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ABSTRACT
A large fraction of binary classification problems arising in web
applications are of the type where the positive class is well defined
and compact while the negative class comprises everything else in
the distribution for which the classifier is developed; it is hard to
represent and sample from such a broad negative class. Classifiers
based only on positive and unlabeled examples reduce human an-
notation effort significantly by removing the burden of choosing a
representative set of negative examples. Various methods have been
proposed in the literature for building such classifiers. Of these,
the state of the art methods are Biased SVM and Elkan & Noto’s
methods. While these methods often work well in practice, they
are computationally expensive since hyperparameter tuning is very
important, particularly when the size of labeled positive examples
set is small and class imbalance is high. In this paper we propose
a pairwise ranking based approach to learn from positive and unla-
beled examples (LPU) and we give a theoretical justification for it.
We present a pairwise RankSVM (RSVM) based method for our
approach. The method is simple, efficient, and its hyperparame-
ters are easy to tune. A detailed experimental study using several
benchmark datasets shows that the proposed method gives compet-
itive classification performance compared to the mentioned state of
the art methods, while training 3-10 times faster. We also propose
an efficient AUC based feature selection technique in the LPU set-
ting and demonstrate its usefulness on the datasets. To get an idea
of the goodness of the LPU methods we compare them against su-
pervised learning (SL) methods that also make use of negative ex-
amples in training. SL methods give a slightly better performance
than LPU methods when there is a rich set of negative examples;
however, they are inferior when the number of negative training
examples is not large enough.

Categories and Subject Descriptors: I.5.2 [Pattern Recognition]
Design Methodology-Classifier design and evaluation

General Terms: Algorithms, Performance, Experimentation

Keywords: Learning with Positive and Unlabeled Examples, Pair-
wise Ranking, Classification, Support Vector Machines
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1. INTRODUCTION
Binary classification problems arise frequently in web applica-

tions. Traditionally binary classifiers are built via supervised learn-
ing (SL) using a training set that consists of manually collected
positive and negative examples. Consider, as an example, the prob-
lem of forming a classifier that determines if a page contains re-
views of restaurants or not. While it is easy to sample from the
positive class, i.e., collect a representative set of pages having re-
views of restaurants, it is not that easy to form a representative set
of negative examples. What is usually done in practice is to analyze
the domain and choose ‘boundary’ negative examples that are truly
negative but which potentially look like positive examples. For in-
stance, in the case of the restaurant reviews example one can choose
the following as (boundary) negative examples: pages that describe
restaurants but do not contain reviews; and pages that only contain
reviews of businesses other than restaurants. There are two prob-
lems with this approach. (1) The relative proportion of positive and
negative examples in the training set may not be indicative of the
corresponding proportion in the space of pages where the classi-
fier will be deployed. (2) It is possible that other types of negative
examples that are similar to positive examples are missed during
the analysis. Several other interesting web applications of a similar
kind can be found in [16][23].

While it is hard to choose representative negative examples, it is
usually easy to form a large collection of unlabeled examples from
the space of interest. Therefore it is useful to look for methods that
learn from positive and unlabeled examples (LPU). The presence
of positive examples in the unlabeled set and high class imbalance
(ratio of positive to negative examples is small) bring in challenges
in building classifiers in the LPU setting. Various approaches have
been suggested in the literature [2],[8],[9],[16],[18],[19],[20],[21],
[23],[24] for solving this problem. These approaches differ in the
way the examples are used, the type of classifiers employed, etc.

The main aim of this paper is to propose a new approach for
LPU. This approach is related to two good LPU methods, namely,
Biased SVM [18] and a method recently proposed by Elkan and
Noto [9]. We will refer to these methods as BSVM and EN re-
spectively. These methods are based on building a binary classi-
fier that separates positive examples from unlabeled examples; the
above mentioned papers also provide good theoretical justifications
for the proposed idea. The BSVM method has been demonstrated
to work well in practice; however, 2-dimensional hyperparameter
tuning using cross-validation makes it computationally expensive.
In [9] the EN method was demonstrated to work well using a de-
fault hyperparameter setting on a dataset that is not imbalanced.
In general, for imbalanced datasets EN also requires expensive 2-
dimensional hyperparameter tuning to achieve good classifier per-



formance. In addition, EN requires the estimation of some proba-
bilistic quantities, which is of concern in imbalanced situations.

Our approach for LPU is based on ranking and we give a theoret-
ical justification for this. We use the pairwise ranking method [7],
[13]. The basic idea is to first build a ranking model that encourages
the score of each positive example to be higher than that of each un-
labeled example and then estimate a threshold parameter θ to form
the final classifier. The approach is general in the sense that any
pairwise ranking method can be used. In this paper we use a sup-
port vector machine (SVM) based ranking method (RSVM) pro-
posed in [7],[12],[13] for learning, and employ the efficient RSVM
solver in [7] for fast solution. The main advantage of the proposed
method over BSVM and EN is that it has only one hyperparameter
(C); an additional threshold parameter (θ) can also be estimated
efficiently. Further, it is easy to implement using publicly available
RSVM codes [5],[14]. Experimental results show that our method
gives a performance that is competitive with BSVM and EN, while
being 3-10 times faster than them.

A second contribution of this paper is the proposal of a new
technique for doing feature selection in the LPU setting. Feature
selection is useful in web classification since it helps to remove
useless/redundant features and thus reduce classifier complexity.
Except the recent work of Calvo et al [3], there is no other tech-
nique for feature selection in LPU that we are aware of; Calvo et
al’s technique is limited to discrete variables and also requires addi-
tional knowledge on the fraction of positive examples. Our feature
selection method is free of such limitations, is based on comput-
ing the best AUC value possible with each feature used alone, and
works effectively; for instance, an order of magnitude reduction in
the number of features can be achieved using it with a loss in F
Measure performance of only 2-3%.

