and Regularization We use
equation (4.7) in the likelihood term (equation (4.4))
when leaf node label is available for an example. When
an example has only partial label (i.e., label infor-
mation only at an internal node level), we use equa-
tions (4.9) and (4.10) in the (marginal) likelihood and

7A parent with single child can be collapsed to a single child
node.



entropy regularization terms of equation (4.4) respec-
tively. To compute the label distribution regularization
(LDR) term in equation (4.6), we use p(yv|x;W) =

exp( 1
T

F (x,yv ;W))
∑

v̄∈L
exp( 1

T
F (x,yv̄ ;W))

. The scaling factor ( 1
T

) is use-

ful in preventing the degenerate solution of all the ex-
amples having same probability score [16]. In all our
experiments we used squared error loss (between the
expected and model predicted label distributions) for
G(·) in equation (4.5), and set T = 0.1. Note that the
gradients of the marginal probability and entropy regu-
larization term are straight-forward to compute for this
problem.

4.4 Multi-Label Model In this section we show
how entropy and side information based label regular-
izations can be incorporated in a partial label, multi-
label classification setting. Before that, we first describe
the multi-label setting that we consider here; we make
use of the approach suggested in [10] to define our prob-
abilistic multi-label classifier model.

Let f(x,y) denote the scoring function for a multi-
label vector assignment y defined as:

f(x,y;w) = wT (x ⊗ ψ(y))

where ⊗ denotes the Kronecker product, w and ψ(y)
denote the model weight vector, and attribute vector
(for y) respectively. Then, inference is made as:

y∗ = argmax
y∈{−1,+1}K

f(x,y)

where K denotes the number of classes (i.e., dimen-
sion of the multi-label output). Note that inference
becomes intractable as the label space is exponentially
large. While treating each class as independent can
make the problem simple, it does not make use of vital
dependency information across the classes. Hariharan
et al. [10] considered a problem setup where the out-
put variables are linearly correlated; i.e., they assumed
that ψ(y) = Py where P is an invertible matrix that
captures all the label correlation information. With this
assumption they proposed an approach where the la-
bels are densely correlated, but does not incorporate
pairwise label terms in the prediction function. They
showed that (1) the complexity (prediction as well as
training in terms of the number of constraints) can still
be reduced from exponential to linear while modeling
dense pairwise correlations, and (2) incorporating corre-
lation priors can result in improved prediction accuracy.
While in [10], Hariharan et al. worked in a large mar-
gin setting with support vector machines, we are inter-
ested in probabilistic models. Therefore, we propose a
probabilistic multi-label classifier model with their lin-
ear (label) correlation assumption. It is easy to show

that the model decoupling simplification (from predic-
tion and likelihood perspectives) obtained in their for-
mulation holds in probabilistic formulation as well.

4.4.1 Likelihood The joint probability of the multi-
label output y is given by:

p(y|x;W,P) =
exp(f(x,y))

∑

y exp(f(x,y))

where W = [w1w2 . . .wK ] and wk denotes k-th clas-
sifier weight vector. Note that the model weight (col-
umn) vector (w) is rearranged as a matrix of weight
vectors and we have omitted the dependencies of P and
W in the scoring function. Denoting Z = WP and
z(x) = ZT x, we rewrite p(y|x;W,P) as:

p(y|x;Z) =
exp(yT z(x))

∑

y exp(yT z(x))
.

Due to additive nature of yT z(x) and exponentiation
property, the sum in the denominator factors into a
product of K sums; therefore, p(y|x;Z) factors into K
independent distributions, i.e.,

p(y|x;Z) =

K
∏

k=1

p(yk|x, zk)

where p(yk|x, zk) = exp(ykzk(x))
∑

yk∈{−1,+1} exp(ykzk(x))
, zk(x) = zT

k x

and zk is k-th column in Z. Using this likelihood model,
we write the basic weight regularized log likelihood
function (equation (3.1) in the transformed space Z)
as:
(4.11)

L(Z) = −
1

2σ2
trace(ZR−1ZT )+

λML

n

n
∑

i=1

log p(yi|xi;Z)

where the first term is obtained from the regularization
term:

