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ABSTRACT

In the design of practical web page classification systems one
often encounters a situation in which the labeled training
set is created by choosing some examples from each class;
but, the class proportions in this set are not the same as
those in the test distribution to which the classifier will
be actually applied. The problem is made worse when the
amount of training data is also small. In this paper we ex-
plore and adapt binary SVM methods that make use of un-
labeled data from the test distribution, viz., Transductive
SVMs (TSVMs) and expectation regularization/constraint
(ER/EC) methods to deal with this situation. We empir-
ically show that when the labeled training data is small,
TSVM designed using the class ratio tuned by minimizing
the loss on the labeled set yields the best performance; its
performance is good even when the deviation between the
class ratios of the labeled training set and the test set is
quite large. When the labeled training data is sufficiently
large, an unsupervised Gaussian mixture model can be used
to get a very good estimate of the class ratio in the test set;
also, when this estimate is used, both TSVM and EC/ER
give their best possible performance, with TSVM coming
out superior. The ideas in the paper can be easily extended
to multi-class SVMs and MaxEnt models.

Categories and Subject Descriptors: I.5.2 [Pattern Recog-
nition] Design Methodology-Classifier design and evaluation

General Terms: Algorithms, Experimentation

Keywords: Transductive and Semi-supervised learning, Clas-
sification, Support Vector Machines

1. INTRODUCTION
The problem of classifying web pages into a given set of
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classes arises frequently in web applications. Linear classi-
fiers such as support vector machines (SVMs) and maximum
entropy (MaxEnt) models employing a rich feature repre-
sentation (e.g., bag-of-words) are used successfully for this
purpose. When labeling is expensive one is forced to work
with a small set of labeled examples for training. In such
cases a linear classifier trained using only labeled data does
not give a good performance. Performance can be signifi-
cantly boosted by employing semi-supervised methods that
make effective use of unlabeled data, which is usually avail-
able in plenty. The transductive support vector machine
(TSVM) [10] and MaxEnt models trained with expectation
regularization (ER) [12] are good examples of such meth-
ods. Such semi-supervised methods assume the knowledge
of auxiliary information about the underlying data such as
class proportions.

The performance of semi-supervised methods such as ER
and TSVM are sensitive to the class proportion values used
to find their solution; see section 4.2 for a detailed empirical
analysis. In many practical situations, class proportions are
unknown. Often it also happens that the class proportions
in the labeled training set are different from those in the
actual distribution to which the classifier will be applied. A
few examples of such scenarios are as follows.

• There are tens of thousands of city aggregator sites
covering categories such as dining, attractions, night
life etc. The content and vocabulary across these sites
are very similar, but in each site the proportion of
examples belonging to various classes can be quite dif-
ferent. So, building a separate classifier for each site is
appropriate. Let us say that we are given a few global
examples of dining and non-dining pages. The aim is
to develop a classifier for each site to separate dining
pages from others making use of unlabeled web pages
in that site.

• Frequently, in classifier design, one would like to reuse
labeled data from a previous run to develop a classi-
fier for a new distribution (e.g., a new stream of news
pages); the old labeled set is still good as the union of
sets of samples from the individual classes, but class
proportions are different.

• A user shows a few relevant and irrelevant example



web pages and asks for finding relevant pages from a
fresh collection of web pages.

The main aim of this paper is to address the problem of
mismatched class proportions mentioned above.

Let x denote a generic example web page and c denote a
class. From a probabilistic viewpoint our problem consists
of dealing with a situation in which: (i) p(x|c) is same in the
labeled data and the actual data of interest for all c; but,
(ii) {p(c)} is very different in the two sets. Coupled with
labeled data being small the problem becomes difficult.

Note that, even if labeled data is not small, extension of
methods such as TSVM and ER to deal with mismatched
class proportions requires careful thought because labeled
data does not have information on actual class proportions
and unlabeled data has to be suitably brought in to estimate
them. There have been some previous efforts to address this
problem for TSVMs [7, 14]. But these methods have some
basic issues: they make adhoc changes to the training pro-
cess in an active self-learning mode and are not cleanly tied
to a well-defined problem formulation; they significantly de-
viate from the TSVM formulation and hence perform quite
worse than TSVMs when labeled data and the actual distri-
bution are indeed well matched in terms of class proportions;
and, they have not been demonstrated in difficult situations
involving large distortions in class proportions.

