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ABSTRACT
Extracting information from web pages is an important prob-
lem; it has several applications such as providing improved
search results and construction of databases to serve user
queries. In this paper we propose a novel structured predic-
tion method to address two important aspects of the extrac-
tion problem: (1) labeled data is available only for a small
number of sites and (2) a machine learned global model does
not generalize adequately well across many websites. For
this purpose, we propose a weight space based graph reg-
ularization method. This method has several advantages.
First, it can use unlabeled data to address the limited la-
beled data problem and falls in the class of graph regular-
ization based semi-supervised learning approaches. Second,
to address the generalization inadequacy of a global model,
this method builds a local model for each website. Viewing
the problem of building a local model for each website as
a task, we learn the models for a collection of sites jointly;
thus our method can also be seen as a graph regularization
based multi-task learning approach. Learning the models
jointly with the proposed method is very useful in two ways:
(1) learning a local model for a website can be effectively in-
fluenced by labeled and unlabeled data from other websites;
and (2) even for a website with only unlabeled examples it is
possible to learn a decent local model. We demonstrate the
efficacy of our method on several real-life data; experimental
results show that significant performance improvement can
be obtained by combining semi-supervised and multi-task
learning in a single framework.

Categories and Subject Descriptors: H.3.m [Informa-
tion Storage and Retrieval] Miscellaneous - Information Ex-
traction, Web

General Terms: Algorithms, Experimentation

Keywords: Information Extraction, Semi-supervised learn-
ing, Multi-task learning, Structured Predictions
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1. INTRODUCTION
Extracting information from web pages is an important

problem. It has several web applications such as providing
improved search results, serving user queries related to re-
views, pricing information of products, etc., using databases
constructed from information extraction. We consider the
problem of domain-centric extraction where a schema cor-
responding to a domain of interest is given. The goal is to
extract attributes specified by the schema from a collection
of pages. Examples of a domain include Books, Restaurant,
Publications etc. The schema for the Books domain will
have attributes such as Title, Author, Publisher and Price.
The pages for this domain are obtained from a collection
of websites like www.amazon.com, www.booksamillion.com,
etc. Similarly, a schema for the Publications domain will have
attributes such as Author, Title, Conference, Pages etc., and
these can be extracted from home pages of faculty members
of different universities.

In all these examples, the attributes of interest are often
organized either as records in a list page or as a single record
in a detail page. Each record is a set of attribute values of
one entity, e.g., a Book or a Publication. Unsupervised meth-
ods [11, 39, 3, 25] are very successful in extracting records
from list pages using structural patterns present in one or
more web pages. In the case of a detail page, the informative
region of the web page plays the role of a record and it can
be obtained using methods such as the ones proposed in [38].
Therefore, throughout this paper we will assume that records
are given and focus on the finer and challenging problem of
extracting attributes from records. It is worth noting that
the unsupervised methods mentioned above are inadequate
for solving this attribute extraction problem. The problem
is challenging due to the following reasons: (1) there are
wide variations in presentation style of information across
the websites. For example, attribute ordering, font size, font
type (e.g., italic, capital), html tag structures, etc., are often
different, (2) the number of websites is large, and (3) some
of the attributes are optional (may not be present in all the
records) and some of the attributes are missing (in all the
records from a website). These reasons also make it hard to
build a global model that generalizes well across the websites.

Other challenges arise from the approach taken to address
the extraction problem. For example, the wrapper induc-
tion [19, 27] method requires supervision; it utilizes labeled
data to learn extraction rules on the HTML tag structure of
pages. The need to have labeled data for each website and
the presence of noisy structures within a website makes this
method impractical for scaling to a large number of websites.



In recent years there has been a significant amount of re-
search work done in building machine learned models for
web information extraction. [5, 1, 29, 30, 41] apply sequen-
tial models like Hidden Markov Models (HMM), Conditional
Random Fields (CRF) and Markov Logic Networks (MLN)
to segment instances such as citations and addresses. All
these methods focus on building a global model. Global
models do not generalize well across websites whenever there
are wide variations in structure and formatting across the
websites (as frequently observed in domain-centric extrac-
tion problem). We demonstrate this issue using CRF models
on the attribute extraction problem from records. This issue
is expected to arise even when sophisticated models like hi-
erarchical CRFs (HCRF) [41] and MLNs [30] are used. The
key reason for this is that important features (e.g., attribute
ordering, font type) that are discriminative within a site tend
to become less effective whenever these features vary widely
in the training examples from different websites. This prob-
lem can be alleviated by building local models where these
discriminative features can be effectively made use of. Note
that although we use a simple CRF model in our attribute
extraction problem to demonstrate the usefulness of local
models, our approach is quite generic and can be extended
with HCRFs and MLNs. Therefore, our intention in this pa-
per is not to demonstrate superiority over any of the existing
information extraction methods using HCRF or MLN mod-
els; hence, we do not make any such comparisons. Our fo-
cus is on demonstrating the usefulness of building machine-
learned local models and how these models can be effectively
learned jointly when the labeled examples are scarcely avail-
able.

Building machine-learned models in supervised and semi-
supervised settings require labeled data. In our problem
context, getting labeled data from each website is extremely
difficult as the number of websites is large. Furthermore,
it is expensive to get a large amount of labeled data even
for a few websites, particularly for structured data (such as a
sequence or a tree) where the number of nodes and attributes
is large.