A third useful contribution of the paper is a detailed set of exper-
iments that shed insight on various methods in the SL and LPU set-
tings. The paper is organized as follows. Related work is presented
in adequate detail in Section 2. Section 3 describes our method in
detail followed by a presentation of our AUC based feature selec-
tion technique in Section 4. The discussion of the various methods
in Section 5 forms a prelude to the detailed empirical evaluation
and comparison of methods given in Section 6. We conclude the
paper in Section 7.

2. RELATED WORK
Various approaches have been suggested in the literature to solve

the problem of positive example based learning [2],[8],[9],[16],
[18],[19],[20],[24]. These approaches differ in the way the dataset
is constructed and used by the methods, and by the choice of clas-
sifiers employed. In the first approach, the dataset consists of only
labeled positive examples. One-class SVM [20] is one such ap-
proach and it does not use any unlabeled examples U . The classifier
is built using only P . In One-class SVM, the origin is considered
to be the only member of the negative class. A previous study in
[17] shows that the performance of one class SVM is poor. Wu et
al [22] studied one-class SVMs in detail and showed that the poor
performance can partly be attributed to document representation.
They empirically showed that a modified document representation
helps in improving classification accuracy.

In the second approach, unlabeled examples (U ) are also used
along with the labeled positive examples (P ). The methods that use
this approach differ in the way they use the unlabeled examples. In
one such class of methods, the classifier is built iteratively. For ex-
ample, suppose a set of reliable negative examples R

(i)
N is found

from the unlabeled set U , say, in i-th iteration and a classifier Ci

is built using P and R
(i)
N . Then R

(i)
N is expanded to R

(i+1)
N using

predictions of Ci on U−R
(i)
N ; next a classifier Ci+1 is built using P

and R
(i+1)
N . This procedure is repeated until some convergence cri-

terion is met. These techniques are referred to as 2 step techniques
in [9],[18], where identifying RN is the first step and the second
step is building the standard classifier using them. Roc-SVM[17],
S-EM[19], PEBL[23] and Support Vector Mapping Convergence
(SVMC) [24] are some of the well known 2-step techniques with
some variations.

In another class of methods, Denis et al [8] showed how the
Naive Bayes algorithm can be adapted (called positive Naive Bayes
(PNB)) for learning from positive and unlabeled examples. Subse-
quently, Calvo et al [2] enhanced the PNB algorithm and also pro-
posed a Bayesian approach to deal with the prior probability of the
positive class.

Semi-supervised learning methods can be used to solve LPU;
see [21]. But these methods require a knowledge of the fraction of
positive examples in the distribution.

Biased SVM (BSVM) [18] falls under another class of positive
example based learners. It treats all the unlabeled examples U as
negative examples; that is, {yi = 1 : i ∈ P} and {yi = −1 : i ∈
U}. The SVM classifier is built by giving appropriate weights to
the positive examples P and unlabeled examples U . It solves the
following optimization problem:

min
1

2
||w||2 + CP

X

i∈P

ξi + CU

X

i∈U

ξi (1)

s.t. yi(w
T
xi + θ) ≥ 1 − ξi; ξi ≥ 0, ∀i

Here CP and CU are the weights given to the classification error
on P and U respectively; w and θ denote the weight vector and
threshold parameter of the SVM classifier; xi and ξi denote the i-th
input feature vector and slack variable respectively. Intuitively, CP

is expected to be given a higher value than CU . This is because P
is noise-free and U contains noise as it contains positive examples
as well. Liu et al [18] showed that the BSVM method outperforms
the 2-step techniques.

Elkan & Noto [9] also considered the problem of learning from
positive and unlabeled examples. Let us represent each training
example by (x, y, s) where y ∈ {−1, 1} is the class label of the
example and let s be a binary variable that denotes if the example
is labeled (s = 1) or unlabeled (s = 0). By making the (reason-
able) assumptions that (i) P is chosen by labeling randomly chosen
positive examples and (ii) p(s = 1|y = −1) = 0 (that is, nega-
tive examples are never labeled), they derived the following useful
result:

p(s = 1|x) = Kp(y = 1|x) where K = p(s = 1|y = 1)
(2)

Note that K is independent of x and so p(s = 1|x) and p(y = 1|x)
are proportional to each other.

Using the above result Elkan & Noto [9] suggested two meth-
ods. In their first method (EN1), a first stage classifier that predicts
probability of an example as labeled p(s = 1|x) is learnt by treat-
ing each positive example as belonging to labeled class and each
unlabeled example as belonging to unlabeled class. Now given a
test example x, p(s = 1|x) is estimated using this classifier; then
p(y = 1|x) is estimated as: p(y = 1|x) = p(s = 1|x)/K. The
constant K = p(s = 1|y = 1) is estimated using a validation set.
In the second method (EN2), another classifier (second stage) is
learnt by giving each training example a different weight using the
estimated probability from the first stage classifier. EN2 is much
more complex than EN1 because it involves two stages of classifi-



cation. In the rest of the paper we will use EN1 to represent Elkan
and Noto’s method, and simply refer to it as EN.

Since the new approach that we propose for LPU in section 3 is
based on ranking, it is useful to review some related work on rank-
ing methods. Learning to rank is an important problem [1],[7],[11],
[12],[13] in various applications like web search ranking, informa-
tion retrieval etc. For example, in web search ranking the training
data consists of a number of queries and for each query there is an
associated set of returned documents. For each (query, document)
pair there is a feature vector xi, i = 1, . . . , n and a relevancy judg-
ment of how suitable the document is to the query. The aim is to
build a ranking model that ranks a set of documents based on rel-
evance scores for a given query. There are several methods known
as pointwise methods, pairwise methods, etc., to address this prob-
lem. See [7] and references given there. Here we consider only the
pairwise ranking method. In this method first a set of preference
pairs Q is constructed by comparing the relevance of the documents
associated with a given query. If (i, j) ∈ Q then document i is pre-
ferred over document j. A specific example is the ranking model
based on SVM (RSVM) that is built by minimizing the following
objective function [7]:

1

2
||w||2 + C

X

(i,j)∈Q

g(wT
xi − w

T
xj) (3)

where g(·) is a suitable loss function. Typical loss functions are
L1 and L2 loss functions defined as: g(t) = max(0, 1 − t) and
g(t) = max(0, 1− t)2. The use of the L1 loss leads to the method
in [13]. In the next section we show how this formulation can be
used to learn from the labeled positive and unlabeled examples.
Other pairwise rank modeling methods like RankNet [1] and Rank-
Boost [11] can also be used.

