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Abstract

Semi-supervised SVMs (S3VM) attempt to learn low-density separators by
maximizing the margin over labeled and unlabeled examples. The asso-
ciated optimization problem is non-convex. To examine the full potential
of S3VMs modulo local minima problems in current implementations, we
apply branch and bound techniques for obtaining exact, globally optimal
solutions. Empirical evidence suggests that the globally optimal solution
can return excellent generalization performance in situations where other
implementations fail completely. While our current implementation is only
applicable to small datasets, we discuss variants that can potentially lead
to practically useful algorithms.

1 Introduction

A major line of research on extending SVMs to handle partially labeled datasets is based on
the following idea: solve the standard SVM problem while treating the unknown labels as
additional optimization variables. By maximizing the margin in the presence of unlabeled
data, one learns a decision boundary that traverses through low data-density regions while
respecting labels in the input space. In other words, this approach implements the cluster
assumption for semi-supervised learning – that points in a data cluster have similar labels.
This idea was first introduced in [14] under the name Transductive SVM, but since it learns
an inductive rule defined over the entire input space, we refer to this approach as Semi-
supervised SVM (S3VM).

Since its first implementation in [9], a wide spectrum of techniques have been applied to
solve the non-convex optimization problem associated with S3VMs, e.g., local combinatorial
search [9], gradient descent [6], continuation techniques [3], convex-concave procedures [7],
and deterministic annealing [12]. While non-convexity is partly responsible for this diver-
sity of methods, it is also a departure from one of the nicest features of SVMs. Several
experimental studies have established that S3VM implementations show varying degrees
of empirical success. This is conjectured to be closely tied to their susceptibility to local
minima problems.

The following questions motivate this paper: How well do current S3VM implementations
approximate the exact, globally optimal solution of the non-convex problem associated with
S3VMs ? Can one expect significant improvements in generalization performance by better
approaching the global solution? We believe that these questions are of fundamental impor-
tance for S3VM research and are largely unresolved. This is partly due to the lack of simple
implementations that practitioners can use to benchmark new algorithms against the global
solution, even on small-sized problems.

1Now part of Yahoo! Research, chap@yahoo-inc.com



Our contribution in this paper is to outline a class of Branch and Bound algorithms that
are guaranteed to provide the globally optimal solution for S3VMs. Branch and bound
techniques have previously been noted in the context of S3VM in [16], but no details were
presented there. We implement and evaluate a branch and bound strategy that can serve
as an upper baseline for S3VM algorithms. This strategy is not practical for typical semi-
supervised settings where large amounts of unlabeled data is available. But we believe it
opens up new avenues of research that can potentially lead to more efficient variants.

Empirical results on some semi-supervised tasks presented in section 7 show that the exact
solution found by branch and bound has excellent generalization performance, while other
S3VM implementations perform poorly. These results also show that S3VM can compete
and even outperform graph-based techniques (e.g.,[17, 13]) on problems where the latter
class of methods have typically excelled.

2 Semi-Supervised Support Vector Machines

We consider the problem of binary classification. The training set consists of l labeled
examples {(xi, yi)}li=1, yi = ±1, and of u the unlabeled examples {xi}ni=l+1, with n = l +u.
In the linear case, the following objective function is minimized on both the hyperplane
parameters w and b, and on the label vector yu := [yl+1 . . . yn]>,

min
w,b,yu,ξi≥0

1
2
w2 + C

l∑
i=1

ξp
i + C∗

n∑
i=l+1

ξp
i (1)

under constraints yi(w · xi + b) ≥ 1 − ξi, 1 ≤ i ≤ n. Non linear decision boundaries can
be constructed using the kernel trick [15]. While in general any convex loss function can be
used, it is common to either penalize the training errors linearly (p = 1) or quadratically
(p = 2). In the rest of the paper, we consider p = 2. The first two terms in (1) correspond
to a standard SVM. The last one takes into account the unlabeled points and can be seen
as an implementation of the cluster assumption [11] or low density separation assumption
[6]; indeed, it drives the outputs of the unlabeled points away from 0 (see figure 1).