The aim of the paper is to address two important aspects
of the domain-centric extraction problem: (1) limited la-
beled data is available only for a small number of websites
but plenty of unlabeled data is available from all the web-
sites in a collection, and (2) a machine-learned global model
does not generalize adequately well across many websites.

Our approach is based on connecting examples from dif-
ferent websites through a graph and learning local models
for the websites jointly via graph regularization (Section 4).
It exploits the fact that although there are variations in the
presentation styles across the websites, there is useful com-
mon information that exists across the websites. For ex-
ample, attributes such as Author, Title, Conference, Pages

have (similar) content features that are common across the
websites; our approach makes good use of such information.

1.1 Our Contributions
We propose a weight space based graph regularization

method. Our method has several advantages. First, it can
use unlabeled data to address the limited labeled data prob-
lem and falls in the class of graph regularization based semi-
supervised learning (SSL) approaches. In this aspect, our
work is related to [20, 2]. But, our formulation is much sim-
pler and a lot easier to implement with publicly available

software packages for structured predictions; unlike [20, 2]
we directly work in the weight space formulation instead of
the dual formulation.

Next, to address the generalization inadequacy of a global
model, we propose to build a local model for each web-
site. Furthermore, we suggest to learn the local models
jointly to address the limited labeled data aspect; again,
the weight space based graph regularization method can be
used for joint learning. Viewing the problem of building a
local model for each website as a task, our method can also
be seen as a graph regularization based multi-task learning
(MTL) approach. Learning the models jointly via the pro-
posed method is useful in two ways: (1) learning a local
model for a website can be effectively influenced by labeled
and unlabeled data from other websites to get improved per-
formance; and (2) even for a website with only unlabeled
examples it is possible to learn a decent local model for it
(which is not possible even for wrapper learning approaches).
Thus, our method addresses the limited labeled data aspect
via a unified framework for semi-supervised and multi-task
learning. From a multi-task learning viewpoint, our work
is related to [13]. However, our formulation goes beyond
binary/multi-class problems, applies to structured predic-
tion models, and is suitable for web information extraction.
We are not aware of any work on multi-task learning that
addresses the problem of learning local structured prediction
models for totally unlabeled websites.

We conduct experiments on several real world datasets
constructed from web pages of domains such as Books, CS-

Faculty, Seminars and MLConfs. The experimental results
demonstrate the effectiveness of the proposed method for
semi-supervised, multi-task and semi-supervised multi-
task (combined semi-supervised and multi-task) learning
scenarios. The results also show that the performance of lo-
cal models built for totally unlabeled websites is better than
that of the global model.

2. PROBLEM FORMULATION
Consider the problem of extracting attributes from a given

set of records. Let x and y denote the input and output rep-
resentation of a record. We choose a suitable tokenization
and view each record as a sequence of nodes; x is a sequence
of feature vectors that are functions of the textual content
and/or certain structural properties of these nodes; y is a
sequence of labels assigned to these nodes where each label
belongs to a label space Y. For example, the label space of
a publication record could be {Author,Title,Date,

Conference,Pages,Others}. We use the terms record, exam-
ple and sequence interchangeably in this paper.
Data: Assume that we have a set of labeled and unlabeled
examples. These examples come from a collection of web-
sites: S = {S1, S2, . . . , SM}. Let SL denote the set of web-
sites which contain at least one labeled example. Websites
in SL can also have unlabeled examples. Let SU denote
the set of websites in which we have only unlabeled ex-
amples; |SU | and |SL| denote the cardinalities of SU and

SL. Let (x
(m)
i ,y

(m)
i ) denote the i-th example in Sm and

let Tm = {(x(m)
i ,y

(m)
i ) : i = 1, . . . nm} denote the training

set in Sm. Let Lm and Um denote the set of indices of the
labeled and unlabeled sequences from Sm. Thus, a label

y
(m)
i is available only if Sm ∈ SL and i ∈ Lm. Finally, let

TM = ∪M
m=1Tm where M = {1, . . . ,M}.



Problem Formulation (Local Models): We are inter-
ested in building a local probabilistic model p(y|x;Wm)
for each website Sm to extract the attributes from the se-
quences. Wm denotes the local model weight vector of Sm.
Thus, given a set of labeled and unlabeled examples from
S, the goal is to learn the local model weights W = {Wm :
m = 1, 2, . . . ,M}.

When we have only labeled examples, we can build the
local models by optimizing the objective function L(TM,W)
defined as:

λ

2

X

m:Sm∈SL

||Wm||2 −
1

|Lm|

X

i∈Lm

log p(y
(m)
i |x(m)

i ;Wm) (1)

where λ > 0 is a regularization constant. Note that in the
absence of connections between the learning tasks of the web-
sites, (1) becomes separable. For such a case, the local model
for each website is built separately using only the labeled ex-
amples from that website. We will refer to the models built
in this scenario simply as the Local models.
Problem Formulation (Global Model): Traditional ex-
traction models learn a global weight vector W that is same
for all websites. When we have only labeled examples, the
global model is built by optimizing the objective function
L(TM,W) defined as:

|SL|λ

2
||W||2 −

X

m:Sm∈SL

1

|Lm|

X

i∈Lm

log p(y
(m)
i |x(m)

i ;W). (2)