3. PROPOSED METHOD
Our aim is to find a classifier function f(x) = wT x+θ such that

f(x) = 0 represents the boundary between the positive and nega-
tive classes; we want to do this using only positive and unlabeled
examples. The essence of our approach consists of two steps. First
we find w such that, along the wT x score axis positive examples
are placed higher than negative examples. Given the lack of neg-
ative examples, we instead work on placing the positive examples
higher than the unlabeled examples and this can be achieved using
a ranking method. In subsection 3.1 we borrow ideas from Elkan
and Noto [9] to give a theoretical justification for this. A ranking
method such as RSVM is used to form w. In the second step we
choose the threshold θ by maximizing a proxy F Measure. We give
all the details associated with these steps as well as the complete
design in the rest of the section.

3.1 Pairwise Ranking Based Approach
Let us begin by recalling (2). If we take two examples xi and

xj , (2) implies

p(y = 1|xi)

p(y = 1|xj)
=

p(s = 1|xi)

p(s = 1|xj)
(4)

In fact Elkan & Noto [9] make the observation that if the classifier
is only used to rank examples x according to the chance that they
belong to class y = 1, then the classifier p(s = 1|x) can be used
directly instead of p(y = 1|x).

In linear classifiers such as logistic regression (where the proba-
bility function is in-built) and large margin methods such as SVM
(where the probability function is formed after the classifier is de-
signed), the probability of belonging to the positive class at a given

x has a monotonic relationship with the scoring function f̃(x) =
wT x.

For us the take away from the above two results is the following.
Let P , N and U denote positive, negative and unlabeled exam-
ple index sets. We are interested in building a classifier that ranks
positive examples higher than negative examples, i.e., f̃(xi) >

f̃(xj) for all (i, j) ∈ P × N . By the monotonic relation between
f̃(x) and p(y = 1|x) this is same as requiring p(y=1|xi)

p(y=1|xj)
> 1

for all (i, j) ∈ P × N . By (4), this is equivalent to asking for
p(s=1|xi)
p(s=1|xj)

> 1 to be satisfied, and, given only P and U we can use

(i, j) ∈ P ×U to achieve this. By invoking the monotonic relation
between f̃(x) and p(s = 1|x) we can see that building such a clas-
sifier is same as building a classifier that satisfies f̃(xi) > f̃(xj)
for all (i, j) ∈ P × U .

While the above results and arguments suggest how to build a
ranking model (f̃ ) in the LPU setting, we need a classifier model
(f ) for which we need to set a value for the threshold parameter θ.
We determine this parameter using an idea given by Liu et al [19];
we will give the details in subsection 3.3.

3.2 RSVM Formulation
A ranking model based on SVM (RSVM) [7],[12],[13] is con-

structed by minimizing a regularized margin based pairwise loss
as given in (3). Our binary classification context correspond to a
simpler case of the more general ranking model given in [7] with
a single query and two relevance values; the given n examples
can be partitioned into two sets that define a binary classification
problem: A = {i : xi is in the higher relevance class} and
B = {i : xi is in the lower relevance class}. In our context,
we set A = P and B = U ; that is, the labeled positive examples
belong to the higher relevance class and the unlabeled examples
belong to the lower relevance class. Then from (3) we have the
following objective function:

1

2
||w||2 + C

X

(i∈P,j∈U)

g(wT
xi − w

T
xj) (5)

where g(·) is a suitable loss function and we choose g(·) to be the
L2-loss function. One can also use L1-loss function; often there is
very little difference in their performances. This objective function
penalizes any violation of f̃(xi) > f̃(xj), i ∈ P, j ∈ U with some
margin where f̃(x) = wT x; it can be minimized using the Trun-
cated Newton method efficiently [7]. A key aspect of this objective
function is that the summation is over all pairs of examples in the
sets P and U ; therefore, the computational cost can be prohibitively
high if done crudely. In [7] a very efficient solution to this problem
is obtained with computational complexity O(n log n+nnz) where
n and nnz denote the number of training examples and number of
non-zero elements in the (|P | + |U |) × d data matrix respectively.
(Here d is the number of features, i.e., the dimension of x and w.)

3.3 Hyperparameter, Threshold parameter
Optimization

The choice of the hyperparameter C in (5) and the threshold pa-
rameter θ play important roles in the classification performance.
They can be selected using standard 5-fold cross-validation (CV)
technique by computing a suitable measure. In this technique we
partition the sets P and U separately into 5-folds. We build five
models where each model is built using one combination of 4-folds
of data and then evaluated on the corresponding left-out 5th fold of
data.



In traditional binary classification problems, measures like val-
idation set accuracy and F Measure are typically used. While the
accuracy is defined as the percentage of examples correctly clas-
sified, F Measure is defined as F = 2pr

p+r
where p and r denote

precision and recall (with respect to the positive class) respectively.
Precision p is defined as: p = TP

TP+FP
and recall r is defined as:

r = TP
|P |

where TP and FP denote the number of true positive and
false positive examples respectively.

F̂ Optimization Unlike standard binary classification problems,
we do not have all the examples labeled; also, we have only posi-
tive examples. Therefore, it is not possible to find FP and hence we
cannot directly use the F Measure. Simply using the accuracy mea-
sure based on the labeled positive examples is not good enough.
This is because we also would like to to minimize the number of
unlabeled examples getting classified as positive. This requirement
is motivated by the key observation made by Liu et al [18],[19]:
“If the sample size is large enough, minimizing the number of un-
labeled examples classified as positive while constraining the pos-
itive examples to be correctly classified will give a good classifier."
While using this principle as a guideline it is also necessary to be in
tune with F Measure (giving appropriate importance to the positive
class). The following F Measure like quantity (we call it as proxy
F Measure) due to Lee and Liu [16]1 satisfies these requirements:

F̂ =
r2

P̂ (f(x) ≥ 0)
(6)

where P̂ (f(x) ≥ 0) = TP+UP

n
is the fraction of examples la-

beled as positive; UP (Unlabeled Positive) denote the number of
unlabeled examples classified positive and r = TP

|P |
as earlier.

