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Abstract

In this paper, we use a unified loss function, called the soft insensitive loss function,
for Bayesian support vector regression. We follow standard Gaussian processes for
regression to set up the Bayesian framework, in which the unified loss function is
used in the likelihood evaluation. Under this framework, the maximum a posteriori
estimate of the function values corresponds to the solution of an extended support
vector regression problem. The overall approach has the merits of support vector
regression such as convex quadratic programming and sparsity in solution represen-
tation. It also has the advantages of Bayesian methods for model adaptation and
error bars of its predictions. Experimental results on simulated and real-world data
sets indicate that the approach works well even on large data sets.

Keywords: Bayesian Inference, Support Vector Regression, Gaussian Processes,
Non-quadratic loss function, Automatic Relevance Determination, Model Selection

1 Introduction

The application of Bayesian techniques to neural networks was pioneered by Buntine and
Weigend (1991), MacKay (1992) and Neal (1992). These works are reviewed in Bishop (1995),
MacKay (1995) and Lampinen and Vehtari (2001). Unlike standard neural network design,
the Bayesian approach considers probability distributions in the weight space of the network.
Together with the observed data, prior distributions are converted to posterior distributions
through the use of Bayes’ theorem. Neal (1996) observed that a Gaussian prior for the weights
approaches a Gaussian process for functions as the number of hidden units approaches infinity.
Inspired by Neal’s work, Williams and Rasmussen (1996) extended the use of Gaussian process
prior to higher dimensional regression problems that have been traditionally tackled with other
techniques, such as neural networks, decision trees etc, and good results have been obtained.
Regression with Gaussian processes (GPR) is reviewed in Williams (1998). The important ad-
vantages of GPR models over other non-Bayesian models are the ability to infer hyperparameters

∗All the correspondences should be addressed to S. Sathiya Keerthi.
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and the provision of confidence intervals of its predictions. The drawback of GPR models lies
in the huge computational cost for large sets of data.

Support vector machines (SVM) for regression (SVR), as described by Vapnik (1995), ex-
ploit the idea of mapping input data into a high dimensional (often infinite) reproducing kernel
Hilbert space (RKHS) where a linear regression is performed. The advantages of SVR are: the
presence of a global minimum solution resulting from the minimization of a convex programming
problem; relatively fast training speed; and sparseness in solution representation. The perfor-
mance of SVR crucially depends on the shape of the kernel function and other hyperparameters
that represent the characteristics of the noise distribution in the training data. Re-sampling
approaches, such as cross-validation (Wahba, 1990), are commonly used in practice to decide
values of these hyperparameters, but such approaches are very expensive when a large number
of hyperparameters are involved. Typically, Bayesian methods are regarded as suitable tools to
determine the values of these hyperparameters.

There is some literature on Bayesian interpretations of SVM. For classification, Kwok (2000)
built up MacKay’s evidence framework (MacKay, 1992) using a weight-space interpretation.
Seeger (2000) presented a variational Bayesian method for model selection, and Sollich (2002)
proposed Bayesian methods with normalized evidence and error bar. In SVM for regression
(SVR), Law and Kwok (2001b) applied MacKay’s Bayesian framework to SVR in the weight
space. Gao et al. (2002) derived the evidence and error bar approximation for SVR along
the way proposed by Sollich (2002). In these two approaches, the lack of smoothness of the
ε-insensitive loss function (ε-ILF) in SVR may cause inaccuracy in evidence evaluation and
inference. To improve the performance of Bayesian inference, we use a unified non-quadratic
loss function for SVR, called the soft insensitive loss function (SILF). The SILF is C1 smooth
and possesses the main advantages of ε-ILF, such as insensitivity to outliers and sparseness
in solution representation. We follow standard GPR to set up Bayesian framework, and then
employ SILF in likelihood evaluation. Maximum a posteriori (MAP) estimate of the function
values results in an extended SVR problem, so that quadratic programming can be employed to
find the solution. Optimal hyperparameters can then be inferred by Bayesian techniques with
the benefit of sparseness, and error bars of its predictions.

The important advantages of our Bayesian treatment on SVR using the SILF (BSVR) over
classical SVR are: (1) the capability to systematically and efficiently infer optimal hyperpa-
rameters together with feature selection; and (2) the ability to compute predictive distribution
using the probabilistic framework. Moreover, Bayesian model selection achieves quite better
generalization performance on sparse training data sets than cross validation does. Compared
with GPR, BSVR possesses: (1) the sparseness property that greatly reduces the computational
cost in Bayesian inference and thus helps us to tackle large data sets, and (2) the insensitivity
property to outliers that helps us to achieve robust performance on some real data sets.

The paper is organized as follows: in section 2 we review the standard framework of regression
with Gaussian processes; in section 3 we propose SILF as a unified non-quadratic loss function,
and describe some of its useful properties; in section 4 we employ SILF as the loss function in
the MAP estimation of function values, and show that the associated optimization problem is a
constrained convex quadratic programming problem; in section 5 we carry out hyperparameter
inference by evidence maximization, and then intrinsically incorporate feature selection in the
model adaptation; in section 6 we discuss the predictive distribution for test cases; in section 7
we carefully study our algorithm on simulated and real data sets, and also consistently compare
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our method with GPR and SVR for generalization performance and computational cost on
benchmark data; we conclude the paper in section 8.

2 Bayesian Framework in Gaussian Processes

In regression problems, we are given a set of training data D = {(xi, yi)|i = 1, . . . , n, xi ∈ R
d, yi ∈

R} which is collected by randomly sampling a function f , defined on R
d. As the measurements

are usually corrupted by additive noise, training samples can be represented as

yi = f(xi) + δi i = 1, 2, . . . , n (1)

where the δi are independent, identically distributed (i.i.d.) random variables, whose distribu-
tions are usually unknown. Regression aims to infer the function f , or an estimate of it, from
the finite data set D. In the Bayesian approach, we regard the function f as the realization of a
random field with a known prior probability. Let f = [f(x1), f(x2), . . . , f(xn)]

T . The posterior
probability of f given the training data D can then be derived by Bayes’ theorem:

P(f |D) = P(D|f)P(f)
P(D) (2)

where P(f) is the prior probability of the random field and P(D|f) is the conditional probability
of the data D given the function values f which is exactly

∏n
i=1 P(yi|f(xi)). Now we follow

the standard Gaussian processes (Williams and Rasmussen, 1996; Williams, 1998) to describe a
Bayesian framework.

2.1 Prior Probability

We assume that the collection of training data is the realization of random variables f(xi) in
a zero mean stationary Gaussian process indexed by xi. The Gaussian process is specified by
the covariance matrix for the set of variables {f(xi)}. The covariance between the outputs
corresponding to inputs xi and xj can be defined as

Cov[f(xi), f(xj)] = Cov(xi, xj) = κ0 exp

(

−κ
2

d
∑

l=1

(xli − xlj)
2

)

+ κb (3)

where κ > 0, κb > 0 denotes the variance of the offset to the function f(x), κ0 > 0 denotes the
average power of f(x), and xl denotes the l-th element of the input vector x. Such a covariance
function expresses the idea that cases with nearby inputs have highly correlated outputs. Note
that the first term in (3) is the Gaussian kernel in SVM, while the second term corresponds to
the variance of the bias in classical SVR (Vapnik, 1995). Other kernel functions in SVM, such as
polynomial kernel, spline kernel (Wahba, 1990), ANOVA decomposition kernel (Saunders et al.,
1998) etc., or their combinations can also be used in covariance function, but we only focus on
Gaussian kernel in the present work.