We will refer to the model thus built as the Global model.
Recall the two main goals of this paper: (1) to address

the limited labeled data problem and (2) to overcome the
generalization inadequacy of a global model. We address
these problems through a graph regularization based semi-
supervised multi-task learning method. The use of unlabeled
examples results in semi-supervised learning. The problem
of building a local model for each website can be viewed as
one task; and, learning the models jointly results in multi-
task learning. Now, the objective functions (1) and (2) are
not adequate for semi-supervised learning (SSL) as there
are no terms that involve unlabeled examples. It is also not
adequate for multi-task learning (MTL) because there are
no terms that connect the multiple tasks. Thus, to facilitate
SSL and MTL we propose to add a weight space based graph
regularization term G(W) to the objective functions (1) and
(2). Before we present our approach, we give details of the
probabilistic model for sequences that we use in this paper.

3. CRF MODEL
We now make precise, the probabilistic model p(y|x;W)

for sequences used in the previous section. Given a record,
we pose the problem of extracting attributes as a sequence
labeling problem. For this purpose, we use the conditional
random field (CRF) model [21]. CRF is a Markov ran-
dom field that defines a conditional distribution of the la-
bels y of a sequence conditioned on the input x in the fol-
lowing form: p(y|x;W) = 1

Zx

Q

c∈C ψ(xc,yc) where: W
denotes the model weights; C is the set of cliques present
in the sequence; yc denotes the components of y present
in a clique c; ψ(·) is a potential function that takes non-
negative values; and, Zx is the partition function defined
as Zx =

P

y

Q

c∈C ψ(xc,yc). The potential functions are

expressed as: ψ(xc,yc) = exp(
P

k
wkfk(xc,yc)) where the

fk(xc,yc)s are feature functions. Then, we have:

p(y|x;W) =
1

Zx

exp
`

X

c∈C

X

k

wkfk(xc,yc)
´

. (3)

In linear chain sequence labeling problems [21], common fea-
ture functions are represented as fk(xc,yc) where c is either
a node clique c with yc ∈ Y or an edge clique c connect-
ing two adjacent nodes in a sequence, with yc ∈ Y2. Thus,
we have two types of feature functions, namely, node and
edge feature functions. In general the individual feature
functions take real values; in many cases they are boolean.
For example, a node feature function fk(xc,yc) = I(xc ∈
AddressDictionary)∧ (yc = Address) is TRUE when the tex-
tual content of xc is in the address dictionary and assigned
label Address. Here, I(·) is the indicator function taking
value 1 when the argument is TRUE and 0 otherwise.

In supervised learning, the CRF model weights W are
learned using a set of labeled training examples, T = {(xi,yi) :
i = 1, . . . , n} by minimizing a regularized negative log likeli-
hood function: L(T,W) = λ

2
||W||2− 1

n

Pn

i=1 log p(yi|xi;W).

Thus, the function in (1) is L(TM,W) =
PM

m=1 L(Tm,Wm).
The objective functions (such as L(T,W)) considered in this
paper do not have closed form solutions to their minimizers;
so, the optimal solutions are obtained by using optimization
techniques like L-BFGS. Finally, using the learned weights,
the optimal labeling of a new sequence (referred as inference)
is defined as: ŷ = argmaxyp(y|x;W), and is obtained using
the Viterbi algorithm.

4. OUR APPROACH
In this section we present our weight space based graph

regularization method. This method can be used in one
of the following three modes: (1) semi-supervised learning
using labeled and unlabeled examples; (2) multi-task learn-
ing of local models; and (3) combined semi-supervised and
multi-task learning of local models. The third combined set-
ting is especially powerful since local models can be learned
even for websites with only unlabeled examples.

Our approach is to construct a graph that connects se-
quences from same or different websites. The basic idea is
to make use of common information that exist across the
sequences in influencing the node labels of the sequences.
That is, if two nodes belonging to two different records have
nearly the same features firing then these nodes are highly
likely to have the same label. We illustrate this idea through
some examples.

Consider two publication records, one each from two dif-
ferent conference websites. Such records consist of nodes
with labels such as Author, Title, Affiliation. For exam-
ple, suppose we have node j and the node features are:
I(FirstLetterCapital(xj)), I(xj ∈ AuthorDictionary), I(xj ∈
TechTermDictionary) and I(ContainsPunctuation(xj+1)). Let
us say node j has label Author. The contents of this node
may be such that the three features other than I(xj ∈
TechTermDictionary) fire. Suppose there is another node j ′

with content such that the same set of features fire. It is very
likely that the node j′ also has the label Author. For some
other node j′′ let us say the feature I(xj ∈ AuthorDictionary)
also does not fire. It is likely that j′′ also has Author as the
label, but to a lesser extent than j′. Thus, it is reasonable
to capture our belief that two nodes have the same label by



using a similarity score computed from their feature vectors
(e.g., the number of features that are commonly fired)1.