Therefore, we can rewrite F̂ as: F̂ = TP2

TP+UP
n

|P |2
. Since n and

|P | are fixed, it is seen that the numerator maximizes the number
of labeled positive examples to be correctly classified as positive
and the denominator minimizes the number of unlabeled examples
classified as positive. This measure when used to optimize both
C and θ in the LPU setting gives a good classifier. For a given C
value we find the optimal value for the threshold parameter θ using
5-fold CV technique. The threshold value that gives the maximum
average F̂ over the 5-folds is chosen as the optimal threshold value
θ∗(C). The optimal C value is chosen similarly as the one that
gives the best F̂ value. In all our experiments we used this ap-
proach to choose the hyperparameter. Finally we note that it is also
possible to use other measure like AUC (Area under the ROC) [13]
(to choose C) given below:

AUC =
|(i, j) such that i ∈ P, j ∈ U,wT xi > wT xj |

|P ||U |
(7)

We can estimate C by maximizing a 5-fold CV estimate of AUC;
however, given that AUC is unaffected by θ, estimation of θ has to
be done using an alternate measure such as F̂ .

3.4 Implementation
The algorithmic implementation of the proposed method for learn-

ing with positive and unlabeled examples (LPU) is given in algo-
rithm 3.1. This algorithm is quite easy to implement with a wrapper
module (to perform optimization of C and θ) and having the pub-
licly available RSVM codes [5] and [14] to solve (5) as the core
module. As mentioned earlier, an efficient solution to solve (5) is
very useful to reduce the computational complexity. Some varia-

1Lee and Liu [16] designed this measure for selecting hyperparam-
eters; they did not use it for tuning θ.

Algorithm 3.1 Pairwise RSVM based LPU Algorithm

• Set C̄ = {Cmin, . . . , 10−5, 10−4, 10−3, . . . , Cmax} and
Nf =5

• Partition the dataset P and U into Nf partitions, Q(i) =

(P (i), U (i)), i = 1, . . . , Nf

• For each hyperparameter value C ∈ C̄

1. Perform Nf fold CV with the F̂ Measure (6) using the
partitions {Q(i), i = 1, . . . , Nf}

(a) Solve (5) using any pairwise RSVM method for
each split of train set (P − P (i), U − U (i))

(b) Compute predictions f̃ (i)(xj), {j, j ∈ Q(i)}

2. Find the optimal threshold value θ∗(C) that maximizes
the average F̂ Measure (6) using the predictions

3. Update the best C value (C∗) that maximizes the aver-
age F̂ Measure using the predictions

• Solve (5) with the entire dataset {P, U} with C∗

• Output: w and θ∗(C∗)

tions of algorithm 3.1 include using the AUC-score (7) to find the
optimal C value, choice of Nf , choice of C values in C̄, etc.

4. FEATURE SELECTION - LPU SETTING
Feature selection is useful in web classification since it helps to

remove useless/redundant features and thus reduce classifier com-
plexity. While there have been several techniques proposed in the
literature to address the problem of feature selection in the super-
vised learning (SL) setting, class imbalanced condition, etc (see
eg., [10], [25]), little has been done in the LPU setting. We are not
aware any work other than that of Calvo et al [3], who proposed a
correlation based filter selection (CFS) technique which forwardly
selects the features by maximizing a merit function; this function
is based on the correlation between each feature and the class and
on the correlation among the features. The technique has two lim-
itations: (i) it works only on discrete data; and (ii) it requires ad-
ditional information in the form of either the overall probability
of positive examples or some (parameterized) beta distribution that
models this probability.

Here we propose an AUC based feature selection (AUCFS) tech-
nique. It is generic in the sense that it can also be used in the super-
vised learning setting. It is free of the type of limitations mentioned
for Calvo et al’s method [3].

The AUCFS technique is a filter technique where we take each
feature one by one and compute achievable AUC score using only
that feature on the training set. This is done as follows. In the sin-
gle feature scenario the scoring function is given by f̃(x) = w · x
where w and x are scalar quantities. Then the AUC score is com-
puted using (7). Further with w a scalar and xi,k and xj,k denoting
k-th feature value of i-th and j-th examples, w.xi,k < w.xj,k im-
ply either xi,k < xj,k or xi,k > xj,k depending on the sign of w.
Therefore only the sign of w matters and not the magnitude of w.
Thus we do not have to find w for any individual feature. Now to
take care of the sign part, we can compute two AUC scores one each
by considering the actual feature value and its negated value sepa-
rately. This is necessary because the values for some feature could
be higher for positive class examples and lower for negative class
examples, and vice-versa. Let us denote AUC

(k)
P and AUC

(k)
N as

the AUC scores corresponding to using the k-th feature value and
its negated value. Then we compute the AUC score for the k-th
feature as: AUC(k) = max(AUC

(k)
P , AUC

(k)
N ); we choose max



because with appropriate sign for the weight, the maximum value
can be achieved. These quantities can be computed efficiently by
sorting the feature values. After doing this computation for all fea-
tures, the features are ranked by sorting AUC(k), ∀k in decreasing
order and the required number of features are selected from the
top of the list. We do not claim any optimal properties for this se-
lection; nevertheless, we found this approach to work well in our
experiments.

We note that the AUCFS technique can be applied in the SL set-
ting also. While the procedure to compute the scores remains the
same, we have j ∈ N (negative examples) instead of j ∈ U . We
feel that, compared to other feature selection metrics AUCFS has
the innate ability to be less affected by differences in the distribu-
tion of positive and negative examples in the training and test sets.
This needs to be tested. For the LPU setting, although it is possible
to consider other measures like proxy F Measure, here we restrict
our attention to AUCFS technique only. In subsection 6.5 we do
experiments to demonstrate the usefulness of AUCFS.