Thus, the prior probability of the functions is a multivariate Gaussian with zero mean and
covariance matrix as follows

P(f) = 1

Zf

exp

(

−1

2
fTΣ−1f

)

(4)
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where f = [f(x1), f(x2), . . . , f(xn)]
T , Zf = (2π)n/2

√

|Σ| and Σ is the n × n covariance matrix
whose ij-th element is Cov[f(xi), f(xj)].

1

2.2 Likelihood Function

The probability P(D|f), known as likelihood, is essentially a model of the noise. If the additive
noise δi in (1) is i.i.d. with probability distribution P(δi), P(D|f) can be evaluated by:

P(D|f) =
n
∏

i=1

P(yi − f(xi)) =
n
∏

i=1

P(δi) (5)

Furthermore, P(δi) is often assumed to be of the exponential form such that

P(δi) ∝ exp(−C · `(δi))

where `(·) is called the loss function and C is a parameter greater than zero. Thus, the likelihood
function can also be expressed as

P(D|f) ∝ exp

(

−C ·
n
∑

i=1

`(yi − f(xi))

)

(6)

Hence, the loss function characterizes the noise distribution which, together with the prior
probability P(f), determines the posterior probability P(f |D).

2.3 Posterior Probability

Based on Bayes’ theorem (2), prior probability (4) and the likelihood (5), posterior probability
of f can be written as

P(f |D) = 1

Z exp (−S(f)) (7)

where S(f) = C
∑n

i=1 ` (yi − f(xi)) +
1
2
fTΣ−1f and Z =

∫

exp(−S(f))df . The maximum a
posteriori (MAP) estimate of the function values is therefore the minimizer of the following
optimization problem:2

min
f
S(f) = C

n
∑

i=1

` (yi − f(xi)) +
1

2
fTΣ−1f (8)

Let fMP be the optimal solution of (8). If the loss function in (8) is differentiable, the derivative
of S(f) with respect to f should be zero at fMP, i.e.

∂S(f)

∂f

∣

∣

∣

∣

f
MP

= C
n
∑

i=1

∂` (yi − f(xi))

∂f

∣

∣

∣

∣

∣

f
MP

+ Σ−1f = 0

1If the covariance is defined using (3), Σ is symmetric and positive definite if {xi} is a set of distinct points
in R

d (Micchelli, 1986).
2S(f) is a regularized functional. As for the connection to regularization theory, Evgeniou et al. (1999) have

given a comprehensive discussion.
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Let us define the following set of unknowns wi = − C ∂`(yi−f(xi))
∂f(xi)

∣

∣

∣

f(xi)=fMP(xi)
∀i, and w as the

column vector containing {wi}. Then fMP can be written as:

fMP = Σ ·w (9)

The elegant form of a minimizer of (8) is also known as the representer theorem (Kimeldorf and
Wahba, 1971). A generalized representer theorem can be found in Schölkopf et al. (2001), in
which the loss function is merely required to be any strictly monotonically increasing function
` : R → [0,+∞).

2.4 Hyperparameter Evidence

The Bayesian framework we described above is conditional on the parameters in the prior dis-
tribution and the parameters in likelihood function, which can be collected as θ, the hyperpa-
rameter vector. The normalizing constant P(D) in (2), more exactly P(D|θ), is irrelevant to
the inference of the functions f , but it becomes important in hyperparameter inference, and it
is known as the evidence of the hyperparameters θ (MacKay, 1992).

3 A Unified Non-quadratic Loss Function

There are several choices for the form of the loss function. In standard Gaussian processes for
regression (GPR), Gaussian noise model is used in likelihood function (Williams and Rasmussen,
1996; Williams, 1998), which is of the form

PG(δ) =
1√
2πσ

exp

(

− δ2

2σ2

)

. (10)

where the parameter σ2 is the noise variance and the corresponding loss function is the quadratic
function `(δ) = 1

2
δ2. This choice of the Gaussian likelihood, together with the Gaussian process

prior for the functions f , yields a posterior distribution of f that can be computed exactly using
matrix operations in the GPR formulation. This is one reason why the Gaussian noise model is
popularly used.

However, one of the potential difficulties of the quadratic loss function is that it receives
large contributions from outliers. If there are long tails on the noise distributions then the
solution can be dominated by a very small number of outliers, which is an undesirable result.
Techniques that attempt to solve this problem are referred to as robust statistics (Huber, 1981).
Non-quadratic loss functions have been introduced to reduce the sensitivity to the outliers. The
three non-quadratic loss functions commonly used in regression problems are:

1. the Laplacian loss function defined as `(δ) = |δ|;
2. the Huber’s loss function (Huber, 1981) defined as

`(δ) =







δ2

4ε
if |δ| ≤ 2ε

|δ| − ε otherwise.
(11)

where ε > 0;
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3. the ε-insensitive loss function (ε-ILF) (Vapnik, 1995),

`(δ) =

{

0 if |δ| ≤ ε
|δ| − ε otherwise.

where ε > 0.

From their definitions and Figure 1, the Huber’s loss function and ε-ILF approach the Lapla-
cian loss function as ε→ 0. In addition, Laplacian loss function and ε-ILF are non-smooth, while
Huber’s loss function is a C1 smooth function which can be thought of as a mixture between
Gaussian and Laplacian loss function.

ε-ILF, used in SVR, is special in that it gives identical zero penalty to small noise values.
Because of this, training samples with small noise that fall in this flat zero region are not involved
in the representation of regression functions. This simplification of computational burden is
usually referred to as the sparseness property. All the other loss functions mentioned above do
not enjoy this property since they contribute a positive penalty to all noise values other than
zero. On the other hand, quadratic and Huber’s loss function are attractive because they are
differentiable, a property that allows appropriate approximations to be used in the Bayesian
approach. Based on these observations, we combine their desirable features and introduce a
novel unified loss function called the soft insensitive loss function.

The soft insensitive loss function (SILF) is defined as:

`ε,β(δ) =







































−δ − ε if δ ∈ ∆C∗ :=
(

−∞,−(1 + β)ε
)

(δ + (1− β)ε)2

4βε
if δ ∈ ∆M∗ := [−(1 + β)ε,−(1− β)ε]

0 if δ ∈ ∆0 := (−(1− β)ε, (1− β)ε)
(δ − (1− β)ε)2

4βε
if δ ∈ ∆M := [(1− β)ε, (1 + β)ε]

δ − ε if δ ∈ ∆C :=
(

(1 + β)ε,+∞
)

(12)

where 0 < β ≤ 1 and ε > 0. There is a profile of SILF as shown in Figure 2. The properties of
SILF are entirely controlled by two parameters, β and ε. For a fixed ε, SILF approaches ε-ILF
as β → 0; on the other hand, it approaches the Huber’s loss function as β → 1. In addition,
SILF becomes the Laplacian loss function as ε→ 0. If ε is held at some large value and β → 1,
SILF approaches the quadratic loss function for all practical purposes.

The derivatives of the loss function are needed in Bayesian methods. The first order derivative
of SILF can be written as

d`ε,β(δ)

dδ
=







































−1 if δ ∈ ∆C∗

δ + (1− β)ε

2βε
if δ ∈ ∆M∗

0 if δ ∈ ∆0
δ − (1− β)ε

2βε
if δ ∈ ∆M

1 if δ ∈ ∆C

where 0 < β ≤ 1 and ε > 0. The loss function is not twice continuously differentiable, but the
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second order derivative exists almost everywhere:

d2`ε,β(δ)

dδ2
=







1

2βε
if δ ∈ ∆M∗ ∪∆M

0 otherwise
(13)

where 0 < β ≤ 1 and ε > 0.