We can extend this idea to connect an edge (i.e., a pair of
adjacent nodes) in one record to an edge in another record.
In this case, for computing similarity we concatenate the
feature vectors of the two nodes that constitute the edge. If
two edges have similar concatenated feature vectors then it is
very likely that both have the same label pairs. Connecting
such edges (i.e., putting pressure to make them have the
same label pairs) is certainly very useful for improving a
local model since the same label ordering is expected in all
records of one website. Even in the case of edge connections
going across websites with different attribute ordering, the
edge connections are useful in handling self transitions such
as (Title,Title) and (Author,Author).

Which features should we use for determining similarity?
Clearly, using global features that are useful both within and
across websites is a good idea. Within a local model, it is also
helpful to use local features. For example, XPath features
(i.e., html tag structure with some DOM node properties)
are very useful for structured pages, where DOM nodes with
the same XPath are expected to have the same label. Simi-
larly, we may expect an attribute to have the same format-
ting properties, e.g., FontSize, FontType (i.e., bold, italic),
etc. Due to the local nature of such features, we can connect
nodes using these features only within each website and not
across websites.

To encode our expectation that similar nodes (or edges)
have same label (label pair), we enforce their class marginal
probabilities to be close, through regularization. Note that
marginal probability computation takes the entire sequence
into account. Below, we formalize the above idea, and facil-
itate SSL and MTL by adding a graph regularization term
G(W) to the objective functions (1) and (2).

Graph Regularization: The graph regularization term is
a function defined on a graph G. The graph G consists of a
set of vertices (V) and connections (O). To avoid confusion,
we use the terminologies (node,edge) for the CRF cliques in
the input sequences, and (vertex,connection) for the graph
G. Each vertex has a score vector and each connection has a
weight. A connection weight is a similarity score computed
using features of the vertices involved in the connection. The
vertices correspond to the nodes and edges of the sequences.
Then, the graph regularization term is defined using the con-
nection weights and vertex scores. As we show below, the
vertex scores are dependent on the model weights. Thus, the
method derives the name weight space based graph regular-
ization. The basic idea is to regularize the model weights
by constraining the scores of a pair of vertices to be close
when their connection weight is large. Before we define the
graph regularization term, we first explain how: (1) vertices
are formed and connected, (2) connection weights are com-
puted and (3) vertex scores are assigned.

Vertices and Connecting Sequences: The role of G is to
connect the sequences using some similarity measure. From
section 3, we know that a sequence is characterized by a set
of node and edge cliques, where an edge connects two ad-

1Relational information has been used for collective clas-
sification of web documents; see for example, [23, 17, 33].
However, our work is different as we work with structured
prediction models in the information extraction context; fur-
thermore, we build local models.

jacent nodes. We connect two sequences by connecting the
cliques of the sequences. Thus, each clique forms a vertex in
G. With this definition, a vertex v is indexed by a 3-tuple
(m, i, c) where c is a clique in the i-th sequence from the m-
th website. Let N and E denote the sets of node and edge
cliques in the collection of sequences. We have V = N ∪ E
and |V| = |N | + |E|. Two cliques (vertices) are connected
only if they are of the same type. In other words, a node
(edge) clique is connected only to other node (edge) cliques.
Graph Structure: G is constructed by connecting cliques
of labeled and unlabeled sequences obeying the above type
constraint. Thus, G has two separate components which we
refer to as node graph GN and edge graph GE .

Connection Weights Computation: We now give de-
tails on finding the connection weight φv,v′ for each connec-
tion (v, v′) ∈ G. From Section 3 we know that the feature
functions fk(xc,yc) are dependent on different features illus-
trated above. There will be many such features for a clique c
and we collect these features into a feature vector Fv. Note
that for an edge clique we collect feature vectors of both the
nodes into a single feature vector. Using feature vectors of
the vertices in a connection, we set the connection weight
as: φv,v′ = D(Fv,Fv′) ≥ 0, a similarity score between the
feature vectors. An example of a similarity score is the inner
product of the two feature vectors. Thus, when the feature
vectors of the two vertices (v, v′) are similar, φv,v′ → 1 and
when they are dissimilar φv,v′ → 0.

The connection weights of GN and GE can be collected
into two separate matrices, ΦN and ΦE . Note that ΦN is
of size |N | × |N | and ΦE is of size |E| × |E|. When the
number of examples (particularly, with the unlabeled exam-
ples) is large these matrices can be huge. Therefore, it is
useful from storage and computational viewpoints to con-
struct sparse matrices by connecting each vertex to only its
k nearest neighbors. In our information extraction applica-
tion, the number of features is small; therefore, defining a
distance metric and finding nearest neighbors are not diffi-
cult.

Vertex Scores Computation: To encode our expectation
that vertices having similar feature vectors have the same la-
bel, we assign the class marginal probability distribution as
the score vector for each vertex. Note that for each clique
c, the marginal probability distribution is defined over all
possible label assignments of yc. Thus, the score vector is
of size |Y| for a node clique, and is of size |Y|2 for an edge
clique. Let us call this score vector of a vertex v as (gv). For
notational simplicity we have suppressed the dependence of
gv on the weights and the nodes associated with the clique.