K
∑

k=1

||wk||
2 = trace(WT W) = trace(WWT )

and R = PT P. Note that the transformed weight ma-
trix Z can only be learned jointly due to the coupling
through R−1. Therefore, although the joint probability
distribution factors into independent distributions, in-
terdependencies among the transformed weight vectors
{zk : k = 1, . . . ,K} imply joint learning of K classifiers.
But, the key benefit due to factorization comes during
testing where prediction can be done independently for
each class k using zk(x) (i.e., yi,k = 1 when zk(xi) ≥ 0
and −1 otherwise; here, yi,k denotes the label of ith ex-
ample for kth class). Furthermore, factorization results
in simpler log marginal likelihood and entropy regular-
ization terms as explained next.



4.4.2 Marginal Likelihood Recall that we compute
the marginal likelihood for i-th example in the partial

label scenario as p(y
(o)
i |xi;Z) =

∑

y
(u)
i

p(yi|xi;Z) (after

replacing W with Z). Since the joint distribution
factors into K independent distributions, the marginal
likelihood function for ith example simplifies to

(4.12) p(y
(o)
i |xi;Z) =

∏

k∈Li

p(yi,k|xi, zk)

where Li denotes the subset of classes in K = {1, . . . ,K}
for which the labels are known. Then, we get the
expression for LML(Z) (by substituting equation (4.12)
in equation (4.11)) as
(4.13)

−
1

2σ2
trace(ZR−1ZT ) +

λML

n

n
∑

i=1

∑

k∈Li

log p(yi,k|xi, zk).

4.4.3 Entropy Regularization Using the factoriza-
tion property above and denoting Ui = K \Li, the con-
ditional entropy function (4.3) reduces to:

Hi(Z) = −
∑

k∈Ui

p(yi,k|xi, zk) log p(yi,k|xi, zk)

and (4.4) becomes LML−ER(Z) = LML(Z) −
λER

n

∑n
i=1 Hi(Z).

4.4.4 Label Regularizations We consider two
types of label regularizations, namely, label distribution
regularization (LDR) and label correlation regulariza-
tion (LCR).

In LDR, we assume that the expected label (bi-
nary) distribution for each output (i.e., {qk : k =
1, . . . ,K}) is available, and use the label distribution
regularization function mentioned earlier: LLDR(Z) =
λLDR

K

∑K
k=1 G(qk;pk) where λLDR and {pk : k =

1, . . . ,K} denote the regularization constant and pre-
dicted label (binary) distributions respectively. In all
our experiments, we used squared error loss for G(·).

In LCR, we use the label correlation matrix R to
regularize the classifier weights such that the model
predictions of the labels (including the hidden labels)
result in the desired R. Thus, we define the LCR
regularization function as: LLCR(Z) = λLCR

K2 ||R̂−R||2F
where ||.||2F and λLCR denote the Frobenius norm and

regularization constant respectively, R̂ = 1
n

∑n
i=1 uiu

T
i ,

ui = 2 ∗ pi − 1 and pi is a column vector (K × 1)
representingK classifier output probabilities. Note that
when pi,k = p(yi,k|xi, zk) = 1 we have ui,k = 1, and,
when pi,k = 0 we have ui,k = −1. Therefore, both
positive and negative label correlations are possible.

Finally, combining marginal likelihood, entropy and

label regularizations, we get

LML−LR−ER(Z) = LML−ER(Z)−LLDR(Z)−LLCR(Z).

In our experiments, we evaluated the usefulness of each
of the regularization terms separately as well as in
combination with others.

5 Experimental Evaluation

To demonstrate the effectiveness of the proposed meth-
ods we conducted experiments on two structured output
problems viz., taxonomy and multi-label classification
problems using the models proposed in sections 4.3 and
4.4 respectively. We compared the performance with
the marginal likelihood method. We give details of the
experimental setup and results for taxonomy and multi-
label classification experiments in separate sections.