We now derive some of the properties of the noise model corresponding to SILF, as they are
useful in the subsequent development. The density function of the additive noise in measurement
corresponding to the choice of SILF is

PS(δ) =
1

ZS

exp
(

− C · `ε,β(δ)
)

(14)

where
1

ZS

=

∫

exp
(

− C · `ε,β(δ)
)

dδ. It is possible to evaluate the integral and write ZS as:

ZS = 2(1− β)ε+ 2

√

πβε

C
· erf

(

√

Cβε
)

+
2

C
exp

(

− Cβε
)

(15)

where erf(z) =
2√
π

∫ z

0

exp(−t2) dt. The mean of the noise is zero, and the variance of the noise

σ2n can be written as:

σ2n =
2

ZS

{

(1− β)3ε3

3
+

√

πβε

C

(

2βε

C
+ (1− β)2ε2

)

erf
(

√

Cβε
)

+
4(1− β)βε2

C
+

(

ε2(1− β)2

C
+

2ε(1 + β)

C2
+

2

C3

)

exp(−Cβε)
} (16)

Remark 1 We now give an interpretation for SILF, which is an extension of that given by
Pontil et al. (1998) for ε-ILF. If we discard the popular assumption that the distribution of
the noise variables δi is a zero-mean Gaussian, but assume that the noise variables δi have a
Gaussian distribution P(δi|σi, ti) having its own standard deviation σi and its mean ti that are
i.i.d. random variables with density functions µ(σi) and λ(ti) respectively. Then we can compute
the marginal of the noise probability by integrating over σi and ti as follows:

P(δi) =
∫

dσi

∫

dtiP(δi|σi, ti)λ(ti)µ(σi) (17)

The probability (17) can also be evaluated in the form of loss function as (14). Under such
settings, it is possible (Chu et al., 2001) to find a Rayleigh distribution on σi and a specific
distribution on ti, such that the evaluations of expression (14) and (17) are equivalent. There-
fore, the use of SILF can also be explained as a general Gaussian noise model with the specific
distribution on the mean and the standard deviation.

4 Support Vector Regression

We now describe the optimization problem (8) arising from the introduction of SILF (14) as
the loss function. In this case, the MAP estimate of the function values is the minimizer of the
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following problem

min
f
S(f) = C

n
∑

i=1

`ε,β(yi − f(xi)) +
1

2
fTΣ−1f (18)

As usual, by introducing two slack variables ξi and ξ∗i , (18) can be restated as the following
equivalent optimization problem, which we refer to as the primal problem:

min
f ,ξ,ξ∗

S(f , ξ, ξ∗) = C

n
∑

i=1

(ψ(ξi) + ψ(ξ∗i )) +
1

2
fTΣ−1f (19)

subject to






yi − f(xi) ≤ (1− β)ε+ ξi
f(xi)− yi ≤ (1− β)ε+ ξ∗i
ξi ≥ 0, ξ∗i ≥ 0 ∀i

(20)

where

ψ(π) =

{

π2

4βε
if π ∈ [0, 2βε)

π − βε if π ∈ [2βε,+∞)
(21)

Standard Lagrangian techniques (Fletcher, 1987) are used to derive the dual problem. Let
αi ≥ 0, α∗

i ≥ 0, γi ≥ 0 and γi ≥ 0 ∀i be the corresponding Lagrange multipliers for the
inequality in (20). The Lagrangian for the primal problem is:

L(f , ξ, ξ∗;α,α∗,γ,γ∗) = C
n
∑

i=1

(ψ(ξi) + ψ(ξ∗i )) +
1

2
fTΣ−1f −

n
∑

i=1

γiξi −
n
∑

i=1

γ∗i ξ
∗
i

−
n
∑

i=1

αi(ξi + (1− β)ε− yi + f(xi))−
n
∑

i=1

α∗
i (ξ

∗
i + (1− β)ε+ yi − f(xi))

(22)

The KKT conditions for the primal problem require

f(xi) =
n
∑

j=1

(αj − α∗
j )Cov(xi, xj) ∀i (23)

C
∂ψ(ξi)

∂ξi
= αi + γi ∀i (24)

C
∂ψ(ξ∗i )

∂ξ∗i
= α∗

i + γ∗i ∀i (25)

Based on the definition of ψ(·) given by (21) and the constraint conditions (24) and (25), the
equality constraint on Lagrange multipliers can be explicitly written as

αi + γi = C
ξi
2βε

for 0 ≤ ξi < 2βε and αi + γi = C for ξi ≥ 2βε ∀i (26)

α∗
i + γ∗i = C

ξ∗i
2βε

for 0 ≤ ξ∗i < 2βε and α∗
i + γ∗i = C for ξ∗i ≥ 2βε ∀i (27)

If we collect all terms involving ξi in the Lagrangian (22), we get Ti = Cψ(ξi)− (αi+γi)ξ. Using
(21) and (26) we can rewrite Ti as

Ti =







−(αi + γi)
2βε

C
if 0 ≤ αi + γi < C

−Cβε if αi + γi = C
(28)
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Thus ξi can be eliminated if we set Ti = − (αi+γi)
2βε

C
and introduce the additional constraints,

0 ≤ αi + γi ≤ C. The same arguments can be repeated for ξ∗i . Then the dual problem becomes
a maximization problem involving only the dual variables α, α∗, γ and γ∗:

max
α,α∗,γ,γ∗

S(α,α∗,γ,γ∗) = −1

2

n
∑

i=1

n
∑

j=1

(αi − α∗
i )(αj − α∗

j )Cov(xi, xj) +
n
∑

i=1

(αi − α∗
i )yi

−
n
∑

i=1

(αi + α∗
i )(1− β)ε− βε

C

n
∑

i=1

(

(αi + γi)
2 + (α∗

i + γ∗i )
2
)

(29)

subject to αi ≥ 0, γi ≥ 0, α∗
i ≥ 0, γ∗i ≥ 0, 0 ≤ αi + γi ≤ C and 0 ≤ α∗

i + γ∗i ≤ C, ∀i. As the last
term in (29) is the only one where γi and γ

∗
i appear, (29) is maximal when γi = 0 and γ∗i = 0

∀i. Therefore, the dual problem can be finally simplified as

min
α,α∗

S(α,α∗) =
1

2

n
∑

i=1

n
∑

j=1

(αi − α∗
i )(αj − α∗

j )Cov(xi, xj)−
n
∑

i=1

(αi − α∗
i )yi

+
n
∑

i=1

(αi + α∗
i )(1− β)ε+

βε

C

n
∑

i=1

(

α2i + α∗
i
2
)

(30)

subject to 0 ≤ αi ≤ C and 0 ≤ α∗
i ≤ C.

Obviously, the dual problem (30) is a convex quadratic programming problem. Matrix-based
quadratic programming techniques that use the “chunking” idea can be used for its solutions
(Vanderbei, 2001). Popular SMO algorithms for classical SVR (Smola and Schölkopf, 1998;
Shevade et al., 2000) can also be adapted for its solution. For more details about the adaptation,
refer to Chu (2003).

The optimal value of the primal variables f can be obtained from the solution of (30) as

fMP = Σ · (α−α∗) (31)

where α = [α1, α2, . . . , αn]
T and α∗ = [α∗

1, α
∗
2, . . . , α

∗
n]
T . This expression, which is consistent

with (9), is the solution to MAP estimate of the function values fMP in the Gaussian processes.3

At the optimal solution, the training samples (xi, yi) with associated αi − α∗
i satisfying 0 <

|αi−α∗
i | < C are usually called off-bound support vectors (SVs); the samples with |αi−α∗

i | = C
are on-bound SVs, and the samples with |αi−α∗

i | = 0 are non-SVs. From the definition of SILF
(12) and the equality constraints (26) and (27), we notice that the noise δi in (1) associated
with on-bound SVs should belong to ∆C∗ ∪∆C , while δi associated with off-bound SVs should
belong to the region ∆M∗ ∪∆M .4

Remark 2 From (13), the second derivative of `ε,β(δi) is not continuous at the boundary of
∆M∗ ∪ ∆M . The lack of C2 continuity may have impact on the evaluation of the evidence
P(D|θ) (to be discussed later in Section 5). However, it should be pointed out that the noise δi
seldom falls on the boundary of ∆M∗ ∪∆M exactly, since it is of low probability for a continuous
random variable to be realized on some particular values.