Graph Regularization Term G(W): Given G, vertex
scores, gv, ∀v ∈ V and connection weights, φv,v′ , ∀(v, v′) ∈
O, we define G(W) as:

µN

ZN

X

v,v′∈N

φv,v′D(gv,gv′) +
µE

ZE

X

v,v′∈E

φv,v′D(gv,gv′) (4)

where µN and µE are regularization constants; D(·) is a di-
vergence measure such as Kullback-Leibler or squared error
loss; ZN and ZE are graph normalization2 terms defined

2Other graph normalization schemes such as normalizing the
connection weights by the degree of a vertex are also pos-

sible. For example, use φ̃v,v′ =
φv,v′

P

v′∈GN
φv,v′

, ∀v ∈ GN and



as ZN =
P

v,v′∈N φv,v′ and ZE =
P

v,v′∈E φv,v′ . Other
graph normalization schemes can also be used. Thus, the
graph regularization term connects the sequences by con-
necting their cliques. The first and second terms represent
contributions from the node graph GN and the edge graph
GE respectively. The model weights are regularized by con-
straining the scores of the cliques to be close whenever the
similarity score between the cliques is large.

With the introduction of (4) the objective functions asso-
ciated with the Local and Global models in (1) and (2) get
modified to L(TM,W) + λ

2

P

m:Sm∈SU
||Wm||2 +G(W) and

L(TM,W) + |SU |λ
2

||W||2 + G(W) respectively. Note that
weight regularization corresponding to SU is also added.

The complexity of function and gradient computations of
gv is O(|F |V ) where |F | and V are the feature size and
sequence length respectively; this causes the optimization
of the above mentioned objective functions to be expen-
sive for large datasets. Therefore, to reduce the compu-
tational cost, we use an alternate score vector. From (3),
we see that the score of a sequence (x,y) can be defined
as: H(x,y) =

P

c∈C hc(xc,yc;W) where hc(xc,yc;W) =
P

k
wkfk(xc,yc) is the score contribution from clique c and

is dependent on yc. Thus, for each clique c, we compute
gv comprising of the scores corresponding to all possible la-
bel assignments of yc. Note that gv is linear in the model
weights; therefore, the function and gradient computations
are cheap.

There is an additional advantage associated with using
the alternate score vector. Since gv is linear in the model
weights and φv,v′ ≥ 0, ∀v, v′ ∈ V, each of the sub-terms in
(4) is quadratic in the model weights, and is convex. Note
that (2) and (1) are also convex. Therefore, adding (4) to
(2) or (1) results in a convex optimization problem with a
unique solution. This solution is easily and dependably ob-
tained by using optimization techniques like L-BFGS. The
alternate score is not just cheaper; our experimental results
(see the next section) show that very good generalization
performance is achieved with it. Finally, with learned W,
the Viterbi algorithm is used to make predictions.

Learning Scenarios: Let us revisit the three modes of us-
ing G mentioned at the beginning of this section. We make
use of G for two purposes. It is used to connect the exam-
ples (labeled and unlabeled), and it is also used to connect
multiple tasks by connecting the examples of two different
tasks. We show below how different learning scenarios can
be created by setting up the graph in different ways. In each
scenario the solution is obtained by using optimization tech-
niques like L-BFGS (as in supervised learning).

(1) Semi-supervised Learning: In the Global model sce-
nario, G connects the examples (labeled and unlabeled) across
all the websites (S). In the Local models scenario, G con-
nects the examples (labeled and unlabeled) only within each
website. In this scenario, the examples from SU are not
used, and the local models can be learned independently as
there are no connections between the examples from differ-
ent sites. In these scenarios, the unlabeled examples are also
used to learn the models. We refer the models built in these
scenarios as SSL-Global and SSL-Local model(s) respectively.
(2) Multi-task Learning: This is applicable only in the

set ZN = 1
|N| . Similar normalization can be done for all the

vertices in GE and set ZE = 1
|GE | .

Local models scenario and assume that there are only labeled
examples (i.e.,SU is empty and all the unlabeled sets Um in
SL are empty). The graph connects the labeled examples of
any two different tasks. We refer the model built in this sce-
nario as MTL models and all the models are learned jointly.
Thus, the local model of a website is influenced by the la-
beled examples from other websites. This is useful when the
number of labeled examples in each website is small.
(3) Semi-supervised Multi-task Learning: In this sce-
nario, the graph connects labeled and unlabeled examples
of any two tasks. Furthermore, all the models are learned
jointly. We can also have only unlabeled examples from a
website.3 Thus, unlike the above mentioned SSL and MTL
learning scenarios, we can learn a local model for such a
totally unlabeled website as well. The models built in this
scenario are referred as SSL-MTL models.

5. EXPERIMENTS
In this section, we report experimental results with real

life datasets which demonstrate the effectiveness of our graph
based regularization method in semi-supervised, multi-
task and semi-supervised multi-task learning scenarios.

5.1 Experimental Setup
Learning Scenarios: As explained in Sections 2 and 4,
we consider various learning scenarios and they are sum-
marized in Table 1. These scenarios arise due to the fol-
lowing variations: (1) the composition of dataset (labeled
examples (Lab.), unlabeled examples (UnLab.) and a com-
bination), (2) model learning (independent (abbreviated as
indep.) and joint); also, we have SL: Supervised, : SSL:
Semi-supervised and MTL: Multi-task learning, (3) con-
nection (within sites and across sites) and (4) number of
models (|SL| and |SU | denote the number of labeled and un-
labeled websites).