5.1 Taxonomy Classification Experiments

5.1.1 Datasets We evaluated the performance of the
various methods on two popular web taxonomy datasets
viz., News20 and RCV-MCAT.
The News20 dataset8 consists of 19928 examples be-
longing to 20 leaf level categories. The taxonomy tree
has a depth of 3 and has 28 nodes including the root.
There are six nodes (belonging to categories Comput-

ers, Recreation, Science, Religion, Politics and
Miscellaneous) at the first level and one of them
(Miscellaneous) is a leaf node. There are seventeen
nodes at the second level and fifteen of them are leaf
nodes. The remaining four leaf nodes are at the third
level. The number of features is 62061. The examples
are uniformly distributed across the classes. We used a
train/test split of 65% and 35%.
The RCV9 dataset (with single label) consists of 547655
examples belonging to 101 classes. For our experiments
we considered a sub-tree belonging to a high level cate-
gory MCAT with seven leaf nodes. This tree has a depth
of 2 with a total of 10 nodes. There are four nodes in
the first level and five nodes in the second level. The
seven market related categories (leaf level nodes) are
Equity, Bond, Forex, Commodity, Soft, Metal

and Energy. The RCV-MCAT dataset has 154706 ex-
amples and the number of features is 11429. Since this
dataset is relatively easy, we used a train and test split
of 3% and 97% respectively.

5.1.2 Training We set the regularization constants
by computing 3-fold cross-validation log likelihood on

8http://www.csie.ntu.edu.tw/ ˜ cjlin/libsvmtools/
datasets/multiclass.html

9http://www.ai.mit.edu/projects/jmlr/papers/
volume5/lewis04a/lyrl2004_rcv1v2_README.htm



the training data. To minimize computational complex-
ity, we set the regularization constants for the differ-
ent methods as follows. First, we set the regulariza-
tion parameter λML ∈ {2.5, 12.5, · · · , 250} for the ML
method. Then, keeping λML fixed, we tuned λER ∈
{0.02, 0.1, · · · , 62.5} for the ML-ER method. Similarly,
we set λLDR ∈ {12.5, 25, · · · , 800} for the ML-LDR
method. Finally, keeping λML and λLDR fixed, we set
λER for the ML-LDR-ER method. We set σ2 = 10000
and initialized the weights for the ML method with
small random initial weights. For ML-LDR and ML-
ER we initialized with the solution obtained from ML.
Similarly, we initialized the weights for ML-LDR-ER to
the solution obtained from ML-LDR. We set q to be
the true label distribution. We used the L-BFGS quasi-
Newton method for optimizing the weights.

5.1.3 Evaluation Metrics We varied the degree of
labeling (d) by controlling the percentage of examples
in the interval [1-90] for which labels are available at
the leaf level. When there were more than one level
of internal node for a leaf node we randomly selected
one of the internal nodes. We constructed 10 random
train/test partitions and evaluated Macro-F1 score and
accuracy on the test partitions. The Macro-F1 score
is given by: 2PaRa

Pa+Ra
where the average recall (Ra =

1
|Y|

∑

y∈Y Ry) and precision (Pa = 1
|Y|

∑

y∈Y Py) are

computed from the recall and precision for each category
(Ry and Py). We conduct Wilcoxon sign-rank test
and make comparisons using the statistical significance
results at the significance level of 0.05.

5.1.4 Experimental Results The Macro-F1 mean
and standard deviation performance over 10 partitions
for the two datasets are given in Table 1 and Table 3.
The accuracy mean and standard deviation performance
are given in Table 2 and Table 4. The results are given
mainly when d is small. This is because noticeable dif-
ferences between the various methods were mainly ob-
served for small d values. In these tables, the behaviors
of the methods on the Macro-F1 score and accuracy
were similar. Therefore, the following observations hold
for both the measures.

The performance degrades as d decreases as ex-
pected. But, the degradation is more gradual for the
methods ML-LDR and ML-LDR-ER. The standard de-
viation is higher for these methods when d = 1%. This
is because on a couple of partitions, the performance
improvements were around 5% (absolute) as compared
to 20% − 30% (absolute) in other partitions.