In this paper we empirically analyze various issues related
to the problem of mismatched class proportions, propose
ways of estimating actual class proportions and demonstrate
their usefulness. We only take up binary classification prob-
lems in this paper; but the ideas are quite general and they
have the potential for extension to multi-class settings. Since
binary classification involves only two classes (positive and
negative), class proportion can be represented using a single
quantity f , the fraction of positive examples.

1.1 Contributions of the paper
In a nutshell following are our main contributions, listed

by order of treatment in the paper.

1. The ER method is introduced in the context of SVMs.
In addition we introduce two related methods based
on expectation constraints (EC) and simple threshold
adjustment (SVMTh).

2. We empirically analyze all the methods (TSVM, ER,
EC and SVMTh) in terms of their learning curves and
their sensitivity to incorrect specification of f .

3. If labeled data has distorted class proportion (even se-
vere), but the actual f happens to be known, we em-
pirically show that the methods are pretty much unaf-
fected.

4. To handle the crucial case in which the actual f is un-
known we propose and empirically analyze two meth-
ods for estimating the actual f . The first estimation
method is based on finding the f having the least la-
beled loss along a trajectory of solutions given by a
method as f is varied. The second estimation method
is based on fitting a mixture of two Gaussians to the
output of the SVM trained using only labeled data.
The first estimation method works well with TSVM
and it is suited for the situation where labeled data

is small while the second estimation method is pow-
erful and works well with all semi-supervised methods
when labeled data is large. Overall, TSVM combined
with the two estimation methods (suitably switched
depending on the amount of labeled data available) is
the top performing method.

2. DESCRIPTION OF METHODS
In this section we describe all the methods that will be

analyzed in this paper. These methods are meant for binary
classification. Labeled data consists of l examples {xi, yi}

l
i=1

where the input patterns xi ∈ Rd are feature vectors rep-
resenting web pages and the labels yi ∈ {+1,−1}. Semi-
supervised/transductive methods make use of unlabeled ex-
amples in addition; unlabeled data consists of u examples
{xi}

l+u
i=l+1. All the methods develop a linear classification

function wT x with {x : wT x > 0} denoting the positive class
region. Web page classification problems involve a large fea-
ture space (d is large); the input patterns are sparse, i.e.,
the fraction of non-zero elements in one xi is small. Unla-
beled data is always a random sample picked from the actual
distribution to which the classifier will be applied; labeled
data, on the other hand, may have a class proportion which
is different from that in the actual distribution.

2.1 Supervised SVMs
Supervised SVMs make use of labeled data and optimize

the regularized large margin loss function:

min
w

Tsup =
λ

2
‖w‖2 +

1

l

l
X

i=1

L(yi, oi) (1)

where oi = wT xi. An example of the large margin loss func-
tion is the squared hinge loss L(y, o) = max(0, 1− yo)2. Al-
ternatively one can use the hinge loss: L(y, o) = max(0, 1−
yo). All the experiments in this paper are done with the
squared hinge loss. Irrespective of which loss is used there
exist very efficient numerical methods [11, 13] for solving
(1); the running time of these methods is linear in the num-
ber of examples.1 On web page and text classification tasks
the performance of the SVM classifier is quite steady over a
large range of values of the regularization coefficient, λ. In
all the experiments of the paper we use λ = 1.

2.2 Transductive SVMs
Transductive/Semi-Supervised SVMs (TSVMs) make ef-

fective use of unlabeled data to enhance the performance of
SVMs. These methods perform very well on web page and
text classification problems. Even with just a few labeled ex-
amples they can combine this labeled data with a large un-
labeled set to attain a performance equal to that of a super-
vised SVM designed using a large labeled set. Through un-
labeled examples many features which are even completely
absent in the labeled set end up getting very good weights.