Datasets: We constructed four datasets Books,Seminars,
CS-Faculty and ML-Confs. Each dataset consists of a col-
lection of list pages and each list page has multiple records.
The list pages were collected from different websites and
grouped per website to facilitate local model learning. The
Books dataset has pages from eight business websites like
www.amazon.com with one page per site. In most pages, the
number of records per page varies from 15 to 100. Each
record represents attributes (given below) of a book. The
Seminars dataset has pages from five university websites and
there were 2 − 4 pages per website. The number of records
per website is around 50. Each record represents attributes
of seminar announcement. The CS-Faculty dataset has pages
from five university websites with one page per website. The
number of records per page is around 40. Each record rep-
resents attributes of a faculty in a university. The ML-Confs

dataset has 5 websites with one page per site and each page
has around 50 records representing paper details (from ICML

and KDD conferences).

Attributes: The attributes for each dataset are given as:
Books: Title, Author, Publisher, Price, ISBN

Seminars: Title, Speaker, Date, Affiliation, Host

3The local model weights for a completely unlabeled website
is derived using only the weight and graph regularization
terms. Therefore, closed form expression can be obtained in
the case when the squared error graph regularization term
defined in (4) is used.



Model Lab. UnLab. G(W) Learning # Models Obj. Function
Local Yes No No independent (SL) |SL|

P

m:Sm∈SL
L(Tm,Wm) (equation (1))

Global Yes No No (SL) 1
P

m:Sm∈SL
L(Tm,W) (equation (2))

MTL Yes No across joint (SL-MTL) |SL|
P

m:Sm∈SL
L(Tm,Wm) + G(WSL

)

SSL-Local Yes Yes within independent (SSL) |SL|
P

m:Sm∈SL
L(Tm,Wm) + G(WSL

)

SSL-Global Yes Yes across (SSL) 1
P

m:Sm∈SL
L(Tm,W) +

|SU |λ
2

||W||2 + G(W)

SSL-MTL Yes Yes across joint (SSL-MTL) |SL ∪ SU |
P

m:Sm∈SL
L(Tm,Wm) +

P

m∈SU

λ
2
||Wm||2 + G(W)

Table 1: Learning Scenarios (see sections 4 and 5.1 for more details). Notations: SL and SU are labeled and unlabeled

websites. WSL
= {Wm|m : Sm ∈ SL} and W = WSL∪SU

.

CS-Faculty: Title, Name, Position, Education, Research Inter-

ests, Phone, e-mail

ML-Confs: Title, Author, Affiliation, PaperID

In each dataset, there is also an attribute Others which cap-
tures any text that does not fall under the above categories.
We manually labeled all the attributes in each record for all
the datasets.

Features: We used only global features in all our experi-
ments.4 The records were tokenized at word level. Of course,
one could use simple segmentation models and this would
help in improving the performance further. The content
features were defined at a higher level of abstraction. Thus,
the number of features was small. For numeric attributes
like Date, Price, Phone, ISBN, PaperID, we used features
such as ContainsNumber, ContainsPriceSymbol, Has3Digits,
Has10Digits, HasMonth, ContainsAMPM, etc. We used a
dictionary of person names for attributes such as Author,
Speaker, Host and had a feature InPersonNameDictionary.
We also had dictionaries for other attributes Title, Research

Interests, Position etc, and these dictionaries were constructed
from the dataset. These types of content features were used
to generate the node and edge features of the CRF model.

Train-Test Split: We used 70% of the total dataset for
training and 30% for testing. Note that the split happens
for each website so that we can evaluate the performance for
the local models at the site level. The training set was split
into two sets: (1) labeled examples and (2) unlabeled ex-
amples. We varied the percentage of labeled examples from
5-40% and evaluated the performance. Note that in many
cases, the number of labeled records per site is 1 when the
percentage of labeled examples is small. Finally, note that
as we increase the percentage of labeled examples, the size of
the unlabeled examples reduces. This is because the train-
ing set size is fixed.

Evaluation Metric: We evaluated the F-score performance
for each attribute on the test data. Due to space constraint,
we present only average F1-score performance computed us-
ing all the tokens (attributes). In the experiments that in-
volve partial labeled websites (that is, Sm ∈ SL) and totally
unlabeled websites (Sm ∈ SU ) we also report the performance
on the test sets of partially labeled websites and totally un-
labeled websites separately.

Graph Construction and Parameter Settings: To con-
struct G we used inner product of the feature vectors of the
cliques to compute similarity scores. To restrict the graph
size, we used k-nearest neighbors and set k = 20. We en-
sure that an unlabeled example is connected to a labeled

4This is done to show a proof of concept of our approach.
Inclusion of local features can boost the performance of our
method significantly.

example within one hop. This helps in getting improved
performance. For graph normalization, we used ZN = ZE =
P

(v,v′)∈G φv,v′ and set µN = µE = 200. For weight regular-

ization, we set λ = 0.01. Due to computational reasons, we
did not use cross-validation (CV) to set these parameters.
Using CV would help in getting improved performance.

5.2 Experimental Results
We conducted several experiments with each experiment

focusing on a different learning scenario. In all the experi-
ments we used 3 partially labeled websites (PLS) (i.e.,|SL| =
3). We indicate explicitly whenever totally unlabeled web-
sites were included; we experimented with |SU | = 1 and 2.
We evaluated the performance on varying combinations of
the websites in SL and SU . Due to space constraint, we
present only some of the results.