5. DISCUSSION
A highlight of this paper is a set of experiments that shed in-

sight into various methods in the SL and LPU settings. These ex-
periments and the conclusions derived from them are described in
section 6. In this section we discuss various practical aspects of the
methods and raise questions that form a prelude to the experiments.

SL with SVM and RSVM Since SVM and RSVM (as applied
to binary classification in the SL setting) form the basis for LPU
methods, it is useful to understand them comparatively. Although
these methods are well known we are unaware of any results that
compare binary classifiers built using them under varying train/test
distributions. Note that in the SL setting we have both positive and
negative examples for training. Suppose our aim is to maximize F
Measure. Since the loss functions associated with SVM or RSVM
are not truly designed to optimize F Measure, it is useful to ad-
just the classifier threshold θ after the models are trained. We can
use 5-fold CV based F Measure to estimate θ; the same measure
can also be used to optimize the hyperparameters. Hyperparam-
eter optimization is easier with RSVM since it involves only one
hyperparameter; SVM requires two hyperparameters to effectively
handle imbalance data. Experimental results comparing SVM and
RSVM in the SL setting are given in subsection 6.2.

SL versus LPU Given that SL also has knowledge of negative
examples, one expects that SL will perform better than LPU. Is this
true? If so how much is the difference? Also, if the distribution
of positive and negative examples in the test set differs from that
in the SL train set, does SL suffer, say to the point of being even
worse than LPU? One of the weaknesses of LPU is that, given the
lack of negative examples, it doesn’t have clear cues to set the clas-
sifier threshold θ. The proxy F Measure in (6) is what RSVM-LPU
(RSVM in the LPU setting) use, but how good is it for choosing θ?
These are questions worth answering, and are taken up in subsec-
tions 6.3 and 6.6.

Hyperparameter Optimization Note that there are three terms
in (1); therefore, two hyperparameters will be needed under any
reparametrization, unless one hyperparameter is set as fixed con-
stant times the other hyperparameter. For example, we can also
optimize Cw

2
||w||2 + C̃P

P

i∈P ξi +
P

i∈U ξi. In standard SVM,

C̃P =1 and equal importance is given to both positive and negative
examples. However, it is important to have two hyperparameters
when the class imbalance is high, which is the case in our setting
with large number of unlabeled examples. Furthermore, there is
some amount of noise present in the unlabeled examples (when

treated as negative examples) since they can contain positive ex-
amples. Therefore, for achieving good performance, it is necessary
to have two hyperparameters CP and CU in (1). In BSVM the
unlabeled examples are treated as negative examples, and the so-
lution is obtained by using any SVM solver as the core module
and optimizing the hyperparameters CP and CU using the proxy
F Measure(6) [18]. Two dimensional grid search to optimize the
hyperparameters CP and CU makes BSVM computationally ex-
pensive.

In [9] where EN is proposed, there is no discussion of how the
hyperparameters must be chosen; in the datasets used there, there
is no class imbalance and |P | is not small, and so default hyperpa-
rameters give good performance. In our experiments with EN we
observed that when the percentage of positive labeled examples is
small compared to the unlabeled set size, the performance loss due
to the use of default hyperparameters as compared to with hyper-
parameter optimization can be quite high. Thus, like BSVM, op-
timizing the two hyperparameters CP and CU is necessary for EN
too. In fact, the situation is worse with EN since it requires more
parameters to be estimated. The additional parameters are: K; and
the parameters in the probability model that converts the decision
function score to the probability score (p(s = 1|x)). These param-
eters are again estimated using cross-validation. Any estimation
error in these parameters compounds the performance loss. In our
implementation of EN we used the proxy F Measure for selecting
the hyperparameters. Since EN is a probabilistic method, proba-
bilistic measures (e.g., likelihood) may be worth exploring.

For RSVM we have only one hyperparameter C to be optimized
and this reduces the computational complexity significantly. The
following two observations are also relevant here. (i) The com-
putational complexity of solving (5) may seem higher compared to
solving a standard SVM problem due to pairwise comparison in the
data fitting term. However, as pointed out at the end of subsection
3.2, (5) can actually be solved efficiently. (ii) Even though RSVM
needs to optimize the threshold parameter θ separately, this step is
not expensive because the CV data used for C tuning is also used
for tuning θ (see steps 2 and 3 of Algorithm 3.1).

The experiments of subsection 6.4 give more insight on the LPU
methods.

6. EXPERIMENTS
We conducted experiments on six benchmark datasets (details

are given in Table 1) to answer the following five questions: (1) In
a supervised learning (SL) setting how good is RSVM when com-
pared to SVM? (2) How does LPU compare with SL, given the ex-
pectation that SL will do much better because it has a knowledge of
negative training examples? (3) In the LPU setting how do BSVM,
EN and RSVM compare and, how important is hyperparameter op-
timization? (4) How effective is the AUC based LPU feature se-
lection method? and (5) How good is the proxy F Measure when
it comes to setting the classifier threshold correctly? In these ex-
periments RSVM is used both in SL and LPU settings; so, to avoid
confusion we will refer to RSVM in the LPU setting as RSVM-
LPU and RSVM in the SL setting simply as RSVM. Throughout,
classifier performance is measured in terms of F Measure. When
the underlying problem is a multi-class problem (News20 and We-
bKB) the Macro F Measure (average of the F Measures of all One-
vs-All binary classification problems) is used; for computational
effort we report the average time over all these problems. While re-
porting training time, the time taken by the RSVM based method is
considered as the reference and is taken as one unit; then the times
taken by the other methods are given relative to this unit. The time
is computed as the total training time taken by any given method
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Figure 1: Macro F Measure and Training time (relative to RSVM) of RSVM and SVM on News20, WebKB and gcat for X = 30. ρ
is as in (8).