ML-ER gives some improvement over ML when d

is not very small. Though this improvement is not high,
we observed the difference to be still statistically signif-

icant. ML-ER is inferior compared to ML-LDR. ML-
LDR gives significant improvement over ML and the
improvement increases as d decreases. This improve-
ment is statistically significant. This gain is further en-
hanced by adding entropy regularization. This is clearly
seen by comparing the performance of ML-LDR and
ML-LDR-ER on the News20 dataset, for which the dif-
ference is quite significant. Although the performance
difference between these methods may not be visibly
high in the RCV-MCAT dataset, the results are still sta-
tistically significant. Thus, ML-LDR-ER gives the best
performance.

5.2 Multi-label Classification Experiments

5.2.1 Datasets We evaluated the performance
of the various methods on two popular multi-label
datasets, viz., siam-competition2007 and RCV-Topics-

Subsets datasets10. The original siam-competition2007

dataset has 21519 training and 7077 test examples. It
has 30438 features and 22 outputs. The average and
maximum number of (positive) labels per example were
2.16 and 10 respectively. There are five different sets
of RCV-Topics-Subsets dataset. We used the first set
in our experiment, and this dataset has 3000 training
and 3000 test examples. It has 47236 features and
101 outputs. The average and maximum number
of (positive) labels per example were 2.95 and 12
respectively. For both the datasets, to evaluate the
performance on different train and test partitions, we
combined the original training and test examples, and
constructed 10 random train and test splits of 70% and
30% respectively.

5.2.2 Training We constructed a random train and
validation split of 70% and 30%. The number of positive
examples was significantly lesser compared to the neg-
ative examples for many outputs in both the datasets.
So, to give same importance, we divided the marginal
likelihood term for the positive and negative exam-
ples separately by their respective numbers. We set
the regularization constants by computing the log like-
lihood of the validation set. To minimize computa-
tional complexity, we set the regularization constants
for the different methods as follows. First, we set the
regularization parameter λML ∈ {1, 4, · · · , 16384} for
the ML method. Then, keeping λML fixed, we tuned
λER ∈ {0.01, 0.04, · · · , 163.84} for the ML-ER method.
Similarly, we set λLDR ∈ {5, 25, · · · , 78125} for the ML-

10http://www.csie.ntu.edu.tw/ ˜ cjlin/libsvmtools/
datasets/multilabel.html



d ML ML-ER ML-LDR ML-LDR-ER
30 97.13 (0.14) 97.26 (0.15) 97.23 (0.12) 97.35 (0.13)
20 96.95 (0.18) 97.08 (0.17) 97.11 (0.17) 97.22 (0.14)
15 96.54 (0.29) 96.71 (0.30) 96.96 (0.17) 97.16 (0.14)
10 95.62 (0.70) 95.96 (0.59) 96.57 (0.27) 96.88 (0.30)
5 91.21 (2.23) 91.33 (2.70) 94.76 (1.70) 95.19 (1.96)
3 86.00 (3.79) 86.05 (4.29) 93.20 (1.58) 93.56 (1.65)
1 66.53 (4.90) 65.96 (4.61) 82.47 (11.00) 82.98 (11.57)

Table 1: Macro-F1 (multiplied by 100) performance (mean and standard deviation (in brackets)) as a function of
degree of labeling (d) on the RCV-MCAT taxonomy dataset. The best mean performance in each row is highlighted.

d ML ML-ER ML-LDR ML-LDR-ER
30 97.61 (0.10) 97.70 (0.12) 97.68 (0.08) 97.76 (0.09)
20 97.48 (0.14) 97.58 (0.12) 97.59 (0.13) 97.67 (0.11)
15 97.17 (0.19) 97.30 (0.20) 97.46 (0.14) 97.60 (0.12)
10 96.56 (0.43) 96.82 (0.35) 97.19 (0.20) 97.41 (0.21)
5 93.19 (1.28) 93.44 (1.63) 95.76 (1.22) 96.08 (1.45)
3 88.87 (3.19) 89.11 (3.72) 94.52 (1.23) 94.84 (1.31)
1 72.81 (1.85) 72.23 (1.66) 87.54 (6.68) 88.50 (7.12)