1. Local versus Global:
We used three websites as the dataset and varied the per-

centage of labeled examples. The results are shown in the
top row of Figure 1. Two key observations can be made. (1)
As the number of labeled examples per website increases,
the performance of the Local models is significantly better
than the Global model; this emphasizes the need for Local

models. (2) When the number of labeled examples per web-
site is insufficient, node features from other websites help;
as a result the Global model is better (except the case of
Books dataset). In the Books dataset we had at least 8%
more records per site on average than the other datasets;
therefore, Local models were able to learn better even with
5% labeled data per site.

2. Local versus MTL:
The dataset is same as the one used in the Local models

scenario. The results are given in the bottom row of Fig-
ure 1. It is clearly seen that the MTL local models learned
jointly using graph regularization outperform the Local mod-
els learned independently. On comparing the two rows in
Figure 1, we also see that the performance of the MTL model
outperforms the Global model. It is seen that our weight
space based graph regularization with MTL helps in making
use of labeled examples from other websites constructively
(even in the presence of variations across the websites); and,
the improvement is significant (3%− 8%) when very few la-
beled examples are available. Thus, the proposed method
addresses both the limited labeled data and generalization
inadequacy problems.

3. Global versus SSL-Global:
We expand the dataset used in the experiment to build

the Global model by including unlabeled examples. Fig-
ure 2 shows the performance comparison of the Global and
SSL-Global models. When the number of labeled examples
is not very small, SSL-Global model outperforms the Global
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Figure 1: Supervised and Multi-task Learning - Average F1-score performance. Top Row: Local Models versus
Global Model. Bottom Row: Local versus MTL Models. |SL| = 3 and |SU | = 0.
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Figure 2: Supervised and Semi-supervised Learning - Average F1-score performance - Global versus SSL-Global.
|SL| = 3 and |SU | = 0.
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Figure 3: Supervised, Semi-supervised and Multi-task Learning - Average F1-score performance - Local, SSL-

Local and MTL models. |SL| = 3 and |SU | = 0.
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Figure 4: Semi-supervised, Multi-task and Semi-supervised Multi-task Learning - Average F1-score perfor-
mance - SSL-Local, MTL and SSL-MTL models. |SL| = 3 and |SU | = 0.
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Figure 5: Totally Unlabeled Sites (TUS) Scenario: Average F1-score performance of the SSL-MTL and Global-

SSL models on test sequences of partially labeled sites (PLS - |SL| = 3) and TUS on various datasets. Top
Row: 1 TUS and Bottom Row: 2 TUS. Legends in the right most plots applies to all the plots.

model on Books, Seminars and CS-Faculty datasets. In the
ML-Confs dataset, the graph is not that good (compared
to other datasets), possibly due to weaker features for the
attribute Title, resulting in no improvement; this is also ob-
served in SSL-Local and SSL-MTL models discussed below.

4. Local versus SSL-Local:
From Figure 3 we see that the performance of SSL-Local

is better than Local in most cases and it is significant in
some cases. The performance is slightly inferior only in one
case, on the MLConfs dataset (when the number of labeled
examples is high).

5. SSL-Local versus MTL:
We also compare the performance of Local models with

Semi-supervised (SSL-Local) and Multi-task (MTL) learning.
Figure 3 shows that the performance improvement obtained
using multi-task learning is significantly higher. Note that
in the MTL scenario, the connections are between the la-
beled examples across the sites. Thus, the weights are ad-
justed more appropriately by trading-off between the likeli-
hood term and graph regularization term. In semi-supervised

learning, there are also connections between unlabeled ex-
amples. Therefore, there is more freedom. Recall the within
one hop condition used in our graph construction. Thus, the
scores of the connections having only unlabeled examples
are regularized only indirectly through the score propaga-
tion between the labeled and unlabeled examples, resulting
in lesser gain.

6. SSL-MTL:
Recall from Table 1 that SSL-MTL combines semi-supervised

and multi-task learning. Figure 4 depicts the performance
comparison of various local model learning scenarios. We
have already seen that MTL models outperform Local mod-
els. Here, we see that combined Semi-supervised Multi-
task learning provides significant additional gain in sev-

eral cases (see for instance, Books and Seminars datasets).
Thus, the proposed method is effective in combining semi-
supervised and multi-task learning in a single framework.

7. Totally Unlabeled Websites:
The aim of this experiment is to demonstrate that good

local models can be built even for websites with totally un-
labeled examples. We evaluate the performance on the par-
tially labeled sites (PLS) and totally unlabeled sites (TUS).
From Figure 5 (one and two totally unlabeled sites), the
following observations can be made. (1) In the case of
PLS, SSL-MTL models perform better than the SSL-Global

model on Books and CS-Faculty datasets; on the remaining
datasets, they are comparable. (2) In the case of TUS, SSL-

MTL models perform better in many cases, viz., Books, Sem-

inars and CS-Faculty datasets; it is comparable to SSL-Global

on ML-Confs dataset. These results clearly demonstrate that
decent local models can be built for websites with completely
unlabeled examples using our method, though the accuracy
is affected by the degree of similarity between the different
sites.