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Signed output

Lo
ss

Figure 1: With p = 2 in (1), the loss of a point with label y and signed output t is
max(0, 1− yt)2. For an unlabeled point, this is miny max(0, 1− yt)2 = max(0, 1− |t|)2.

For simplicity, we take C∗ = C. But in practice, it is important to set these two values
independently because C reflects our confidence in the labels of the training points, while
C∗ corresponds to our belief in the low density separation assumption. In addition, we add
the following balancing constraint to (1),

1
u

n∑
i=l+1

max(yi, 0) = r. (2)

This constraint is necessary to avoid unbalanced solutions and has also been used in the
original implementation [9]. Ideally, the parameter r should be set to the ratio of positive
points in the unlabeled set. Since it is unknown, r is usually estimated through the class
ratio on the labeled set. In that case, one may wish to ”soften” this constraint, as in [6].
For the sake of simplicity, in the rest of the paper, we set r to the true ratio of positive
points in the unlabeled set.



Let us call I the objective function to be minimized:

I(w, b,yu) =
1
2
w2 + C

n∑
i=1

max(0, 1− yi(w · xi + b))2.

There are two main strategies to minimize I:
(1) For a given fixed w and b, the optimal yu is simply given by the signs of w ·xi + b. Then
a continuous optimization on w and b can be done [6]. But note that the constraint (2) is
then not straightforward to enforce.
(2) For a given yu, the optimization on w and b is a standard SVM training. Let’s define

J (yu) = min
w,b

I(w, b,yu). (3)

Now the goal is to minimize J over a set of binary variables (and each evaluation of J is
a standard SVM training). This was the approach followed in [9] and the one that we take
in this paper. The constraint (2) is implemented by setting J (yu) = +∞ for all vectors yu

not satisfying it.

3 Branch and bound

3.1 Branch and bound basics

Suppose we want to minimize a function f over a space X , where X is usually discrete. A
branch and bound algorithm has two main ingredients:

Branching : the region X is recursively split into smaller subregions. This yields a tree
structure where each node corresponds to a subregion.

Bounding : consider two (disjoint) subregions (i.e. nodes) A and B ⊂ X . Suppose that
an upper bound (say a) on the best value of f over A is known and a lower bound
(say b) on the best value of f over B is known and that a < b. Then, we know
there is an element in the subset A that is better than all elements of B. So, when
searching for the global minimizer we can safely discard the elements of B from the
search: the subtree corresponding to B is pruned.

3.2 Branch and bound for S3VM

The aim is to minimize (3) over all 2u possible choices for the vector yu,1 which constitute
the set X introduced above. The binary search tree has the following structure. Any
node corresponds to a partial labeling of the data set and its two children correspond to
the labeling of some unlabeled point. One can thus associate with any node a labeled
set L containing both the original labeled examples and a subset S of unlabeled examples
{(xj , yj)}j∈S⊆[l+1...n] to which the labels yj have been assigned. One can also associate an
unlabeled set U = [l + 1 . . . n] \ S corresponding to the subset of unlabeled points which
have not been assigned a label yet. The size of the subtree rooted at this node is thus 2|U |.
The root of the tree has only the original set of labeled examples associated with it, i.e S
is empty. The leaves in the tree correspond to a complete labeling of the dataset, i.e. U is
empty. All other nodes correspond to partial labelings.

As for any branch and bound algorithm, we have to decide about the following choices,

Branching: For a given node in the tree (i.e. a partial labeling of the unlabeled set), what
should be its two children (i.e. which unlabeled point should be labeled next)?

Bounding: Which upper and lower bounds should be used?
Exploration: In which order will the search tree be examined? In other words, which

subtree should be explored next? Note that the tree is not built explicitly but on
the fly as we explore it.

1There are actually only

„
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effective choices because of the constraint (2).