3In Gaussian processes, the most probable estimate and the MAP estimate are identical.
4Note that the region ∆M∗ ∪∆M is crucially determined by the parameter β in the SILF (12).
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4.1 General Formulation

Like SILF, the dual problem in (30) is a generalization of several SVR formulations. More
exactly, when β = 0 (30) becomes the SVR formulation using ε-ILF; when β = 1, (30) becomes
that when the Huber’s loss function is used; and when β = 0 and ε = 0, (30) becomes that for
the case of the Laplacian loss function. Moreover, for the case of Gaussian noise model (10),
the dual problem becomes

min
α,α∗

1

2

n
∑

i=1

n
∑

j=1

(αi − α∗
i )(αj − α∗

j )Cov(xi, xj)−
n
∑

i=1

(αi − α∗
i )yi +

σ2

2

n
∑

i=1

(

α2i + α∗
i
2
)

(32)

subject to αi ≥ 0 and α∗
i ≥ 0 ∀i, where σ2 is the variance of the additive Gaussian noise. The

optimization problem (30) is equivalent to the general SVR (30) with β = 1 and 2ε/C = σ2

provided that we keep upper bound C large enough to prevent any αi and α∗
i from reaching

the upper bound at the optimal solution. If we take the implicit constraint αi · α∗
i = 0 into

account and then denote αi − α∗
i as νi, it is found that the formulation (32) corresponds to a

much simpler case of

min
ν

1

2

n
∑

i=1

n
∑

j=1

νiνjCov(xi, xj)−
n
∑

i=1

νiyi +
σ2

2

n
∑

i=1

ν2i (33)

without any constraint. This is an unconstrained quadratic programming problem. The solution
on small data sets can be found simply from a matrix inverse operation. For large data sets,
conjugate gradient algorithm could be used (Luenberger, 1984). As for SMO algorithm design,
see the ideas on LS-SVMs discussed by Keerthi and Shevade (2003).

5 Model Adaptation

The hyperparameter vector θ contains the parameters in the prior distribution and the param-
eters in the likelihood function, i.e., θ = {C, ε, κ, κb}.5 For a given set of θ, the MAP estimate
of the functions can be found from the solution of the optimization problem (18) in Section 4.
Based on the MAP estimate fMP, we show below how the optimal values of the hyperparameters
are inferred.

5.1 Evidence Approximation

The optimal values of hyperparameters θ can be inferred by maximizing the posterior probability
P(θ|D):

P(θ|D) = P(D|θ)P(θ)
P(D)

A prior distribution on the hyperparameters P(θ) is required here. As we typically have little
idea about the suitable values of θ before training data are available, we assume a flat distribution

5Due to the redundancy with C and the correlation with κ, κ0 is fixed at the variance of the targets {yi}
instead of automatical tuning in the present work.
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for P(θ), i.e., P(θ) is greatly insensitive to the values of θ. Therefore, the evidence P(D|θ) can
be used to assign a preference to alternative values of the hyperparameters θ (MacKay, 1992).
An explicit expression of the evidence P(D|θ) can be obtained as an integral over the f -space
with a Taylor expansion at fMP. Gradient-based optimization methods can then be used to
infer the optimal hyperparameters that maximize this evidence function, given by

P(D|θ) =
∫

P(D|f , θ)P(f |θ) df . (34)

Using the definitions of the prior probability (4) and the likelihood (5) with SILF (14), the
evidence (34) can be written as

P(D|θ) = Z−1
f Z−n

S

∫

exp (−S(f)) df . (35)

The marginalization can be done analytically by considering the Taylor expansion of S(f) around
its minimum S(fMP), and retaining terms up to the second order. The first order derivative
with respect to f at the most probable point f is zero. The second order derivative exists
everywhere except the boundary of the region ∆M ∪ ∆∗

M . As pointed out in Remark 2, the
probability that a sample exactly falls on the boundary is little. Thus it is quite alright to use
the second order approximation

S(f) ≈ S(fMP) +
1

2
(f − fMP)

T · ∂
2S(f)

∂f∂fT

∣

∣

∣

∣

f=f
MP

· (f − fMP) (36)

where ∂2S(f)

∂f∂fT

∣

∣

∣

f=f
MP

= Σ−1 + C · Λ and Λ is a diagonal matrix with ii-th entry being 1
2βε

if the

corresponding training sample (xi, yi) is an off-bound SV, otherwise the entry is zero. Introducing
(36) and Zf into (35), we get

P(D|θ) = exp (−S(fMP)) · |I + C · Σ · Λ|− 1

2 · Z−n
S (37)

where I is a n× n identity matrix.

Notice that only a sub-matrix of Σ plays a role in the determinant |I+C ·Σ · Λ| due to the
sparseness of Λ. Let ΣM be the m ×m sub-matrix of Σ obtained by deleting all the rows and
columns associated with the on-bound SVs and non-SVs, i.e., keeping the m off-bound SVs only.
This fact, together with fMP = Σ · (α− α∗) from (31), can be used to show that the negative
log probability of data given hyperparameters is

− lnP(D|θ) = 1

2
(α−α∗)T ·Σ·(α−α∗)+C

n
∑

i=1

`β,ε(yi−fMP(xi))+
1

2
ln

∣

∣

∣

∣

I +
C

2βε
ΣM

∣

∣

∣

∣

+n lnZS (38)

where ZS is defined by (15), I is a m ×m identity matrix. The evidence evaluation (38) is a
convenient yardstick for model selection.

The expression of (38) is then used for the determination of the best hyperparameter θ by
finding the minimizer for − lnP(D|θ). Note that the evidence depends on the set of off-bound
SVs. This set will vary when the hyperparameters are changed. We assume that the set of
off-bound SVs remains unchanged near the minimum of (38). In this region, the evidence is
a smooth function of these hyperparameters. Gradient-based optimization methods could be
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used for the minimizer of (38). We usually collect {lnC, ln ε, lnκb, lnκ} as the set of variables
to tune,6 and the derivatives of − lnP(D|θ) with respect to these variables are

∂ − lnP(D|θ)
∂ lnC

= C

n
∑

i=1

`ε,β(yi − fMP(xi)) +
1

2
trace

[

(

2βε

C
I + ΣM

)−1

ΣM

]

− n

ZS

(
√

βεπ

C
· erf(

√

Cβε) +
2

C
exp(−Cβε)

) (39)

∂ − lnP(D|θ)
∂ ln ε

= −C





∑

δi∈∆M∗∪∆M

δ2i − (1− β)2ε2

4βε
+

∑

δi∈∆C∗∪∆C

ε





−1

2
trace

[

(

2βε

C
I + ΣM

)−1

ΣM

]

+
n

ZS

(
√

βεπ

C
· erf(

√

Cβε) + 2(1− β)ε

)
(40)

∂ − lnP(D|θ)
∂ lnκ′

=
κ′

2
trace

[

(

2βε

C
I + ΣM

)−1
∂ΣM
∂κ′

]

− κ′

2
(α−α∗)T

∂Σ

∂κ′
(α−α∗) (41)

where κ′ ∈ {κb, κ}, δi = yi − fMP(xi), and α and α∗ is the optimal solution of (30). Note that
the non-SVs are not involved in these evaluations.7

5.2 Feature Selection

Feature selection is an essential part in regression modelling. Recently, Jebara and Jaakkola
(2000) formalized a kind of feature weighting in maximum entropy discrimination framework,
and Weston et al. (2001) introduced a method of feature selection for support vector machines
by minimizing the bounds on the leave-one-out error.