8. Varying Unlabeled Website:
In practice we can at most have a few websites with la-

beled examples. These partially labeled sites are used to
build the local models for totally unlabeled websites. One
practical scenario is to build a local model for one TUS at a
time. The aim of this experiment is to evaluate the proposed
method in this scenario. Figure 6 shows the results obtained
on the Books dataset, where we built SSL-MTL models with
3 fixed PLS and varied 1 TUS. The results show that the per-
formance on PLS is almost same. As one would expect some
variations in the performance are seen across the totally un-
labeled websites. This is because the difficulty of a website
varies in terms of several optional and missing attributes in
the sequences. However, we get decent performance on all
TUS.
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Figure 6: Varying Unlabeled Site Scenario - Aver-
age F1-score performance of SSL-MTL models on the
Books Dataset. The website numbers used as PLS
(|SL| = 3) and TUS (|SU | = 1) in a set of 8 websites
are indicated.

6. RELATED WORK
[7, 31] present comprehensive surveys on existing tech-

niques of web information extraction.
As we indicated in section 1, unsupervised learning tech-

niques such as RoadRunner [11], DEPTA [39], and cluster-
ing based techniques [3, 25] are useful for extracting records
from list pages via repetitive patterns in the HTML tags of
one or more pages. They are ineffective for the finer problem
of attribute segmentation.

There exist several methods for attribute extraction from
many websites using minimal/weak supervision [1, 26, 40,
28, 24, 10, 9, 34, 15]. Let us look at some representative ones.
To learn wrappers for new websites, Chuang et al. [9] pro-
pose a method for synchronized data extraction using con-
textual information from reference websites. In contrast, our
solution is based on machine-learned discriminative models.
Senellart et al. [34] trained CRF models using high precision
annotated records which are obtained using domain knowl-
edge. Gupta et al. [15] address the problem of constructing
a table for n-tuple record type queries. After collecting a set
of list pages from the web using the queries, they build inde-
pendent local CRF models using annotated records obtained
from an existing database and extract attributes of inter-
est. The extracted records are then added to the database.
This is a pipelined approach that works only when there are
matching records across the websites; our method does not
require that assumption. Unlike [34, 15] we build the models
jointly and make use of unlabeled examples.

Among the SSL approaches for sequence learning [20, 2,
36, 37, 18, 35], our method is closely related to [2, 35]. As
in our method, [2] connects cliques of the sequences. While
our method is weight space based and simple, [2] optimizes
in dual space which requires computationally intensive ma-
trix inversion (cubic in graph size). [35] proposes a graph
regularization based SSL approach for a POS tagging do-
main adaptation problem; unlike our method, their method
alternates between model parameter learning and marginal
probability smoothing using graph regularization. None of
the above mentioned approaches build local models jointly
and they do not learn local models for new websites.

There has been a significant amount of work on multi-task
learning [6, 14, 13, 4, 22, 16]. Of these only [13] builds local
models using a graph that connects multiple tasks; even this
work does not build a model for a task with totally unlabeled
examples. Also, the main focus of these papers is not on the
structured outputs problem for information extraction.

In other related work on domain adaptation [32, 12, 8],
the approach of Duan et al. [12] is more close to our ap-
proach. However, our graph construction procedure is dif-
ferent; also, like [8] it only addresses a multi-class classifica-
tion problem and not the structured output problem. Fur-
thermore, unlike our approach none of the above mentioned
works learn the models jointly.

7. FUTURE WORK
In this section, we discuss several extensions that are pos-

sible in this framework. The graph regularization term that
we used in this paper is based on squared error loss. An
alternative way is to regularize using Kullback-Leibler (KL)
divergence computed using probability scores of cliques. This
can be done by defining the probability score for a label as-
signment y as pv(y) = 1

Zv
exp(gv(y)), ∀y ∈ Y (or Y2 for an

edge clique) where Zv is a normalizing constant. Next, the
graph G plays a very important role in getting improved per-
formance. Using different similarity measures and graph
normalization schemes can also be useful. Another possibil-
ity is to group the content features into various sub-groups
and construct a graph for each sub-group. From local mod-
eling viewpoint, local features like XPath based features are
very useful. Therefore, adding local features into the model
and constructing a graph based on these local features will
help in boosting the performance significantly on the to-
tally unlabeled websites. Use of entropy regularization [18]
for semi-supervised learning has been explored. Extending
this to semi-supervised multi-task learning is another
interesting direction. Finally, note that although we only
experimented with sequences, the framework is general and
is applicable to more complex structured outputs such as
trees, graphs, etc. Also, it can be used to build structured
support vector machine (SVMStruct) models.

8. CONCLUSION
In this paper we proposed a weight space based graph reg-

ularization method for semi-supervised, multi-task and
semi-supervised multi-task learning. We demonstrated
its effectiveness in the three learning scenarios for web in-
formation extraction. The results clearly demonstrate that
the method is useful in addressing the issues of limited la-
beled data and inadequacy of a global model in generalizing
well across websites. An added advantage is that we can
learn decent local models for websites without any labeled
data also, which is not possible even for wrapper learning
approaches. Our method is scalable since we can learn the
local models for unlabeled websites in parallel using a fixed
set of partially labeled websites. Furthermore, the newly
labeled websites obtained through learning can be used to
learn subsequent unlabeled websites (by updating the exist-
ing list of labeled websites).
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