TSVMs are based on the cluster (or, low density separa-
tion) assumption which states that the decision boundary
should not cross high density regions, but instead lie in low
density regions. Joachims [10] gave the first effective TSVM
formulation. A key ingredient of this formulation is that it

1Good software for supervised and transductive SVMs can
be found in http://svmlight.joachims.org/ and http://
vikas.sindhwani.org/svmlin.html.



assumes f , the fraction of positive examples in the actual
distribution is known and also the corresponding constraint
is enforced in the formulation.2 Joachims [10] solved the
following problem in which, apart from w, the set of labels
of unlabeled examples, {yi}i>l are also variables:

min
w,{yi}i>l

Tsup +
1

u

X

i>l

L(yi, oi) s.t.
1

u

X

i>l

[yi == 1] = f

(2)
where [z] is 1 if z is true and 0 otherwise. Unlike (1), (2) is a
not a convex minimization problem. In general, it is hard to
solve. It has been pointed out [5] that the solution of (2) can
get stuck in poor local minima. Fortunately, this is not the
case in linear classification problems involving large feature
space, such as web page and text classification. TSVMs are
routinely used to solve applied problems [4, 3]. Alternative
optimization iterations (fix w and optimize {yi}i>l, then fix
{yi}i>l and optimize w) are usually used to solve (2).

There also exist variations of the TSVM algorithm. For
example the discrete variables in {yi}i>l can be eliminated
from (2) to get the following equivalent problem:

min
w

Tsup+
1

u

X

i>l

min{L(1, oi), L(−1, oi)} s.t.
1

u

X

i>l

[oi > 0] = f

(3)
Sigmoid smoothing or other methods can be applied to write
[oi > 0] in a differentiable form. Then the solution can be
approached via gradient based optimization of w. See [6, 13,
5] for methods of this kind. Most often this method yields
a performance that is slightly better than (2).

2.3 Expectation Methods
Mann and McCallum [12] proposed the Expectation Reg-

ularization (ER) method in the context of MaxEnt models.
The idea is to use expectation terms related to some do-
main knowledge to influence the training process. This can
be easily done with SVM models too, like we do here. In our
case the domain knowledge of interest is the fact that the
fraction of positively classified examples in unlabeled data
equals f . This fraction constraint can be used to influence
the solution by including an additional regularization term
in the objective function:

min
w

Tsup +
ρ

2
(
1

u

X

i>l

[oi > 0] − f)2 (4)

As mentioned earlier with respect to (3), sigmoid smoothing
can be used to make the expectation regularization term to
be differentiable so that gradient based numerical optimiza-
tion techniques can be employed. In our implementation of
ER we use ρ = 50 as the default value. Later we will also
study the effect of varying ρ.

Note that in (4) the expectation constraint on the fraction
of positive examples is only approximately enforced since it
is only included as a regularizer term. If the domain knowl-
edge says that the fraction constraint holds certainly then
it may be better to force the constraint rather than adding
a regularizer. This leads to a new method which we call as
the Expectation Constraints (EC) method. The optimiza-

2We will refer to the constraint as the fraction constraint.
Also, when applied in a discrete setting (e.g., the fraction
constraint in (2)) it is assumed that appropriate rounding
of f is allowed.

tion problem to be solved is:

min
w

Tsup s.t.
1

u

X

i>l

[oi > 0] = f (5)

Again, sigmoid smoothing can be used to write the fraction
constraint function in a differentiable form. A suitable nu-
merical method that can deal with equality constraints can
be used to solve for w. In our implementation we use the
Augmented Lagrangian method [1].

Let us introduce another expectation based baseline method
that has been ignored in the literature. The method con-
sists of taking the supervised SVM solution w (i.e., solu-
tion of (1)) and adding a threshold θ to the scoring func-
tion so that the fraction of unlabeled examples that satisfy
wT x+θ > 0 equals f . The new classifier boundary is defined
by wT x + θ = 0. We will refer to this method as SVMTh.

2.4 Relations between the methods
It is easy to see that ER and EC methods are closely re-

lated. In particular, when the parameter ρ in (4) is made
very large then ER and EC are expected to show very sim-
ilar behavior. SVMTh is quite different from EC although
both methods enforce the fraction constraint; while EC tries
to balance the minimization of Tsup with the fraction con-
straint, SVMTh simply adjusts the threshold to satisfy the
fraction constraint without worrying about its effect on Tsup.
If we compare (3) and (5) we see that TSVM has an extra
term (loss on unlabeled data). This term turns out to be
important as it helps TSVM to place the classifier boundary
more precisely by making it pass through low density re-
gions of unlabeled data; as we will see later the performance
improvement due to it is large especially when the size of
labeled data is small.