MacKay (1994) and Neal (1996) proposed automatic relevance determination (ARD) as a
hierarchical prior over the weights in neural networks. The weights connected to an irrelevant
input can be automatically punished with a tighter prior in model adaptation, which reduces
the influence of such a weight towards zero effectively. ARD can be directly embedded into the
covariance function (3) as follows (Williams, 1998):

Cov[f(xi), f(xj)] = Cov(xi, xj) = κ0 exp

(

−1

2

d
∑

l=1

κl(x
l
i − xlj)

2

)

+ κb (42)

where κl > 0 is the ARD parameter that determines the relevance of the l-th input dimension
to the prediction of the output variables. The derivatives of − lnP(D|θ) with respect to the
variables {lnκl}dl=1 can be evaluated as in (41). The form of feature selection we use here results
in a type of feature weighting.

It is possible that the optimization problem is stuck at local minima in the determination
of θ. We minimize the impact of this problem by minimizing (38) several times starting from
several different initial states, and choosing the one with the highest evidence as our preferred
choice for θ. It is also possible to organize these candidates together as an expert committee
to represent the predictive distribution that can reduce the uncertainty with respect to the
hyperparameters.

6The definition of variables causes the optimization problem to be unconstrained.
7Refer to Chu (2003) for full details of the derivation.
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5.3 Discussions

In classical GPR, the inversion of the full n × n matrix Σ has to be done for hyperparameter
inference. In our approach, only the inversion of the m ×m matrix ΣM, corresponding to off-
bound SVs, is required instead of the full matrix inverse. The non-SVs are not even involved in
matrix multiplication and the future prediction. Usually, the off-bound SVs are small fraction
of the whole training samples. As a result, it is possible to tackle reasonably large data sets
with thousands of samples using our approach. For very large data sets, the size of the matrix
ΣM can still be large and the computation of its inverse can become the most time-consuming
step. The parameter β can control the number of off-bound SVs. In the numerical experiments,
we find that the choice of β has little influence on the training accuracy and the generalization
capacity, but has a significant effect on the number of off-bound SVs and hence, the training
time. As a practical strategy for tuning β, we can choose a suitable β to keep the number of off-
bound SVs small for large data sets.8 This can shorten training time greatly with no appreciable
degradation in the generalization performance. Heuristically, we fix β at: 0.3 when the size of
training data sets is less than 2000; 0.1 for 2000 ∼ 4000 samples; and, 0.05 for 4000 ∼ 6000
samples.9

Clearly, Our discussion above is not suitable to the case of classical SVR (β = 0), since in
this case SILF becomes ε-ILF, which is not smooth. An approximate evaluation for the evidence
in the case has been discussed by Gao et al. (2002), in which the (left/right) first order derivative
at the insensitive tube is used in the evidence approximation.

Schölkopf and Smola (1998) proposed an interesting variant of SVR, known as ν−SVR,
in which the hyperparameter ε is optimized in the MAP estimate. Law and Kwok (2001a)
applied the evidence framework (MacKay, 1992) to ν−SVR with a particular prior for ε, but
the dependency on ε makes the consequent evidence approximation intractable. Variational
methods (Opper and Saad, 2001) might be used here to tackle the integral.

6 Error Bar in Prediction

In this section, we present error bars for predictions on new data points (MacKay, 1992; Bishop,
1995). This ability to provide error bars is one of the important advantages of the probabilistic
approach over the usual deterministic approach to SVR.

Suppose a test case x is given for which the target tx is unknown. The random variable
f(x) indexed by x along with the n random variables {f(xi)} in (4) have the joint multivariate
Gaussian distribution,

[

f

f(x)

]

∼ N
([

0
0

]

,

[

Σ k

kT Cov(x, x)

])

(43)

where f and Σ are defined as in (4), kT = [Cov(x1, x), Cov(x2, x), . . . , Cov(xn, x)]. The condi-

8Clearly, the number of off-bound SVs reduces, as β → 0, to the number of off-bound SVs in the standard
SVR (β = 0), but never below this number. The set of off-bound SVs in standard SVR is usually a small part
of the training set.

9As for small size data sets, such as less than 100, we may set β at some large value, say 0.8 ∼ 1.0, to avoid
the matrix ΣM from shrinking.
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tional distribution of f(x) given f is a Gaussian,

P(f(x)|f) ∝ exp

(

−1

2

(f(x)− fT · Σ−1 · k)2
Cov(x, x)− kT · Σ−1 · k

)

(44)

where the mean is Ef(x)|f [f(x)] = fT ·Σ−1 · k and the variance is V arf(x)|f [f(x)] = Cov(x, x)−
kT · Σ−1 · k. At fMP, the mean of the predictive distribution for f(x) is f T

MP · Σ−1 · k, where
fT
MP · Σ−1 is just the Lagrange multipliers (α−α∗)T in the solution of (30).10

To make predictions with the optimal hyperparameters we have inferred, we need to compute
the distribution P(f(x)|D) in order to erase the influence of the uncertainty in f .11 Formally,
P(f(x)|D) can be found from

P(f(x)|D) =
∫

P(f(x)|f ,D)P(f |D) df =

∫

P(f(x)|f)P(f |D) df

where P(f(x)|f) is given by (44) and P(f |D) is given by (7). We replace f · Σ−1 by its linear
expansion around fMP and use the approximation (36) for S(f), the distribution P(f(x)|D)
can be written as:

P(f(x)|D) ∝
∫

exp

(

−1

2

(f(x)− fT
MP · Σ−1 · k − (f − fMP)

T · Σ−1 · k)2
Cov(x, x)− kT · Σ−1 · k

)

·

exp

(

−1

2
(f − fMP)

T (Σ−1 + C · Λ)(f − fMP)

)

df

This expression can be simplified to a Gaussian distribution of the form:

P(f(x)|D) = 1√
2πσt

exp

(

−(f(x)− (α−α∗)T · k)2
2σ2t

)

(45)

where σ2t = Cov(x, x)−kTM · (2βεC I+ΣM)
−1 ·kM and kM is a sub-vector of k obtained by keeping

the entries associated with the off-bound SVs.

The target tx is a function of f(x) and the noise δ as in (1), i.e. tx = f(x) + δ. As the noise
is of zero mean, with variance σ2n as given in (16), the variance of tx is therefore σ2t + σ2n.

7 Numerical Experiments

In the implementation of our Bayesian approach to support vector regression (BSVR), we used
the routine L-BFGS-B (Byrd et al., 1995) as the gradient-based optimization package, and
started from the initial values of the hyperparameters to infer the optimal ones.12 We also

10The zero Lagrange multipliers in the solution of (30) associated with non-SVs are not at all involved in the
prediction process.

11In a full Bayesian treatment, these hyperparameters θ must be integrated over θ-space. Hybrid Monte Carlo
methods (Duane et al., 1987; Neal, 1992) can be adopted here to approximate the integral efficiently by using
the gradients of P(D|θ) to choose search directions which favor regions of high posterior probability of θ.