Table 2: Accuracy (percentage) performance (mean and standard deviation (in brackets)) as a function of degree
of labeling (d) on the RCV-MCAT taxonomy dataset. The best mean performance in each row is highlighted.

d ML ML-ER ML-LDR ML-LDR-ER
30 84.42 (0.42) 84.46 (0.42) 84.55 (0.44) 84.55 (0.43)
20 83.16 (0.44) 83.66 (0.40) 83.45 (0.40) 83.70 (0.34)
15 81.40 (0.48) 82.14 (0.61) 82.53 (0.27) 83.18 (0.37)
10 73.86 (1.39) 72.48 (1.87) 79.41 (0.74) 81.36 (0.53)
5 54.65 (5.99) 48.86 (5.66) 74.34 (2.33) 77.63 (2.66)
3 35.35 (1.83) 34.63 (2.55) 75.65 (0.82) 76.47 (0.55)
1 22.45 (2.20) 22.91 (3.30) 50.30 (13.60) 55.62 (14.17)

Table 3: Macro-F1 (multiplied by 100) performance (mean and standard deviation (in brackets)) as a function of
degree of labeling (d) on the News20 taxonomy dataset. The best mean performance in each row is highlighted.

d ML ML-ER ML-LDR ML-LDR-ER
30 84.44 (0.38) 84.47 (0.41) 84.59 (0.40) 84.58 (0.40)
20 83.04 (0.51) 83.51 (0.47) 83.42 (0.41) 83.68 (0.34)
15 80.77 (0.68) 81.44 (0.98) 82.31 (0.34) 82.99 (0.41)
10 68.93 (2.34) 65.62 (2.79) 78.35 (1.01) 80.78 (0.75)
5 42.89 (6.58) 36.24 (5.55) 71.71 (3.47) 76.05 (3.70)
3 25.46 (1.01) 25.07 (1.14) 75.05 (0.87) 75.59 (0.68)
1 25.56 (1.28) 25.55 (1.29) 51.35 (12.75) 55.68 (14.75)

Table 4: Accuracy (percentage) performance (mean and standard deviation (in brackets)) as a function of degree
of labeling (d) on the News20 taxonomy dataset. The best mean performance in each row is highlighted.



d ML ML-ER ML-LDR ML-LDR-ER ML-LCR ML-LCR-ER ML-LR ML-LR-ER
3 58.61 (0.59) 56.96 (0.43) 57.81 (0.73) 57.80 (0.68) 58.02 (0.82) 58.09 (0.72) 58.12 (0.72) 58.15 (0.76)
1 50.62 (1.10) 49.99 (1.17) 49.50 (1.21) 49.91 (1.14) 50.74 (0.96) 51.28 (0.85) 51.07 (0.88) 51.80 (0.93)

0.5 45.51 (1.64) 45.24 (1.59) 44.65 (0.89) 46.34 (1.07) 46.63 (0.92) 48.43 (0.80) 46.90 (0.94) 48.73 (1.02)
0.25 40.38 (1.26) 40.02 (1.36) 41.38 (1.25) 44.26 (2.44) 43.90 (1.15) 46.41 (1.97) 44.10 (1.64) 46.50 (2.10)
0.1 35.87 (1.80) 35.71 (1.67) 36.74 (1.34) 39.92 (3.14) 39.38 (1.73) 42.88 (1.83) 40.85 (1.22) 43.25 (1.34)
0.05 32.13 (2.57) 32.13 (2.56) 34.66 (1.14) 36.91 (2.97) 34.01 (1.79) 36.36 (4.21) 38.99 (1.33) 41.79 (1.30)

Table 5: Macro-F1 (multiplied by 100) performance (mean and standard deviation (in brackets)) as a function of
degree of labeling (d) on the siamcompetition2007 multi-label dataset. The best mean performance in each row is
highlighted. Note that we use the abbreviation LR when both LDR and LCR are used.