as it searches over its grid of hyperparameter values. For each hy-
perparameter setting, 5-fold CV estimate of F Measure (for the SL
setting) or proxy F Measure (for the LPU setting) is used. The
search is done in two stages. In the first stage a coarse grid is used
to narrow down the region around the optimal value. Then a finer
grid search is carried out in the second stage. For BSVM and EN,
the coarse grid is set to CU = {0.0001, 0.001, 0.01, 0.1, 1, 10}
and J = {1, 3, 9, 27, 81, 243}; note that CP = J · CU . In the
SL setting we have CN in place of CU . In the case of RSVM it
is set to C = {10−7, 10−6, . . . , 10−2}. The finer grid contained
6 values around the optimal value chosen from the coarser grid.
For BSVM and EN we used Liblinear (http://www.csie.
ntu.edu.tw/~cjlin/liblinear) since it uses state-of-the-
art SVM solvers and is suited for text classification. We integrated
the probability estimation module from libsvm [4] (http://www.
csie.ntu.edu.tw/~cjlin/libsvm) with Liblinear to get
the probability estimates for EN. For RSVM, we used the C im-
plementation of [5] in our experiments. In the case of BSVM we
used 5-fold CV based proxy F Measure estimate to choose the hy-
perparameters. In the case of EN method we used 5-fold CV based
F Measure estimate since the classification problem is labeled ver-
sus unlabeled in the first stage (that is, estimating p(s = 1|x)).
In all the experiments with random partitions average performance
over 10 partitions is reported. Finally, due to space limitation we
present plots only for some datasets and report observations on
other datasets when some behavioral variations were observed.

6.1 Description of Datasets
The News20 [15] dataset contains text documents from 20 dif-

ferent newsgroups. We combined the preprocessed train and test
sets obtained from [4] to form the whole dataset. Each newsgroup
is used as the positive class and the rest as the negative class. This
results in 20 One-vs-All binary classification problems. The We-
bKB [6] dataset is a web page classification problem where the
web pages are collected from university websites and these web
pages belong to one of 7 classes. For our experiments we consid-
ered only the classes 1, 3, 4 and 7. This is because the number of
positive examples was very small (for example, to do meaningful
cross-validation) for other classes. We considered 4 One-vs-All bi-
nary classification problems treating examples belonging to each of
the 4 classes (1, 3, 4 and 7) as the positive class and the rest of the
examples as negative class. The adult dataset is a binary classifica-

Table 1: Datasets Description: n+ and n
−

denote the number of positive

and negative examples in the overall (train+test) dataset. u(%) denotes the per-

centage of positive examples
` 100n+

n++n
−

´

. For News20 each of the 20 classes has

close to 1000 examples; so the indicated values are approximate. For the WebKB

dataset the class number is indicated in parentheses.

Dataset n+ n
−

u(%)
News20 1000 18928 5
WebKB (1) 929 6506 12.5
WebKB (3) 1124 6311 15.1
WebKB (4) 3741 3694 50.32
WebKB (7) 1641 5794 22.07
adult 6414 26147 19.70
ccat 10786 12363 46.59
gcat 6970 16179 30.11
realsim 22238 50071 30.75

tion problem. We combined the train and test splits of a5a available
from [4] to form the whole dataset. The ccat and gcat datasets are
binary classification problems that classify articles into corporate
versus non-corporate and government versus non-government arti-
cles respectively. The classes corporate and government are top-
level categories in the RCV1 training dataset. The realsim dataset
is also a binary classification problem and is obtained from a col-
lection of UseNet articles from four discussion groups, for sim-
ulated auto racing, simulated aviation, real autos, and real avi-
ation [21]. The ccat, gcat and realsim datasets are available at
http://people.cs.uchicago.edu/~vikass/svmlin.
html; see original source details there-in. These datasets cover a
wide range of problems, class imbalance and n. The construction
of train/test sets are explained for each experiment below in detail.

6.2 RSVM versus SVM
In this experiment we compare RSVM and SVM in the SL set-

ting. Apart from a basic comparison, the intention is to study how
well these methods perform under different train and test distribu-
tion conditions; this is important for web classification because,
many a times there is lack of clarity in the space of negative exam-
ples and so it is often the case that the negative examples chosen
for training do not represent that space well.

Experimental Setup We evaluate the performances under dif-
ferent scenarios of train and test distributions. We fix the test dis-
tribution and vary the train distribution. The train and test sets are
constructed as follows. First we randomly split the dataset into two
sets in a 80:20 proportion, while maintaining the same class imbal-
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Figure 2: Macro F Measure of SVM and RSVM-LPU on News20, WebKB and gcat. ρ is as in (8). The top and bottom rows
correspond to the cases, X=20 and 40 respectively.

ance ratio between the positive and negative examples in the two
sets. Let us denote these sets as S and T. Now keeping T as the
test set, the train set is constructed from S as follows. We randomly
select X% of positive examples from S. Let us denote this set as
P. Now keeping P fixed, we randomly select the negative example
set N; to vary the train distribution we vary the size of N (denoted
as |N|). We conduct this experiment on 10 random partitions of
negative examples for each size and repeat this experiment for 3
different sizes of P (denoted as |P|). Since we did not find any no-
ticeable behavioral changes for different |P| we report results only
for one |P| value (corresponding to X=30). The results are given
in figure 1. In the figure

ρ = r(test)/r(train) (8)

where r(A) is the class ratio in A, i.e., the ratio of the number of
positive examples and the number of negative examples in set A.
Thus when the class ratios in the train and test distributions are the
same we have ρ = 1.