Concerning the upper bound, we decided to have the following simple strategy: for a leaf
node, the upper bound is simply the value of the function; for a non leaf node, there is no
upper bound. In other words, the upper bound is the best objective function found so far.
Coming back to the notations of section 3.1, the set A is the leaf corresponding to the best
solution found so far and the set B is the subtree that we are considering to explore.

Because of this choice for the upper bound, a natural way to explore the tree is a depth first
search. Indeed it is important to go to the leaves as often as possible in order to have a
tight upper bound and thus perform aggressive pruning.

The choice of the lower bound and the branching strategy are presented next.

4 Lower bound

We consider a simple lower bound based on the following observation. The minimum of the
objective function (1) is smaller when C∗ = 0 than when C∗ > 0. But C∗ = 0 corresponds
to a standard SVM, ignoring the unlabeled data. We can therefore compute a lower bound
at a given node by optimizing a standard SVM on the labeled set associated with this node.

We now present a more general framework for computing lower bounds. It is based on the
dual objective function of SVMs. Let D(α,yU ) be the dual objective function, where yU

corresponds to the labels of the unlabeled points which have not been assigned a label yet,

D(α,yU ) =
n∑

i=1

αi −
1
2

n∑
i,j=1

αiαjyiyj

(
K(xi,xj) +

δij

2C

)
. (4)

The dual feasibility is
αi ≥ 0 and

∑
αiyi = 0. (5)

Now suppose that we have a strategy that, given yU , finds a vector α(yU ) satisfying (5).
Since the dual is maximized,

D(α(yU ),yU ) ≤ max
α

D(α,yU ) = J (yU ),

where J has been defined in (3).

Let Q(yU ) := D(α(yU ),yU ) and lb a lower bound on (or the value of) minQ(yU ), where
the minimum is taken over all yU satisfying the balancing constraint (2). Then lb is also a
lower bound for the value of the objective function corresponding to that node.

The goal is thus to find a choice for α(yU ) such that a lower bound on Q can be computed
efficiently. The choice corresponding to the lower bound presented above is the following.
Train an SVM on the labeled points, obtain the vector α and complete it with zeros for the
unlabeled points. Then Q(yU ) is the same for all the possible labelings of the unlabeled
points and the lower bound is the SVM objective function on the labeled points.

Here is a sketch of another possibility for α(yU ) that one can explore: instead of completing
the vector α by zeros, we complete it by a constant γ which would typically be of the
same order of magnitude as α. Then Q(yU ) =

∑
αi − 1

2y
>Hy, where Hij = αiαjKij .

To lower bound Q, one can use results from the quadratic zero-one programming literature
[10] or solve a constrained eigenvalue problem [8]. Finally, note that unless

∑
U yi = 0, the

constraint
∑

αiyi = 0 will not be satisfied. One remedy is to train the supervised SVM with
the constraint

∑
αiyi = −γ

∑
U yi = γ(n − 2ru +

∑
L yi) (because of (2)). In the primal,

this amounts to penalizing the bias term b.

5 Branching

At a given node, some unlabeled points have already been assigned a label. Which unlabeled
point should be labeled next? Since our strategy is to reach a good solution as soon as
possible (see last paragraph of section 3.2), it seems natural to assign the label that we are



the most confident about. A simple possibility would be to branch on the unlabeled point
which is the nearest from another labeled point using a reliable distance metric.

But we now present a more principled approach based on the analysis of the objective value.
We say that we are ”confident” about a particular label of an unlabeled point when assigning
the opposite label results in a big increase of the objective value: this partial solution would
then be unlikely to lead to the optimal one.

Let us formalize this strategy. Remember from section 3.2 that a node is associated with
a set L of currently labeled examples and a set U of unlabeled examples. Let s(L) be the
SVM objective function trained on the labeled set,

s(L) = min
w,b

1
2
w2 + C

∑
(xi,yi)∈L

max(0, 1− yi(w · xi + b))2. (6)

As discussed in the previous section, the lower bound is s(L). Now our branching strategy
consists in selecting the following point in U ,

arg max
x∈U, y∈±1

s(L ∪ {x, y}) (7)

In other words, we want to find the unlabeled point x∗ and its label y∗ which would make the
objective function increase as much as possible. Then we branch on x∗, but start exploring
the branch with the most likely label −y∗. This strategy has an intuitive link with the ”label
propagation” idea [17]: an unlabeled point which is near from a labeled point is likely to be
of the same label; otherwise, the objective function would be large.