d ML ML-ER ML-LDR ML-LDR-ER ML-LCR ML-LCR-ER ML-LR ML-LR-ER
3 19.29 (0.43) 18.48 (0.35) 19.18 (0.50) 19.16 (0.46) 19.26 (0.62) 19.27 (0.56) 19.48 (0.57) 19.47 (0.58)
1 14.21 (0.75) 13.95 (0.70) 14.22 (0.72) 14.32 (0.71) 14.48 (0.66) 14.68 (0.63) 14.80 (0.70) 15.06 (0.76)

0.5 11.53 (0.82) 11.50 (0.84) 11.74 (0.90) 12.15 (0.59) 11.88 (0.81) 12.54 (0.62) 12.11 (0.83) 12.63 (0.95)
0.25 9.37 (0.96) 9.27 (0.93) 9.98 (1.07) 10.79 (1.16) 10.20 (1.05) 11.03 (1.37) 10.41 (1.01) 10.95 (1.17)
0.1 7.54 (0.78) 7.43 (0.75) 8.32 (1.12) 9.19 (1.47) 8.81 (0.92) 9.93 (0.97) 9.10 (0.89) 9.64 (0.89)
0.05 6.42 (0.65) 6.41 (0.65) 7.47 (0.82) 8.33 (1.13) 7.82 (0.72) 8.41 (0.82) 8.04 (0.63) 8.35 (0.74)

Table 6: Accuracy (FULL) (percentage) performance (mean and standard deviation (in brackets)) as a function
of degree of labeling (d) on the siamcompetition2007 multi-label dataset. The best mean performance in each row
is highlighted. Note that we use the abbreviation LR when both LDR and LCR are used.

d ML ML-ER ML-LDR ML-LDR-ER ML-LCR ML-LCR-ER ML-LR ML-LR-ER
20 70.58 (0.73) 69.59 (0.84) 70.76 (0.71) 70.46 (0.64) 71.31 (0.64) 71.12 (0.69) 70.84 (0.70) 70.70 (0.70)
15 68.03 (0.70) 66.84 (0.67) 68.96 (0.73) 68.60 (0.68) 69.78 (0.68) 69.60 (0.68) 69.25 (0.74) 69.14 (0.72)
10 63.73 (0.60) 62.58 (0.56) 66.18 (0.58) 65.75 (0.53) 67.51 (0.65) 67.37 (0.63) 66.92 (0.62) 66.88 (0.68)
5 55.21 (0.66) 53.97 (1.10) 61.12 (1.00) 60.91 (0.97) 63.14 (1.01) 62.88 (0.94) 62.68 (1.10) 62.63 (1.14)
3 48.39 (0.87) 47.04 (1.09) 55.80 (1.38) 55.68 (1.31) 57.31 (0.91) 57.00 (0.86) 57.08 (1.27) 56.79 (1.17)
1 34.56 (1.24) 32.70 (1.55) 44.12 (1.73) 44.26 (1.68) 43.02 (2.55) 43.22 (1.63) 46.75 (1.68) 46.65 (1.56)

Table 7: Macro-F1 (multiplied by 100) performance (mean and standard deviation (in brackets)) as a function of
degree of labeling (d) on the RCV-Topics-Subsets multi-label dataset. The best mean performance in each row is
highlighted. Note that we use the abbreviation LR when both LDR and LCR are used.

d ML ML-ER ML-LDR ML-LDR-ER ML-LCR ML-LCR-ER ML-LR ML-LR-ER
20 32.76 (1.58) 30.86 (1.62) 32.19 (1.66) 31.78 (1.65) 33.11 (1.50) 32.81 (1.56) 32.35 (1.64) 32.11 (1.66)
15 29.25 (1.50) 27.17 (1.44) 29.62 (1.59) 28.98 (1.48) 30.71 (1.46) 30.48 (1.49) 29.68 (1.64) 29.59 (1.53)
10 23.68 (1.07) 21.48 (0.96) 25.72 (1.15) 25.06 (1.08) 27.51 (1.26) 27.18 (1.29) 26.35 (1.29) 26.19 (1.39)
5 14.27 (0.90) 12.37 (1.08) 19.24 (1.19) 19.02 (1.17) 22.19 (1.34) 21.94 (1.20) 21.10 (1.34) 21.08 (1.43)
3 9.18 (0.67) 7.90 (0.72) 14.69 (1.29) 14.52 (1.17) 17.27 (1.36) 16.99 (1.26) 15.98 (1.43) 15.55 (1.35)
1 3.52 (0.71) 2.72 (0.63) 8.08 (1.00) 8.05 (0.99) 9.21 (1.01) 9.26 (1.08) 9.08 (1.12) 8.69 (0.91)