Observations The F Measures of RSVM and SVM are very
close. One key observation is that the performances of both the
methods drop rapidly as ρ falls below 1; note that this corresponds
to the situation where there are relatively lesser negative examples
in the train distribution as compared to the test distribution. For
very small values of ρ, we also observed that the performance of
RSVM was better, particularly on the News20 and WebKB datasets
as X decreased. The performances of both the methods improve for
ρ ≥ 1 (the situation where there are relatively more negative train-
ing examples) and their performances are very close. The results
suggest that an insufficient number of negative training examples
(ρ < 1) (with respect to the test set distribution) has significant
impact on performance. RSVM is significantly faster (>3 times).
In fact, on the adult dataset the speed-up was around 10 times; on
this dataset the SVM classifier chooses a high value of CP and CN

for some of the folds, resulting in larger training times. Note that
RSVM is faster only when two hyperparameters are needed in the
standard SVM (i.e., when the class imbalance is high).

6.3 Supervised Learning versus LPU
To represent SL we choose SVM since it is more well known

standard; also, in section 6.2 we saw that its performance is close
to that of RSVM. For LPU we choose RSVM-LPU to represent it.
Our intention is to see how well RSVM-LPU performs in compari-

son to SVM and see if there are any specific conditions under which
it even performs better.

Experimental Setup We construct the train and test sets as fol-
lows. For the LPU setting, we first randomly pick X% of positive
examples from the overall dataset. Let us denote this dataset as P.
Then we split the remaining examples in 80:20 unlabeled-test set
proportion. Let us denote this split as U and T. The main moti-
vation behind this construction is that the unlabeled set is collected
in such a way as to represent the test set in practice. Therefore the
same class ratio is maintained in the unlabeled and test sets. Thus
(P,U) form the training set and T forms the test set. In the SL
setting, we randomly sample negative examples Nsl from the neg-
ative example set Nu in U. Thus, (P,Nsl) form the training set
and T again forms the test set. We conduct this experiment on 10
random partitions for different sizes of Nsl and repeat this experi-
ment on three different sizes of P (corresponding to X=20,30 and
40). The F Measure values corresponding to the cases X=20 and
40 are given in figure 2. The performance results corresponding to
X=30 turned out to be closer to the case of X=40. Note that the
performance in the LPU setting does not change as the ρ-axis re-
flects only the change in the number of negative training examples.

Observations Though unimportant for comparing RSVM-LPU
and SVM, it is worth noting that different values of X correspond
to test sets with different class ratios. Low values of ρ correspond
to lesser number of negative examples. Interestingly, on all the
datasets, RSVM-LPU performs significantly better when ρ is small.
SVM improves as more negative examples are added and the per-
formance almost stabilizes after some point when X=40. When the
number of positive examples is less (X=20), there is some drop in
the performance seen when large number of negative examples is
added; of course the drop is not as high as the one observed when
ρ is small. In general, the peak performance of SVM was observed
approximately around ρ=1, which is expected since the distribu-
tion used for parameter tuning in training matches the distribution
evaluated in testing. Overall, around ρ = 1 SVM does better than
RSVM-LPU. While this improvement is significant on News20 and
WebKB datasets it is not that significant (<3%) on other datasets
like gcat, ccat and realsim.

6.4 Comparison of Various LPU Methods
In this section we present two sets of experiments. In the first ex-

periment we demonstrate the need for hyperparameter optimization
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Figure 3: Macro F Measure and Training (relative) time of the LPU methods (RSVM, BSVM and EN) on News20, WebKB and gcat
for X=30. γ is the percentage of positive labeled examples with reference to the available positive labeled examples |P |.

in LPU methods. In the second experiment we compare the perfor-
mances of the proposed RSVM-LPU method with the BSVM and
EN methods.

Experimental Setup The construction of the sets P, U and N

remains the same as in subsection 6.3. In this experiment we also
study the performances of the LPU methods as the number of pos-
itive examples is increased. We construct the positive labeled set
P̃ by randomly sampling γ percentage of samples from P. Thus
(P̃,U) forms the training set and T forms the test set. Note that
|P̃| = γ

100
|P| and γ = 100 corresponds to the case in subsection

6.3 (that is, P = P̃). We conducted this experiment on 10 ran-
dom partitions of P̃ and repeated this experiment for each size of
P̃. The results given in the figure are average F Measure values ob-
tained from these partitions. We also varied |P| by varying X (cor-
responding to X=20,30 and 40) and since there were no changes
in the behavioral patterns of methods (relative to one another) we
only present the results corresponding to X=30.

Observations on Hyperparameter Optimization Hyperparam-
eter tuning turns out to be important for all three LPU methods,
viz. BSVM, EN and RSVM-LPU. We take EN to illustrate this.
We conducted an experiment to study the effect of hyperparame-
ter optimization as γ is varied. Default hyperparameter values for
EN are: CP = 1 and CU = 1. We observed significant perfor-
mance improvements (more than 10% F Measure value in several
cases) with hyperparameter optimization for EN. The performance
difference with and without hyperparameter optimization was more
at lower values of γ (that is, when the number of labeled positive
examples is low).

Observations on RSVM-LPU, BSVM and EN Methods In this
experiment we performed hyperparameter optimization for all the
methods. Since no specific behavioral differences were seen for
different X values, we give results only for X=30; see figure 3.
All the methods improve their F Measure as γ increases. At lower
γ values, the F Measure values of all the methods fall relatively
sharply. This is both due to the paucity in (positive) labeled exam-
ples as well as the fact that this paucity causes CV based hyperpa-
rameter tuning to become inferior.

Overall RSVM-LPU and BSVM are quite close in classifier per-
formance. There are exceptions too: on News20 RSVM-LPU is
significantly better and, on WebKB BSVM is significantly better.
EN is generally inferior, sometimes quite badly (see, for example,

the results in figure 3 for News20 and gcat). We believe that the
inferior performance of EN is due to inaccurate estimates of both
K and p(s = 1|x), and this affects the final probability score:
p(y = 1|x) = p(s = 1|x)/K; refer to sections 2 and 5 for de-
tails. In general, we observed that the performance comes closer
to other methods as γ increases and this happens due to improved
parameter estimates.

The training times for BSVM and EN are close; RSVM-LPU is
significantly faster than them. As can be seen from figure 3, the
speed-up is more than 3 times; on the adult dataset it was about
10 times. On the adult dataset, the BSVM and EN methods picked
large CU as the optimal value on some of the folds, resulting in
longer training time; on the other hand the RSVM-LPU method
picked the hyperparameter value more consistently.