For MaxEnt models, Grandvalet and Bengio [9] suggested
including an unlabeled loss term called entropy regulariza-
tion that is similar in spirit to the unlabeled loss term in
(3). However, their formulation does not include the fraction
constraint. Mann and McCallum [12] conduct experiments
to clearly point out the fact that without this constraint
this method does not do well. They also show that, if the
constraint is included (even as a regularizer term) then the
performance is greatly enhanced.

3. DATASETS AND NOTATIONS
All the empirical analyses in this paper are done using the

following five text classification datasets: gcat, ccat, aut-
avn, real-sim and earn. The first four datasets are same as
the ones used in [13]; earn is a binary dataset created from
the Reuters-21578 dataset3 by taking examples in the earn
class as positive and the remaining examples as negative.
Key properties of the datasets are given in Table 1.

Each dataset is divided into three parts: labeled data, un-
labeled data and test data. Unlabeled data and test data
have the same class proportion; let factual denote the frac-
tion of positive examples in test/unlabeled data. Labeled
data can have a different class proportion depending on the
experiment; note that the main aim of the paper is to find
ways of dealing with a mismatch in class proportion between
labeled data and the actual distribution. Let f lab denote the
fraction of positive examples in labeled data.

3http://www.daviddlewis.com/resources/
testcollections/reuters21578/



Table 1: Properties of datasets. n : number of ex-

amples, d : data dimensionality, factual : positive

class ratio.
Dataset n d factual

gcat 23149 47236 0.30
ccat 23149 47236 0.46

aut-avn 71175 20707 0.65
real-sim 72309 20958 0.31
earn 9603 10783 0.30

Always factual is set to the fraction of positive examples
in the original, full dataset. Given f lab and the number of
labeled examples, nlab, we create a random division of the
full dataset into test, labeled and unlabeled data as follows.
First, 50% of the examples are randomly chosen in a class-
stratified fashion and kept as testing data. Let R denote the
set of remaining examples. We form labeled data by choos-
ing

˚

nlabf lab
ˇ

positive examples from R and nlab−
˚

nlabf lab
ˇ

negative examples from R. Of the remaining examples, un-
labeled data is randomly chosen to be the largest set obeying
factual. Since the dataset sizes are large and nlab is small,
the size of unlabeled data is large and it is several times
larger than nlab.

Performance of the methods will be measured in terms of
F score, which is the harmonic mean of precision and recall
of the positive class.

To ease the understanding we use consistent notations in
all the figures. The following colors will be used to denote
the various methods:

• Black dotted: LSVM - SVM trained with labeled ex-
amples only;

• Red dotted: FullSVM - SVM trained using all unla-
beled examples taking their labels as known;

• Blue: TSVM - Transductive SVM;

• Black: SVMTh - LSVM with threshold adjustment
based on f ;

• Green: ER - Expectation Regularization; and,

• Red: EC - Expectation Constraints.

In most figures f or f lab is the horizontal axis. In such fig-
ures factual is shown as a vertical dotted line. In most figures
the plots are averages over four random splits of a dataset
into labeled, unlabeled and test data. Exceptions are Fig-
ures 3, 8, 9, and 10 where just one random split is used. In
the figures LabSize and LabFrac denote, respectively, the size
of labeled data, nlab and the fraction of positive examples
in labeled data, f lab.

4. BASIC EXPERIMENTS
Before we go on to deal with differences in class propor-

tions in labeled data and unlabeled/test data it is useful to
give some basic experimental results that help understand
the methods.

4.1 Learning Curves
Figure 1 shows the learning curves (variations of perfor-

mance with nlab) for various methods on four datasets. All
methods use the value f = factual. TSVM gives a much
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Figure 1: Learning curves for various datasets. All meth-
ods use f = factual.

stronger performance than other methods at small values of
nlab. Even at higher values of nlab it is better than or com-
petitive with others. Whenever TSVM does significantly
better than SVMTh it is a clear indication of the important
role played by the unlabeled loss term in (2). The magnitude
of performance improvement given by TSVM over others de-
pends on the dataset. On gcat and aut-avn TSVM is very
much superior; on ccat it is quite better than others; and,
on real-sim its performance matches that of SVMTh. Af-
ter TSVM, SVMTh is the next best performer, followed by
EC, ER and LSVM, in that order.