12In numerical experiments, the initial values of the hyperparameters were usually chosen as C = 1.0, ε = 0.05,
κb = 100.0 and κ = 0.5. We suggest to try more starting points in practice, such as C = 10.0 or κ = 1/d where
d is the input dimension, and then choose the best model by the evidence.
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implemented standard GPR (Williams, 1998) and classical SVR (Vapnik, 1995) for comparison
purpose. For GPR, evidence maximization was implemented to choose the optimal hyperpa-
rameters using the routine L-BFGS-B. In the classical SVR, there are three tunable hyperpa-
rameters {C, ε, κ} in the case that the Gaussian covariance function (3) is used as the kernel
function.13 Due to the prohibitive computational cost for cross validation in three-dimensional
hyperparameter space, we simply fix ε at a reasonable value and then search the corresponding
optimal values for C and κ only. Five-fold cross validation was employed to determine their
optimal values. The initial search was done on a 7× 7 coarse grid linearly spaced in the region
{(log10 C, log10 κ)| − 0.5 ≤ log10 C ≤ 2.5,−2.5 ≤ log10 κ ≤ 0.5}, followed by a fine search on a
9 × 9 uniform grid linearly spaced by 0.1 in the (log10 C, log10 κ) space. This scheme requires
650 evaluations. In order to accelerate these experiments, we also cached the full covariance
matrix in the implementation of GPR and SVR that requires O(n2) memory, but we did not
do that for BSVR. Average squared error (ASE) and average absolute error (AAE) are used as
measures in prediction. Their definitions are

ASE =
1

m

m
∑

j=1

(yj − f(xj))
2 and AAE =

1

m

m
∑

j=1

|yj − f(xj)|

where m is the number of test cases, yj is the target value for xj and f(xj) is the prediction at
xj. The computer used for these numerical experiments was PIII 866 PC with 384MB RAM and
Windows 2000 as the operating system.14 We start with the simulated sinc data to study the
role of β in our approach which is the main factor of advantage over the Huber’s loss function
and the quadratic loss function, and carry out the scaling results for SVR, BSVR and GPR; and
then we employ the ARD Gaussian covariance function to carry out feature selection on robot
arm data, and illustrate the predictive distribution on laser generated data; we also compare
our method with GPR and SVR for generalization capability and computational cost on some
benchmark data.

7.1 Sinc Data

The function sinc(x) = |x|−1 sin |x| is commonly used to illustrate SVR (Vapnik, 1995). Train-
ing and testing data sets were obtained by uniformly sampling data points from the interval
[−10, 10]. Eight training data sets with sizes ranging from 50 to 4000 and a single common test-
ing data set of 3000 cases were generated. The targets were corrupted by the noise generated
by the noise model (14), using C = 10, ε = 0.1 and β = 0.3.15 From (16), the noise variance
σ2n is 0.026785 theoretically. The true noise variances σ2T in each of the training data sets were
computed and recorded in the second column of Table 1 as reference. The average squared
noise in the testing data set is actually 0.026612, and the true value of average absolute noise is
0.12492.

We normalized the inputs of training data sets and keep the targets unchanged. We started
from the default settings with a fixed value of β = 0.3. The training results were recorded in the

13κ0 and κb are trivial for classical SVR in this case.
14The program bisvm.exe (version 4.2) and its source code we used for these numerical experiments can be

accessed from http://guppy.mpe.nus.edu.sg/∼mpessk/papers/bisvm.zip.
15The simulated sinc data we generated can be accessed from http://guppy.mpe.nus.edu.sg/∼chuwei/data/sinc.zip.

As for how to generate the noise distributed as the model (14), refer to Chu (2003).
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upper part of Table 1. We find that the parameters C and ε approach the true value 10 and 0.1
respectively as the training sample size increases; σ2n, the variance of the additive noise that is
estimated by (14) approaches σ2T too; and the ASE on testing data set also approaches the true
value of average squared noise. About 60% of training samples are selected as SVs. However,
the training time increases heavily as the size of training data set becomes larger. The main
reason is that the number of off-bound SVs that are involved in matrix inverse becomes larger.
In the next experiment, we fixed β at a small value 0.1 and then carried out the training results,
which were recorded in the lower part of Table 1. Comparing with the case of β = 0.3, we notice
that the number of off-bound SVs decreases significantly for the case β = 0.1. That reduces
the computational cost for the matrix inverse in the gradient evaluation for the evidence, and
hence shortens the training time greatly. Moreover, the performance in testing does not worsen.
Although β is not fixed at its true value, as the the size of training data increases, the estimated
variance of the additive noise σ2n still approaches σ2T and the test ASE approaches to its true
value too.

We also trained on the data set having 4000 examples, starting from the default settings
with different β ranging from 0.001 to 1.0, and plotted the training results in Figure 3. Note
that it is the Huber’s loss function (11) when β = 1.0. We find that the number of off-bound
SVs increases as β increases. The CPU time used to evaluate the evidence and its gradients
increases significantly for β larger than 0.2, i.e., when the number of off-bound SVs greater than
1000. This makes the training on large-scale data sets very slow. The introduction of β makes it
possible to reduce the number of off-bound SVs that involves in matrix inverse, and then saves
lots of CPU time and memory. We also find that the evidence and test ASE is slightly unstable
in the region of very small β, meanwhile the number of off-bound SVs becomes small. One
reason might be that the change on the off-bound SVs set may cause fluctuation in evidence
evaluation when the number of off-bound SVs is very few. Thus setting β at a very small value is
not desirable. There exists a large range for the value of β (from 0.01 to 0.1) where the training
speed is fast and the performance is good. The introduction of β makes it possible to reduce
the number of off-bound SVs that involves in matrix inverse. This is one important advantage
of our approach over the classical GPR in which the inverse of the full matrix is inevitable.

In the next experiments, we compared the generalization performance and the computational
cost of GPR, SVR and BSVR on different size of the sinc simulated data. The size of training
data set ranged from 10 to 1000. The targets were corrupted by additive Gaussian noise of
variance 0.04, and 3000 noise-free samples were used as the test set for all the training data
sets. At each size, we repeat the experiments 20 times to reduce the randomness in training
data generation. The comparison of generalization performance is given in Figure 4(a)∼Figure
4(f). BSVR and GPR yield better and more stable performance than SVR on small data sets.
Clearly, when the number of training samples is small, Bayesian approaches are much better
than SVR. GPR yields sightly better performance than BSVR when the size is less than 100,
since GPR takes advantage on the Gaussian noise model and sparseness in BSVR may lose some
information on small data sets. We presented the CPU time consumed by the three algorithms
for the bunch of tasks, separately in Figure 4(g)∼Figure 4(i). From the scaling results, we find
that BSVR requires O(n2.36) computational cost, while GPR requires O(n3.05). This advantage
of BSVR comes from the sparseness property in Bayesian inference that help us to tackle large
data sets.
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7.2 Robot Arm Data

The task in the robot arm problem is to learn the mapping from joint angles, x1 and x2, to the
resulting arm position in rectangular coordinates, y1 and y2. The actual relationship between
inputs and targets is as follows:

y1 = 2.0 cos x1 + 1.3 cos(x1 + x2) and y2 = 2.0 sin x1 + 1.3 sin(x1 + x2) (46)

Targets are contaminated by independent Gaussian noise of standard deviation 0.05. The data
set of robot arm problem we used here was generated by MacKay (1992) which contains 600
input-target pairs.16 The first 200 samples in the data set were used as training set in all cases;
the second 200 samples were used as testing set; the last 200 samples were not used. Two
predictors were constructed for the two outputs separately in the training. We normalized the
input data and keep the original target values, and then trained with ARD Gaussian model (42)
starting from the default settings. The results are recorded in Table 2.