6.5 Feature Selection in the LPU Setting
We did the feature selection experiment on WebKB and News20

in both LPU and SL settings with RSVM. We note that the feature
selection technique proposed by Calvo et al [3] cannot be directly
compared with our method for the reasons explained earlier (see
section 5). For reference we present results from SL setting using
the proposed AUC based feature selection technique. Note that
our intention here is not to compare AUC based feature selection
method with other feature selection methods in supervised setting,
a study that can be taken up separately.

Experimental Setup The experimental setup is essentially same
as the one described in section 6.4. We set aside 20% of positive
examples (X=20) and set γ = 100. In the SL setting we have both
positive and negative labeled examples, and we set ρ = 1. We fixed
C at 5 · 10−4. We ranked the features using the AUC score of each
individual feature observed in the training set as discussed in Sec-
tion 4. We evaluated the Macro F Measure on the test set as a func-
tion of number of selected features. To assess the quality of features
selected in the LPU setting, we can also evaluate the performance
of SL classifier built with features selected in the LPU setting and
compare it with the performance obtained using features selected
in the SL setting. We considered the following variations of LPU-
LPU, LPU-SL and SL-SL. The prefixes LPU and SL correspond
to the cases where the features are selected from positive/unlabeled
and positive/negative examples respectively. The suffixes LPU and
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Figure 5: Macro F Measure of RSVM in LPU setting with estimated and best threshold values as a function of γ for X=30 on News20
and WebKB; definition of γ is as in the caption of Figure 3.

SL correspond to the cases where the classifier is built in the LPU
and SL setting respectively.

Observations The results corresponding to these variations are
shown in figure 4. On News20, the performances of all variations
are very close. On WebKB, it is observed that the LPU classifier
performance is slightly better than the SL classifier when the num-
ber of features is small. The SL classifier starts performing better
after a sufficient number of features have been added. On both the
datasets, the usefulness of the proposed technique is clearly seen:
even with an order of magnitude reduction in the number of fea-
tures the loss in performance is within 2-3%. Also, the SL classi-
fier performance with LPU selected features is almost same as the
performance achieved with SL selected features.

6.6 Estimated Threshold vs Best Threshold
In this experiment we compare the performances of RSVM clas-

sifier in the LPU setting with estimated and best thresholds. The
experimental setup for the LPU setting remains the same as in sub-
section 6.4. Recall that in the LPU setting we estimate the thresh-
old using 5-fold CV proxy F Measure. To assess the quality of the
threshold estimate we compared the F Measure performances (as a
function of γ) achievable by the estimated threshold and the best
threshold on the test set. The results are given in figure 5. Note
that the proxy F Measure estimate and hence the threshold estimate
are expected to be poor at lower values of γ. This is because the
number of examples available to perform 5-fold CV is very small
and the proxy F Measure cannot be reliably estimated. This effect
is more clearly seen in the News20 dataset as compared to the We-
bKB dataset. We believe this is due to the reason that the class ratio
is lower in the News20 dataset as compared to the WebKB dataset.
The results demonstrate that when γ is reasonably high, the perfor-
mance difference is almost same and is within approximately 2-3%.
Overall, the results in this subsection seem to indicate that further
research to come up with a measure better than proxy F Measure
for tuning threshold is worthwhile. Suppose one has a knowledge

of the fraction of positive examples in the train/test distributions.
How this can be effectively used to choose the threshold is worth
investigating.

6.7 Summary
In this subsection we summarize the key observations from all

the experiments discussed in the previous subsections.

• RSVM vs SVM The performances of both the methods are
very close on the F Measure. RSVM is significantly faster
than SVM due to easier one dimensional hyperparameter op-
timization than the two dimensional search needed with the
SVM (when the class imbalance is high).

• SL vs LPU The performance of RSVM-LPU is better than
SVM operating in the SL setting for small values of ρ. Over-
all there is performance improvement with the SL-setting
around ρ=1 over the LPU setting. While this improvement
is significant on News20 and WebKB it is not that significant
(<3%) on other datasets.

• Comparison of LPU Methods

– Hyperparameter Optimization: This is important for
LPU methods. The performance improves a lot with
hyperparameter optimization. As in the case of super-
vised setting optimization of hyperparameter is easier
with RSVM-LPU compared to BSVM and EN.

– Training Time Comparison: With hyperparameter op-
timization BSVM and EN take similar training time.
RSVM-LPU is faster than BSVM and EN by more than
3-10 times.

– Performance Measures: The performances of RSVM
and BSVM are very close. While EN lags behind on
some datasets at lower values of γ, it catches up as γ
increases; we believe that the lagging behavior at lower
γ is due to inaccurate probability estimates obtained.



• Feature Selection: The proposed AUC based feature selec-
tion technique in the LPU setting works quite well; an order
of magnitude reduction in the number of features is achieved
without significant degradation from the peak performance.
The feature selection from the LPU setting as tested in the SL
setting is interestingly as good as the features selected using
supervised learning data.

• Threshold Setting: When γ is reasonably large the perfor-
mance degradation with the estimated threshold value is typ-
ically within 2-3% of the performance obtained with the best
threshold.

7. CONCLUSION
In this paper we proposed a pairwise ranking based SVM (RSVM)

method to build classifier models from positive and unlabeled ex-
amples. We build a ranking model by encouraging the positive ex-
amples to score higher than the unlabeled examples. Then the final
classifier is built by estimating a threshold parameter. The pro-
posed method is fast and also easy to implement via publicly avail-
able RSVM codes. We also proposed an AUC based feature selec-
tion technique for the LPU setting and demonstrated its usefulness.
We conducted comprehensive experiments with various methods
in both SL and LPU settings on several benchmark datasets and
made several important observations. These experiments show that
RSVM-LPU is worthy of inclusion in the repertoire of good meth-
ods for solving binary classification problems in web applications.
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