Table 8: Accuracy (FULL) (percentage) performance (mean and standard deviation (in brackets)) as a function
of degree of labeling (d) on the RCV-Topics-Subsets multi-label dataset. The best mean performance in each row
is highlighted. Note that we use the abbreviation LR when both LDR and LCR are used.



LDR method. Finally, keeping λML and λLDR fixed,
we set λER for the ML-LDR-ER method. We followed
a similar strategy while doing experiments with LCR
methods. In experiments involving LDR and LCR, we
fixed λLDR first; then, optimized for λLCR in a scaled
regularization constant set of λLDR (given above); we
used 1

2K
as the scaling factor. We set σ2 = 10000 and

initialized the weights for different methods following a
similar strategy used in the taxonomy classification ex-
periments. We set q to be the true label distribution
for LDR, and set R to be the averaged outer product
of label vectors of the training examples. As in the tax-
onomy classification experiments, we used the L-BFGS
quasi-Newton method for optimizing the weights.

5.2.3 Evaluation Metrics We varied the degree of
labeling (d) by controlling the percentage of outputs for
which labels are available. For the siam-competition2007

dataset, we varied the percentage in the interval [0.05-
3], and for the RCV-Topics-Subsets dataset, we varied
in the interval [1-20]. We chose lower percentage values
for the siam-competition2007 dataset because the num-
ber of training examples is significantly higher. The
real benefits of label regularizations and performance
difference between the methods are clearly seen only
when the number of labeled outputs is small (as ex-
pected). Therefore, we report results (mean and stan-
dard deviation from 10 test partitions) only for per-
centage values in the intervals mentioned. We com-
pare the methods on two multi-label classification per-
formance metrics: (1) Accuracy (FULL) [5], and (2)
Macro-F1 [4]. Accuracy (FULL) is given by the per-
centage of examples whose predicted labels match true
labels on all outputs, i.e., with zero Hamming loss; this
is a stringent metric compared to the conventional accu-
racy computed by treating each label prediction, as in
a binary classification problem. Macro-F1 of the multi-
label classifier is defined as: 2PM RM

PM+RM
where PM and

RM denote precision and recall respectively, given by,

PM =
∑ K

k=1 TP (k)
∑

K
k=1 TP (k)+FP (k)

and RM =
∑ K

k=1 TP (k)
∑

K
k=1 TP (k)+FN(k)

;

TP (k), FP (k) and FN(k) denote true positive, false
positive and false negative of kth classifier. We con-
duct Wilcoxon sign-rank test and make comparisons us-
ing the statistical significance results at the significance
level of 0.05.

5.2.4 Experimental Results The Macro-F1 mean
and standard deviation performance over 10 partitions
for the two datasets are given in Table 5 and Table 7.
The Accuracy (FULL) mean and standard deviation
performance are given in Table 6 and Table 8.

Let us first consider siamcompetition2007 dataset.
On Macro-F1, we see from Table 5 that performance im-

provement of 3-9% (absolute) is achieved at lower d val-
ues with regularizations, compared to the ML method.
We also observe that entropy regularization alone is not
helpful; it improves the performance by 2-5% (absolute)
at lower d values when combined with label regulariza-
tions, namely, LDR, LCR and LR (recall that LR has
both LDR and LCR). LCR performs slightly better than
LDR, and LR performs better than both LDR and LCR.
In most cases, the observed differences are statistically
significant. Similar observations can be made on the
Accuracy (FULL) performance from Table 6. Again,
regularizations based methods perform better than the
ML method by 0.2-2% (absolute). Note that zero Ham-
ming loss is a stringent requirement; therefore, these
improvements are significant.