4.2 Sensitivity Analysis
Since our aim is to deal with situations in which factual

is unknown, it is useful to understand how the performance
of each method is affected when f (the value of positive
class fraction used in (1)-(5)) is changed away from factual.
Figure 2 describes this sensitivity for nlab = 90 and nlab =
1440. We chose these nlab values as they represent the rising
and stable parts of the learning curves for most (method,
dataset) combinations.

Let us first make some observations for nlab = 90. All
methods suffer when f is too much lower/higher than factual.
If f is sufficiently far from factual then the performance can
degrade to be even worse than that of LSVM. The fall in per-
formance on the lower side is sharper since recall is badly
affected when f is decreased from factual and this has an
adverse effect on the F score.

TSVM and SVMTh attain their peak performance at f

values that are close to factual. On the other hand, ER and
EC attain their best performance at f values that are quite
shifted away from factual. Consistently, this shifting away
from factual is such that the fraction of the minority class is
larger than its actual value in the unlabeled/test distribu-
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Figure 2: Sensitivity of methods with respect to f . The top row is for nlab = 90 and the bottom row is for nlab = 1440.

tion; in the top row of Figure 2 note the left shift of the peak
for aut-avn and right shifts for all other datasets. This is
due to two properties associated with LSVM, of which EC
and ER are modifications. First, when nlab is small the di-
rection of the LSVM classifier makes a large angle with that
of the ideal SVM classifier built using a large labeled train-
ing set. So the LSVM classifier boundary cuts through dense
regions of the test set. Second, this cutting is more severe
on the minority class examples due to lesser representation.4

Thus, LSVM (which optimizes Tsup) ends up choosing a clas-
sifier boundary placement in which many test examples of
the minority class are pushed to the wrong side. See the left
bottom plot of Figure 8 (which comes later in the paper)
to confirm this for the gcat dataset. Therefore, to pull the
classifier towards satisfying the factual fraction and hence do
well on F score, EC and ER methods need to use a value f

(see (4) and (5)) that is higher (lower) than factual when the
minority class is the positive (negative) class. The f value
that is needed by ER to get the best F score on the test
set is farther from factual than the f value needed for EC
because ER only loosely enforces the f constraint. SVMTh
behaves differently because it doesn’t try to balance Tsup

optimization and the fraction constraint; it simply enforces
the fraction constraint in post-processing without worrying
about what happens to Tsup in that step.

When nlab is large the behavior is different. The bottom
row of Figure 2 gives sensitivity for LabSize=1440. LSVM
gives a very good performance since labeled data set is suf-
ficiently large. The performance of ER is close to that of

4This can be explained as follows. Take the case where the
positive class is the minority class. Since the positive class
has a smaller number of loss terms (see (1)) the classifier
boundary of LSVM is placed closer to the labeled examples
of the positive class in order to reduce the total loss on
the labeled examples of the negative class. Therefore the
fraction of examples classified by LSVM as positive is less
than factual.

LSVM (see the green continuous and black dotted lines in
the bottom row of Figure 2) because the ρ value (50) used
in (4) is not strong enough to exert the fraction constraint.
TSVM, SVMTh and EC suffer when f is moved well away
from factual because they enforce the fraction constraint.

The observations made above imply that, for EC and ER
it is a good idea to employ an f value that is different from
factual, when nlab is small. This observation is missing in
previous works on ER [12]. If the class proportions in la-
beled, unlabeled, and test data are all matching and nlab is
not too small, it is then a good idea to use cross validation
to choose f to optimize performance. If nlab is not large
the Leave-One-Out method can be used for cross validation.
However we do not go ahead and demonstrate this in this
paper since the main focus of the paper is to suggest ways
of handling a mismatch between class proportions in labeled
data and the actual distribution of interest.

Figure 3 gives the sensitivity plots for the earn dataset.
The experimental setup is close to that used by Zhang and
Oles [15] who used the setup to point out (wrongly) that
TSVM does not work well. Zhang and Oles [15] possibly
optimized the TSVM objective function in (2) without the
fraction constraint. Figure 3 explains what can go wrong if
that is done. From the right side plot of Figure 3 it is clear
that the least value of the objective function occurs at f = 0
where the performance is very poor. This clearly shows the
important role played by the fraction constraint in TSVM.
Recall a similar comment that we made earlier at the end of
subsection 2.4, with respect to MaxEnt models and entropy
regularization.