In the next experiment, four more input variables were added artificially (Neal, 1996), related
to the inputs x1 and x2 in the original problem (46), x3 and x4 are copies of x1 and x2 corrupted
by additive Gaussian noise of standard deviation 0.02, and x5 and x6 are irrelevant Gaussian
noise inputs with zero mean, as follows: x1 = x1, x2 = x2, x3 = x1+0.02 ·n3, x4 = x2+0.02 ·n4,
x5 = n5, x6 = n6, where n3, n4, n5 and n6 are independent Gaussian noise variables with zero
mean and unit variance.17 We normalized the input data and kept the original target values, and
then trained an ARD Gaussian model (42) starting from the default settings. The results are
recorded in Table 3. It is very interesting to look at the training results of the ARD parameters
in the case of 6 inputs in Table 3. The values of the ARD parameters show nicely that the first
two inputs are most important, followed by the corrupted inputs. The ARD parameters for the
noise inputs shrink very fast in training. We also recorded the true variance of the additive
Gaussian noise on y1 and y2 in the third column of Table 2 as reference, which are about 0.0025.
Although the additive noise is Gaussian that is not consistent with our loss function in likelihood
evaluation, we retrieve the noise variance properly. Meanwhile we keep sparseness in solution
representation. About 50% ∼ 60% of the training samples are selected as SVs (refer to Table 2
and 3).

In Table 4, we compared the test ASE with that in other implementations, such as neural
networks with Gaussian approximation by MacKay (1992) and neural networks with Monte
Carlo by Neal (1996), and Gaussian processes for regression by Williams and Rasmussen (1996)
etc. The expected test error of ASE based on knowledge of the true distribution is about 0.005.
These results indicate that our approach gives a performance that is very similar to that given
by well-respected techniques.18

16The robot arm data set generated by MacKay (1992) is available at
http://wol.ra.phy.cam.ac.uk/mackay/bigback/dat/.

17The robot arm data set with six inputs we generated can be accessed from
http://guppy.mpe.nus.edu.sg/∼chuwei/data/robotarm.zip.

18Note that Monte Carlo methods sample hyperparameters hundreds of times according to P(θ|D) and then av-
erage their individual predictions. Thus they have the advantage of reducing the uncertainty in hyperparameters.
On the other hand, our approach takes the mode of P(θ|D) as the optimal hyperparameters.
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7.3 Laser Generated Data

SVR has been successfully applied to time series prediction (Müller et al., 1997). Here we choose
the laser data to illustrate the error bar in predictions. The laser data has been used in the
Santa Fe Time Series Prediction Analysis Competition.19 A total of 1000 points of far-infrared
laser fluctuations were used as the training data and 100 following points were used as testing
data set. We normalized the training data set coordinate-wise, and used 8 consecutive points
as the inputs to predict the next point. We chose Gaussian kernel (3) and started training from
the default settings. β was fixed at 0.3. Figure 5 plots the predictions on testing data set and
the error bars. Although the predictions of our model do not match the targets very well on
the region (1051-1080), our model can reasonably provide larger error bars for these predictions.
This feature is very useful in other learning fields, such as active learning.

7.4 Benchmark Comparisons

We compare our method BSVR with standard GPR (Williams, 1998) and classical SVR (Vapnik,
1995) upon generalization performance and computational cost on some benchmark data sets.
The descriptions of these benchmark data sets we used are given as follows.

Boston Housing Data The “Boston Housing” data was collected in connection with a study
of how air quality affects housing prices. The data concerns the median price in 1970 of owner-
occupied houses in 506 census tracts within the Boston metropolitan area. Thirteen attributes
pertaining to each census tract are available for use in prediction.20 The objective is to predict
the median house value. Following the method used by Tipping (2000) and Saunders et al.
(1998),21 the data set is partitioned into 481/25 training/testing splits randomly. This parti-
tioning is carried out 100 times on the data. We cited the test ASE results reported by other
methods in Table 5.

Computer Activity Data The computer activity data was collected from a Sun Sparcstation
20/712 with 128 Mbytes of memory running in a multi-user university department. The data
set is composed of 8192 samples with 21 attributes.22 The task is to predict the portion of time
that CPUs run in user mode from all the 21 attributes. We partitioned the computer activity
data into 2000/6192 training/testing splits randomly. The partitioning was repeated 10 times
independently.

Abalone Data We normalize the abalone data23 to zero mean and unit variance coordinate-
wise, and then map the gender encoding (male/female/infant) into {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
The normalized data set is split into 3000 training and 1177 testing data set randomly. The

19Full description can be found at URL: http://www-psych.stanford.edu/∼andreas/Time-Series/SantaFe.html.
20The original data can be found in StatLib, available at URL http://lib.stat.cmu.edu/datasets/boston.
21Saunders et al. (1998) used 80 cases in 481 training data as validation set to determine the kernel parameters.
22The data set and its full description can be accessed at http://www.cs.toronto.edu/∼delve/data/comp-

activ/.
23The data can be accessed via ftp://ftp.ics.uci.edu/pub/machine-learning-databases/abalone/.
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partitioning is carried out 10 times independently. The objective is to predict the abalone’s
rings.

The results of BSVR using Gaussian covariance function against SVR are given in Table
6. SVR yields significantly better performance on the computer activity data than BSVR
does.24 The results of BSVR and GPR using ARD Gaussian covariance function are presented
in Table 7. ARD feature selection greatly improves the generalization performance of BSVR on
the computer activity data and the Boston housing data. BSVR performs significantly better
than GPR in AAE on the Boston housing data and the abalone data. Meanwhile, BSVR is
very efficient. Hence, BSVR with the benefit of sparseness can efficiently achieve very good
generalization on reasonably large-scale data sets. If we could employ some scheme to cache
part of the covariance matrix, the training time should be further reduced.

8 Conclusions

In this paper, we proposed a unifying loss function in a Bayesian design for support vector
regression. The SILF is smooth and inherits most of the virtues of ε-ILF, such as insensitivity
to outliers and sparseness in solution representation. In the Bayesian framework, we integrate
support vector methods with Gaussian processes to keep the advantages of both. Various com-
putational procedures are provided for the evaluation of MAP estimate and evidence of the hy-
perparameters. ARD feature selection and model adaptation are also implemented intrinsically
in hyperparameter determination. Another benefit arising from the probabilistic formulation is
the determination of error bars in making predictions. Furthermore, sparseness in the evidence
evaluation and probabilistic prediction reduces the computational cost significantly and helps
us to tackle reasonably large data sets. The results in numerical experiments show that the
generalization ability is competitive with other well-respected techniques.
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Figure 1: Graphs of popular loss functions, where ε is set at 1.
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Figure 2: Graphs of soft insensitive loss function (solid curve) and its corresponding noise density
function (dotted curve), where ε = 0.5, β = 0.5 and C = 2.0 in the noise model.
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Figure 3: Graphs of training results with respect to different β for the 4000 sinc data set. The
horizontal axis indicates the value of β in log-scale. The solid line in the graph (a) indicates
the number of SVs, while the dotted line indicates the number of off-bound SVs. In the graph
(b), the solid line indicate the CPU time in seconds used to evaluate evidence and its gradient,
and the dotted line is the CPU time in seconds consumed for MAP estimate. In the graph (c),
the dots indicate − lnP(D|θ) in training results. In the graph (d), the dots indicate the average
squared error (ASE) in testing minus the true value in the additive noise that is 0.026612.
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Figure 4: SVR, BSVR and GPR on the simulated sinc data at different training data size. The
results of AAE and ASE are presented in the graph (a)∼(f) respectively. BSVR and GPR used
evidence maximization to choose optimal hyperparameters, while five-fold cross validation was
used for SVR. The position of cross denotes the average values over the 20 repetitions, and the
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Table 1: Training results on sinc data sets with the fixed values, β = 0.3 or β = 0.1. σ2T denotes
the true value of noise variance in training data set; σ2n denotes the noise variance in training
data retrieved by (14); − lnP(D|θ) denotes the negative log evidence of the hyperparameters
as in (38); SVM denotes the number of off-bound support vectors; SVC denotes the number of
on-bound support vectors; TIME denotes the CPU time in seconds consumed in the training;
AAE is the average absolute error in test; ASE denotes the average squared error in test; the
true value of average squared noise in the testing data set is 0.026612; the true value of average
absolute noise in the testing data set is 0.12492.