Now consider RCV-Topics-Subsets dataset. We ob-
serve from Table 7 that Macro-F1 performance improve-
ment of 3-12% (absolute) is achieved with regulariza-
tions at lower d values, compared to the ML method.
Unlike in the siamcompetition2007 dataset, the main
contribution comes from label regularizations, and en-
tropy regularization is not useful in this dataset. The
performance with LCR is better than LDR. The behav-
iors of the methods on the Accuracy (FULL) perfor-
mance are also similar. Regularizations based methods
perform better than the ML method by 3-6% (abso-
lute) (at lower d values). As in the siamcompetition2007

dataset, the observed differences are statistically signif-
icant in most cases.

6 Other Structured Output Models

In the previous sections, we demonstrated our approach
on two popular structured output problems. The ba-
sic ideas that were used for handling partial labels in
these problems are quite general and can be applied to
other problems. For example, there are several struc-
tured output problems with applications in information
extraction [2] where a sequence model is used to label
words in text sequences (e.g., text contents in a web
page). Below, we illustrate how our approach can be
applied in one such model. We only describe the ideas;
their implementation and experimental evaluation are
left for future work.

For the sequence learning problem, we use condi-
tional random field [14]. CRF is a Markov random field
that defines a conditional distribution of the labels y of
a sequence conditioned on the input x and this condi-
tional distribution has the form:

(6.14) p(y|x;W) =
1

Zx

exp
(

∑

c∈C

∑

k

wkfk(xc,yc)
)

where W denotes the model weights, C is the set of
cliques present in the sequence and Zx is a normaliz-



ing constant; xc, yc denote the components of x and y
present in a clique c, and fk(xc,yc)s are feature func-
tions. In linear chain sequence labeling problems [14],
common feature functions are represented as fk(xc,yc)
where c is either a node clique c with yc ∈ Y or an edge
clique c connecting two adjacent nodes in a sequence,
with yc ∈ Y2. Thus, we have two types of feature func-
tions, namely, node and edge feature functions. In gen-
eral the individual feature functions take real values; in
many cases they are boolean.

For efficient optimization of the objec-
tive function in equation (4.4), it is impor-

tant to compute the gradient ∂Hi(W)
∂wk

effi-
ciently and this quantity can be written as:
∑

y
(u)
i

p(y
(u)
i |y

(o)
i ;W) log p(y

(u)
i |y

(o)
i ;W)Fk([y

(o)
i y

(u)
i ])

+ Hi(W)(
∑

y
(u)
i

p(y
(u)
i |y

(o)
i ;W)Fk([y

(o)
i y

(u)
i ]); for

notational simplicity, we drop the dependence on xi.
The second term in this summation can be computed
efficiently when the conditional entropy and conditional
feature expectation are available. Note that efficient
computation is made possible in the linear chain CRF
with Markov order 1 by using the special structure of
Fk(yi) =

∑

j,j+1 Fk(yi,j , yi,j+1), and efficient marginal
probability computation using the Viterbi algorithm.
For the case of semi-supervised learning with fully
labeled and fully unlabeled examples, [15] proposes
a method to efficiently compute the first term of the
gradient. The key idea is to construct an entropy
lattice and define a dynamic program with forward
and backward computations [15]. We make use of this
idea and compute the relevant quantities by clamping
the labels of observed nodes. Due to space limitation,
we omit the details. The computational complexity
is same as in the method of [15] and, is O(m|Y|2)
(where m is the sequence length). To compute the label
regularization term, the class marginal probabilities of
the unobserved nodes and their gradients are used.

7 Conclusion

In this paper we presented the ideas of using entropy
and label regularizations in the partial label scenario
for structured output problems. We demonstrated the
effectiveness of the proposed methods on two popular
structured output problems, namely, taxonomy (hier-
archical) and multi-label classification. Experimental
results strongly suggest using label regularization meth-
ods to get a significant improvement in both Macro-F1
and accuracy/zero Hamming loss performance, when
the degree of labeling is low. In many cases, entropy
regularization helps in improving the performance fur-
ther. Results on other structured output problems such
as sequence labeling will be reported in a future work.
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