A main disadvantage of this approach is that to solve (7), a lot of SVM trainings are
necessary. It is however possible to approximately compute s(L ∪ {x, y}). The idea is
similar to the fast approximation of the leave-one-out solution [5]. Here the situation is
”add-one-in”. If an SVM has been trained on the set L it is possible to efficiently compute
the solution when one point is added in the training set. This is under the assumption that
the set of support vectors does not change when adding this point. In practice, the set is
likely to change and the solution will only be approximate.

Proposition 1 Consider training an SVM on a labeled set L with quadratic penalization of
the errors (cf (6) or (4)). Let f be the learned function and sv be the set of support vectors.
Then, if sv does not change while adding a point (x, y) in the training set,

s(L ∪ {x, y}) = s(L) +
max(0, 1− yf(x))2

2S2
x + 1/C

(8)

where S2
x = K(x,x)− v>K−1

sv v,

Ksv =

( (
K(xi,xj) + δij

2C

)
i,j∈sv

1

1> 0

)
and v> = (K̃(xi,x)i∈sv 1).

The proof is omitted because of lack of space. It is based on the fact that s(L) = 1
2y

>
svK−1

sv ysv

and relies on the block matrix inverse formula.

6 Algorithm

The algorithm is implemented recursively (see algorithm 1). At the beginning, the upper
bound can either be set to +∞ or to a solution found by another algorithm.

Note that the SVM trainings are incremental: whenever we go down the tree, one point is
added in the labeled set. For this reason, the retraining can be done efficiently (also see [2])
since effectively, we just need to update the inverse of a matrix.

7 Experiments

We consider here two datasets where other S3VM implementations are unable to achieve
satisfying test error rates. This naturally raises the following questions: Is this weak per-



Algorithm 1 Branch and bound for S3VM(BB).
Function: (Y ∗, v)← S3VM(Y, ub) % Recursive implementation
Input: Y : a partly labeled vector (0 for unlabeled)

ub: an upper bound on the optimal objective value.
Output: Y ∗: optimal fully labeled vector

v: corresponding objective function.
if
∑

max(0, Yi) > ur OR
∑

max(0,−Yi) < n− ur then
return % Constraint (2) can not be satisfied

end if −→ Do not explore this subtree
v ← SVM(Y ) % Compute the SVM objective function on the labeled points.
if v > ub then

return % The lower bound is higher than the upper bound
end if −→ Do not explore this subtree
if Y is fully labeled then

Y ∗ ← Y
return % We are at a leaf

end if
Find index i and label y as in (7) % Find next unlabeled point to label
Yi ← −y % Start first by the most likely label
(Y ∗, v)← S3VM(Y, ub) % Find (recursively) the best solution
Yi ← −Yi % Switch the label
(Y ∗

2 , v2)← S3VM(Y, min(ub, v)) % Explore other branch with updated upper-bound
if v2 < v then

Y ∗ ← Y ∗
2 and v ← v2 % Keep the best solution

end if

formance due to the unsuitability of the S3VM objective function for these problems or do
these methods get stuck at highly sub-optimal local minima?

7.1 Two moons

The “two moons” dataset is now a standard benchmark for semi-supervised learning algo-
rithms. Most graph-based methods such as [17] easily solve this problem , but so far, all
S3VM algorithms find it difficult to construct the right boundary (an exception is [12] using
an L1 loss). We drew 100 random realizations of this dataset, fixed the bandwidth of an
RBF kernel to σ = 0.5 and set C = 10. Each moon contained 50 unlabeled points.