β Size σ2
T

C ε σ2
n κ − lnPD|θ SVM SVC TIME AAE ASE

50 .03012 15.95 .181 .02416 5.19 -1.3 23 4 0.15 .13754 .031194
100 .03553 10.00 .136 .03152 5.85 -11.1 33 25 0.40 .13027 .028481
300 .02269 11.16 .118 .02478 5.57 -113.7 90 87 5.95 .12642 .027189

0.3 500 .02669 9.36 .080 .02752 5.89 -174.8 135 218 12.9 .12544 .026765
1000 .02578 9.90 .094 .02655 5.62 -389.9 270 388 63.0 .12537 .026834
2000 .02639 10.01 .096 .02630 5.01 -808.8 539 768 436.2 .12509 .026661
3000 .02777 9.96 .106 .02770 5.20 -1146.7 833 1052 1551.4 .12511 .026671
4000 .02663 10.51 .111 .02609 5.76 -1642.2 1226 1280 3291.9 .12501 .026615

50 .03012 6.70 .086 .05018 9.42 5.51 10 20 0.11 .13411 .030065
100 .03553 12.07 .163 .02855 5.54 -10.1 19 25 0.53 .13366 .029728
300 .02269 12.05 .124 .02300 5.92 -113.8 39 100 5.13 .12651 .027212

0.1 500 .02669 9.42 .080 .02715 5.78 -174.4 57 250 9.43 .12543 .026764
1000 .02578 9.96 .095 .02631 6.09 -389.7 102 459 47.9 .12540 .026848
2000 .02639 10.06 .096 .02600 5.06 -808.5 190 920 264.7 .12512 .026662
3000 .02777 9.96 .108 .02774 5.34 -1142.6 287 1303 1070.4 .12509 .026673
4000 .02663 10.41 .109 .02623 5.74 -1643.3 446 1650 2852.3 .12502 .026619

Table 2: Training results on the two-dimensional robot arm data set with the fixed value of
β = 0.3. σ2T denotes the true value of noise variance in the training data; σ2n denotes the
estimated value of the noise variance; SVM denotes the number of off-bound support vectors;
SVC denotes the number of on-bound support vectors; TIME denotes the CPU time in seconds
consumed in the training; AAE is the average absolute error in test; ASE denotes the average
squared error in test.

y σ2
T

(10−3)
C ε σ2

n

(10−3)
κ1 κ2 κb SVM SVC TIME AAE ASE(10−3)

y1 2.743 44.94 0.057 2.681 0.682 0.248 3.86 75 21 33.8 .03930 2.491
y2 2.362 34.35 0.042 2.787 0.673 0.184 17.03 74 42 68.4 .04544 3.184
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Table 3: Training results on the six-dimensional robot arm data set with the fixed value of
β = 0.3. σ2n denotes the estimated value of the noise variance; SVM denotes the number of
off-bound support vectors; SVC denotes the number of on-bound support vectors; AAE is the
average absolute error in test; ASE denotes the average squared error in test.

y σ2
n

(10−3)
κ1 κ2 κ3

(10−2) κ4
(10−2) κ5

(10−5) κ6
(10−5) κb SVM SVC AAE ASE(10−3)

y1 2.696 .667 .248 .287 .0087 0.01 0.01 2.36 74 27 .03907 2.477
y2 2.779 .603 .222 8.41 .904 0.01 0.01 23.53 60 77 .04622 3.160

Table 4: Comparison with other implementation methods on testing ASE of the robot arm
positions. INPUTS denotes the number of inputs. ASE denotes the average squared error in
testing.

IMPLEMENTATION METHOD INPUTS ASE(10−3)

Gaussian Approximation of MacKay
Solution with highest evidence 2 5.73
Solution with lowest test error 2 5.57

Hybrid Monte Carlo of Neal 2 5.47
6 5.49

Gaussian Processes of Williams and Rasmussen 2 5.63
6 5.69

GPR using Evidence Maximization
with Gaussian Covariance Function 2 5.83

with ARD Gaussian 2 5.70
with ARD Gaussian 6 5.70

SVR using Gaussian Covariance Function
ε = 0.1 2 7.46
ε = 0.05 2 6.82
ε = 0.01 2 5.84

BSVR with β = 0.3
Gaussian Covariance Function 2 5.89

ARD Gaussian 2 5.68
ARD Gaussian 6 5.64
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Table 5: Comparison with Ridge Regression (Saunders et al., 1998), Relevance Vector Machine
Tipping (2000), GPR and SVR on price prediction of the Boston Housing data set. ASE denotes
the average squared test error.

IMPLEMENTATION METHOD KERNEL TYPE ASE

Ridge Regression Polynomial 10.44
Ridge Regression Splines 8.51
Ridge Regression ANOVA Splines 7.69

Relevance Vector Machine Gaussian 7.46

SVR Gaussian 10.27
GPR Gaussian 9.13

BSVR with β = 0.3 Gaussian 12.34

GPR ARD Gaussian 8.32
BSVR with β = 0.3 ARD Gaussian 6.99

Table 6: Training results of BSVR and standard SVR on the benchmark data sets. Both of
them used the Gaussian covariance function (3). TIME denotes the total CPU time in hours
consumed by BSVR for all partitions of that data set, and SVR is the corresponding value of
SVR. ASE denotes the test ASE of BSVR averaged over all partitions of that data set together
with the standard deviation, and SVR-ASE is the corresponding element of SVR. AAE denotes
the test AAE of BSVR, and SVR-AAE is the corresponding element of SVR. The p-value is for
the paired t−test on test error. We use the bold face to indicate the cases in which the indicated
element is significantly better; a p-value threshold of 0.01 was used to decide this.

Data set SVR TIME SVR-ASE ASE p-value SVR-AAE AAE p-value

Housing 22.0 0.9 10.27±7.21 12.34±9.20 0.078 2.13±0.48 2.19±0.48 0.32
Computer 45.6 4.7 13.80±0.93 17.59±0.98 5.5×10−8 2.28±0.04 2.33±0.05 0.026
Abalone 67.8 6.5 0.441±0.021 0.438±0.024 0.78 0.455±0.0088 0.454±0.0086 0.95
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Table 7: Training results of BSVR and standard GPR on the benchmark data sets. Both of
them used the ARD Gaussian covariance function (42). TIME denotes the total CPU time
in hours consumed by BSVR for training on all partitions of that data set, and GPR is the
corresponding value of GPR. ASE denotes the test ASE of BSVR averaged over all partitions of
that data set together with the standard deviation, and GPR-ASE is the corresponding element
of GPR. AAE denotes the test AAE of BSVR, and GPR-AAE is the corresponding element of
GPR. The p-value is for the paired t−test on test error. We use the bold face to indicate the
cases in which the indicated element is significantly better; a p-value threshold of 0.01 was used
to decide this.

Data set GPR TIME GPR-ASE ASE p-value GPR-AAE AAE p-value

Housing 2.4 2.2 8.32±4.35 6.99±4.38 0.032 2.01±0.40 1.86±0.37 0.0060
Computer 23.0 12.1 5.58±0.25 5.80±0.27 0.070 1.686±0.023 1.687±0.026 0.99
Abalone 43.6 13.6 0.428±0.022 0.432±0.023 0.73 0.463±0.0087 0.451±0.0095 0.0094
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