5. DISTORTION IN CLASS PROPORTION
The results of section 4 concern the case in which labeled

data and test/unlabeled data have the same class propor-
tion. We now consider situations in which the class propor-
tions in the two sets are different. Sometimes it happens that
even though there is a difference in those class proportions,
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shows performance of various methods. The right plot shows
TSVM performance (blue) and TSVM objective function in
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of 1 to show them on the same plot). When factual is known
TSVM gives an F score of 0.93.
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Figure 4: Demonstration that cost adjusted labeled loss
does not change performance significantly.

factual may actually be known. Such knowledge helps the
methods to achieve a good performance. In subsection 5.1
we take up this case. In subsection 5.2 we deal with the
more difficult case in which factual is unknown.

5.1 Case 1: factual is Known
Since we know factual as well as the number of positive

and negative labeled examples in the labeled set, it is ap-
propriate to modify the SVM objective function Tsup so that
the labeled loss term can be viewed as if it is the mean loss
of labeled data picked (with replacement) from the actual
distribution of interest. To do this we change Tsup to TAdj

sup

by introducing γ, a relative weighting parameter for positive
labeled examples. TAdj

sup is given by

T
Adj
sup =

λ

2
‖w‖2+

1

N
(γ

X

1≤i≤l,yi=1

L(yi, oi)+
X

1≤i≤l,yi=−1

L(yi, oi))

(6)

where γ is chosen so that γ flab

(1−flab)
= factual

1−factual , f lab =
np

np+nn
, np and nn are the number of positive and negative

examples in labeled data, and N = npγ + nn is the nor-
malizer chosen to make sure that the labeled loss term is
the mean loss. Note that when f lab < factual, γ is bigger
than 1, and so the weight on the positive labeled examples
is increased. When f lab > factual, γ is smaller than 1. All
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Figure 5: Variation of the performance of methods with
f lab (LabelFrac) when factual is known and the methods
use f = factual.

the methods can be appropriately modified to use TAdj
sup in-

stead of Tsup. However, we found that the performance of
the methods are little affected when TAdj

sup is used instead of
Tsup. Figure 4 compares the performance for one dataset,
gcat. Similar behavior is seen on other datasets.

Figure 5 compares all methods on four datasets when
f = factual is used by the methods and f lab is varied over a
range of values from 0 to 1. Interestingly, TSVM, SVMTh
and EC are only mildly affected by changes in f lab. This is
very much due to factual being known and used well by the
methods via the fraction constraint with f = factual. On the
other hand LSVM is badly affected when f lab is moved away
from factual. ER suffers when f lab < factual. The penalty
weight, ρ used in (4) plays a key role in ER. Figure 6 shows
the performance variation for a range of ρ values. When ρ is
small the performance of ER is close to that of LSVM. For
large ρ its performance is close to that of EC. Both these
observations are along expected lines. For different values
of f lab the optimal ρ is different.

5.2 Case 2: factual is Unknown
We propose and explore some methods for estimating factual

in the presence of large variations in f lab. Note that, even
when labeled data is large, it cannot be used alone to get an
estimate of factual since the class proportion in that set are
distorted. We explore three methods for estimating factual.
Let us refer to an estimate of factual as factual

est .
Estimation Method 1. Simply take factual

est to be the
fraction of positive examples in labeled data. This is just a
baseline method.

The next two methods make use of unlabeled data to-
gether with labeled data.

Estimation Method 2. Given labeled data we can solve
(1) and obtain the LSVM solution w. From the good perfor-
mance of SVMTh over a large range of f lab values in Figure
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Figure 6: Variation of ER performance with f lab (Label-
Frac) for various ρ values. Dashdot: ρ = 5 (gives perfor-
mance close to LSVM); Continuous: ρ = 50 (same as in
Figure 5); Dotted: ρ = 500; Dashed: ρ = 5000. ER with
ρ ≥ 500 yields a performance close to that of EC.
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Figure 7: Estimation Method 2. Mean (with error bars) of
factual

est versus nlab for gcat. factual = 0.3011 for gcat.