We compared ∇S3VM[6], cS3VM[3], CCCP [7], SVMlight [9] and DA [12]. For the first 3
methods, there is no direct way to enforce the constraint (2). However, these methods have
a constraint that the mean output on the unlabeled point should be equal to some constant.
This constant is normally fixed to the mean of the labels, but for the sake of consistency we
did a dichotomy search on this constant in order to have (2) satisfied.

Results are presented in table 1. Note that the test errors for other S3VM implementations
are likely to be improved by hyperparameter tuning, but they will still stay very high. For
comparison, we have also included the results of a state-of-the-art graph based method,
LapSVM [13] whose hyperparameters were optimized for the test error and the threshold
adjusted to satisfy the constraint (2).

Matlab source code and a demo of our algorithm on the “two moons” dataset is accessible
as supplementary material with this paper.

7.2 COIL

Extensive benchmark results reported in [4, benchmark chapter] show that on problems
where classes are expected to reside on low-dimensional non-linear manifolds, e.g., hand-
written digits, graph-based algorithms significantly outperform S3VM implementations.



Table 1: Results on the two moons dataset (averaged over 100 random realizations)

Test error (%) Objective function
∇S3VM 59.3 13.64
cS3VM 45.7 13.25
CCCP 64 39.55
SVMlight 66.2 20.94
DA 34.1 46.85
BB 0 7.81
LapSVM 3.7 N/A

We consider here such a dataset by selecting three confusible classes from the COIL20
dataset [6] (see figure 2). There are 72 images per class, corresponding to rotations of 5
degrees (and thus yielding a one dimensional manifold). We randomly selected 2 images per
class to be in the labeled set and the rest being unlabeled. Results are reported in table 2.
The hyperparameters were chosen to be σ = 3000 and C = 100.

Figure 2: The 3 cars from the COIL dataset, subsampled to 32×32

Table 2: Results on the Coil dataset (averaged over 10 random realizations)

Test error (%) Objective function
∇S3VM 60.6 267.4
cS3VM 60.6 235
CCCP 47.5 588.3
SVMlight 55.3 341.6
DA 48.2 611
BB 0 110.7
LapSVM 7.5 N/A

From tables 1 and 2, it appears clearly that (1) the S3VM objective function leads to excellent
test errors; (2) other S3VM implementations fail completely in finding a good minimum of
the objective function2 and (3) the global S3VM solution can actually outperform graph-
based alternatives even if other S3VM implementations are not found to be competitive.

Concerning the running time, it is of the order of a minute for both datasets. We do not
expect this algorithm to be able to handle datasets much larger than couple of hundred
points.

8 Discussion and Conclusion

We implemented and evaluated one strategy amongst many in the class of branch and
bound methods to find the globally optimal solution of S3VMs. The work of [1] is the most
closely related to our methods. However that paper presents an algorithm for linear S3VMs
and relies on generic mixed integer programming which does not make use of the problem
structure as our methods can.

This basic implementation can perhaps be made more efficient by choosing better bounding
and branching schemes. Also, by fixing the upper bound as the currently best objective

2The reported test errors are somehow irrelevant and should not be used for ranking the different
algorithms. They should just be interpreted as ”failure”.



value, we restricted our implementation to follow depth-first search. It is conceivable that
breadth-first search is equally or more effective in conjunction with alternative upper bound-
ing schemes. Pruning can be done more aggressively to speed-up termination at the expense
of obtaining a solution that is suboptimal within some tolerance (i.e prune B if a < b− ε).
Finally, we note that a large family of well-tested branch and bound procedures from zero-
one quadratic programming literature can be immediately applied to the S3VM problem for
the special case of squared loss. An interesting open question is whether one can provide
a guarantee for polynomial time convergence under some assumptions on the data and the
kernel.

Concerning the running time of our current implementation, we have observed that it is
most efficient whenever the global minimum is significantly smaller than most local minima:
in that case, the tree can be pruned efficiently. This happens when the clusters are well
separated and C and σ are not too small.

For these reasons, we believe that this implementation does not scale to large datasets, but
should instead be considered as a proof of concept: the S3VM objective function is very well
suited for semi-supervised learning and more effort should be made on trying to efficiently
find good local minima.
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