5 we know that the classifier direction corresponding to w is
good. It is appropriate to model the classifier scoring func-
tion, o = wT x applied on unlabeled data, {oi = wT xi}i>l

as a mixture of two Gaussians:

p(oi) = β1g(oi; µ1, σ1) + β2g(oi; µ2, σ2) (7)

where g(·; µk, σk) is the univariate Gaussian density func-
tion with mean µk and standard deviation σk, and β1, β2 are
(non-negative) mixing proportion values satisfying β1+β2 =
1. By fitting this model to the data {oi}i>l to maximize like-
lihood we can get the parameter values β1, β2, µ1, µ2, σ1

and σ2. The Gaussian with the larger µk represents the pos-
itive class; so, the corresponding βk can be taken as factual

est ,
an estimate of the positive class fraction.

Figure 8 helps us understand the usefulness of this method.
When the number of labeled examples is small, w, the so-
lution of (1), makes a large angle with w⋆, the solution as-
sociated with the ideal SVM classifier built using a large
labeled training set having the actual class proportion; so
the {oi = wT xi}i>l distribution is not a clean mixture of
two Gaussians, and the estimate factual

est is also poor. On
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Figure 8: Understanding Estimation Method 2. SVM-N
denotes LSVM output for N labeled examples and FullSVM
is output of SVM corresponding to a very large labeled set.

the other hand, when the number of labeled examples is
large (closer to the higher side of the learning curve) this
estimation method performs much better.

Figure 7 plots the mean (with error bars) of factual
est (com-

puted using 10 random splits of gcat) as nlab is varied. Such
a plot can help one decide when this estimation method is
useful.

Estimation Method 3. In this method we explore to see
if some property associated with the solution of a method
can be used to find factual

est . Let us take TSVM. Figure 9
gives, for gcat and ccat, the variation of the TSVM objec-
tive function (see (2)), the Labeled Loss (the second term of
Tsup in (1)), as well as the F score with respect to f used in
(2). The behavior in other datasets is similar. Clearly the
TSVM objective function is not useful for tuning f . Gärt-
ner et al [8] suggest to minimize the TSVM objective func-
tion to tune class proportions; but Figure 9 clearly points
out that it is not the right thing to do. The plots also
show the goodness of minimizing the Labeled Loss as a way
of obtaining factual

est .5 A rough explanation for this good-
ness is as follows. Consider (2), the optimization problem
associated with TSVM. End f values (near 0 and 1) put
heavy pressure on containing all examples on one side of
the classifier boundary. With such pressure Labeled Loss
becomes large for such f values. Near f = factual minimiz-
ing Labeled Loss, Unlabeled Loss and satisfying the fraction
constraint are all consistent, so Labeled Loss achieves small
values there.

We also tried the same estimation method (i.e., minimize
labeled loss along the trajectory of solutions defined by vary-
ing f) on the expectation methods. But it did not work well.
Figure 10 gives, for EC and gcat and ccat, the variation
of labeled loss as well as the F score as a function of f . The
minimizer of the labeled loss does not coincide quite well
with the maximizer of F score. Similar behavior is observed

5To avoid confusion we note that (2) is always the opti-
mization problem that is solved to get the TSVM solution;
minimizing the Labeled Loss that we are doing here is for
tuning f at a higher level treating f as a hyperparameter.
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Figure 9: Variation of performance (blue), TSVM objective
function in (2) (magenta) and Labeled Loss (the second term
of Tsup in (1)) (cyan) with respect to f , for gcat and ccat.
The minimizer of Labeled Loss is marked by a black circle.
The rows correspond to different fraction distortions. The
middle row corresponds to f lab = factual. The bottom two
rows correspond to f lab = 0.8factual and f lab = 0.6factual.
The top two rows correspond to (1−f lab) = 0.8(1−factual)
and (1 − f lab) = 0.6(1 − factual).
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Figure 10: EC: Variation of performance (red) and La-
beled Loss (the second term of Tsup in (1)) (cyan) with
respect to f , for gcat and ccat. The minimizer of La-
beled Loss is marked by a black circle. The rows corre-
spond to different fraction distortions. The middle row cor-
responds to f lab = factual. The bottom two rows corre-
spond to f lab = 0.8factual and f lab = 0.6factual. The top
two rows correspond to (1 − f lab) = 0.8(1 − factual) and
(1 − f lab) = 0.6(1 − factual).



for SVMTh and ER. For nlab = 90 Figure 11 shows the
performance of Estimation Method 3 with EC and SVMTh.

Figure 12 compares the three estimation methods as ap-
plied to TSVM. For nlab = 90 Estimation Method 2 doesn’t
do even as well as Estimation Method 1. Estimation Method
3 is very good in a large range of f lab values containing
factual. It suffers only at extreme f lab values. When nlab is
large, e.g., 1440, Estimation Method 2 performs very well.
It is appropriate to switch between the two estimation meth-
ods depending on how large nlab is. Going by what we saw
in Figure 7, we can use the steadiness of factual

est given by
Estimation Method 2 over a range of nlab values to decide
when to switch to it. Of course, nlab has to be reasonably big
to notice a clear steady pattern. Until that size is reached
it is best to use Estimation Method 3.

When nlab is large LSVM itself does quite well; since it is
not dependent on f it becomes the preferred method for that
case. Therefore, the value of a fraction estimation method
should be determined by how well it performs when labeled
data is small. From that viewpoint Estimation Method 3
(as applied to TSVM) is most valuable.

Of all (Method, Estimation Method) combinations (TSVM,
Estimation Method 3) is the one that takes the most com-
puting time; even for that combination, the computation
time for one run on any of our five datasets is less than two
minutes on a 3 GHz machine.

6. RELATEDWORK
Since the first crucial paper of Joachims [10] several works

(for a sample see [15, 7, 14, 6, 13, 5]) have been published
extending and exploring various aspects of the first TSVM
model. Of these, the works of Chen, Wang and Dong [7] and
Wang and Huang [14] are the most relevant to our work since
they address the problem of mismatch in class proportions.
The main drawback of these methods is that they make ad-
hoc labeling of the unlabeled examples during the training
process in an active self-learning mode and are not cleanly
tied to a well-defined problem formulation. Due to this they
significantly deviate from the TSVM formulation and hence
perform quite worse than TSVMs for the normal situation
in which labeled data and the actual distribution are indeed
well matched in terms of class proportions. Also, the meth-
ods have been demonstrated only in situations where LSVM
itself gives decent performance, which is not true when there
are large distortions in class proportions.

Mann and McCallum [12] empirically analyze ER in bi-
nary, multi-class and structured output settings in the con-
text of MaxEnt models. ER’s working and performance in
SVMs and MaxEnt models are similar. Mann and McCal-
lum [12] do a brief study of the sensitivity of ER’s perfor-
mance with respect to class proportions. But they only fo-
cus on the case of distortion towards uniform class propor-
tions; in the binary case this corresponds to changing f from
factual to 0.5. Unfortunately their study is done only on one
multi-class dataset. As we saw in section 4.2, ER shows in-
teresting behavior in the binary case; in fact ER improves
in performance when f is moved towards 0.5. SVMTh is an
important baseline method that is completely missed in [12].

There is a building literature on dealing with differences
in train and test distributions referred to as covariate shift
(see [2] for instance), but such papers introduce and analyze

new formulations and do not help to modify TSVM or the
expectation methods while keeping their spirit in tact.

7. CONCLUSION
The main contributions of this paper are: (i) empirical

analysis of TSVM and expectation methods and their sen-
sitivity with respect to label proportions; and, (ii) proposal
and evaluation of new methods for dealing with mismatches
in label proportions between labeled and test sets. We have
also done preliminary experiments to verify the ideas on
Least squares and MaxEnt models of binary classification
and observed behavior similar to SVM loss. With some care
all the ideas can also be extended to the multi-class setting.
The ideas and results of this paper are mainly for web page
and text classification. More work is needed to see if they
hold on other types of problems.
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Figure 11: Performance of Estimation method 3 as applied to EC (top row) and SVMTh (bottom row). Estimation Method
3: Continuous. Dashed: Use f = factual (Upper baseline)
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Figure 12: Comparison of factual estimation methods as applied to TSVM. Estimation Method 1: Dashdot. Estimation
Method 2: Dotted with x. Estimation Method 3: Continuous. Dashed: Use f = factual (Upper baseline)


