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A Stochastic Connectionist Approach for Global
Optimization with Application to Pattern Clustering
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Abstract—In this paper, a stochastic connectionist approach
is proposed for solving function optimization problems with
real-valued parameters. With the assumption of increased pro-
cessing capability of a node in the connectionist network, we show
how a broader class of problems can be solved. As the proposed
approach is a stochastic search technique, it avoids getting stuck
in local optima. Robustness of the approach is demonstrated on
several multi-modal functions with different numbers of variables.
Optimization of a well-known partitional clustering criterion,
the squared-error criterion (SEC), is formulated as a function
optimization problem and is solved using the proposed approach.
This approach is used to cluster selected data sets and the results
obtained are compared with that of the K-means algorithm and
a simulated annealing (SA) approach. The amenability of the
connectionist approach to parallelization enables effective use of
parallel hardware.

Index Terms—Clustering, connectionist approaches, function
optimization, global optimization.

I. INTRODUCTION

CLUSTER analysis is very useful when classification in-
formation pertaining to the data is not available. The main

aim of cluster analysis is to find pattern associations by forming
groups of patterns such that a pattern in a group is more similar
to other patterns in the same group when compared to patterns in
other groups. Many clustering approaches have been proposed
in the literature to suit various requirements. These approaches
can broadly be classified into: numerical [3], [43], [60]; sym-
bolic [36]; and knowledge-based clustering approaches [61].

Many of the conventional approaches are numerical clus-
tering approaches which assume that patterns are points in
a -dimensional space and perform clustering by defining a
(dis)similarity measure. Symbolic clustering approaches are
suitable to cluster patterns or objects that are often represented
by qualitative or symbolic features. On the other hand, knowl-
edge-based clustering approaches use high-level knowledge
pertaining to a set of problems to perform the clustering task.
In these approaches, knowledge is embedded into the approach
for solving a class of problems. Recently, fuzzy clustering of
data with partial supervision has been addressed in [68]. In this
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approach, unsupervised learning is performed in the presence
of some labeled patterns.

Numerical clustering approaches can further be classified
into: hierarchical; partitional; graph theoretic; and fuzzy
set-theoretic clustering approaches. Hierarchical approaches
build a tree structure or a dendrogram of the given data re-
vealing the pattern associations. On the other hand, partitional
approaches partition the data set into nonoverlapping clusters.
Graph-theoretic methods employ graph algorithms for den-
drogram construction or partitioning the data [3], [43]. Fuzzy
clustering approaches make use of fuzzy set theoretic concepts
in order to find fuzzy clusters [11], [12]. Since the applicability
of hierarchical clustering methods is limited by the data size
[43], in general many applications employ partitional/fuzzy
clustering approaches. Partitional clustering approaches are
associated with criterion functions, which can be either global
or local type [43]. A global type criterion function considers the
entire data set on the whole in the clustering process, whereas
approaches using a local type of criterion function operate
on the local characteristics of the data. Partitional approaches
that use local type criterion functions are especially popular
in image segmentation [31], [39]. All partitional algorithms
that use the global type of criterion function optimize it to
generate a partition of the data set. A straight forward approach
is to examine all possible partitions and select the one that
extremizes the criterion. This is practically not possible as
the number of possible partitions increases exponentially
with the increase in either the number of patterns or the
number of clusters . The total number of partitions of
the data into to clusters is given by Stirling approximation

.
In the case of , the number of partitions is

and this clearly indicates the exponential complexity involved
in exhaustive enumeration. In this paper, we consider the op-
timization of one of the most widely used criterion function
squared-error criterion (SEC) function.

This paper is divided as follows. Section II presents the SEC
function and describes the search techniques used to optimize
it. The function optimization formulation is also discussed in
Section II. Earlier work related to the connectionist approaches
for function optimization is presented in Section III. The sto-
chastic connectionist approach for solving global optimization
problems along with its generalized version is described Sec-
tion IV. In order to test the robustness of the proposed approach,
many standard test functions available in the literature are op-
timized and the performance is compared with that of the ex-
isting methods. The scalability aspect of the proposed approach
to support large scale function optimization is also presented

1083–4419/00$10.00 © 2000 IEEE
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in Section IV. Section V deals with the applicability of the
proposed approach to solve the clustering problem. Section VI
presents results and comparisons for selected data sets. Conclu-
sions are provided in the last section.

II. SQUARED-ERRORCRITERION FUNCTION

Many criterion functions are variants of the SEC and it finds
applications in several fields [22], [37]. Several algorithms have
been proposed in the literature to optimize the SEC including
K-means and ISODATA algorithms. Gordon and Henderson
[35] have formulated the minimization of SEC as a nonlinear
programming problem (NPP) in the following way: Let

be a set of -dimensional patterns

be mutually disjoint clusters

be -dimensional cluster centers.

Optimization problem is

minimize

where

is an pattern association matrix

Many clustering algorithms have been developed to optimize
for a given data set with patterns and clusters. Gen-

erally used hill climbing techniques, such as the switching tech-
nique and K-means algorithm [3], [26] start with an initial parti-
tion and gradually improve that partition by optimizing the cri-
terion function. These techniques converge to a locally optimal
partition (see [59] for a detailed convergence proof). Many en-
gineering applications [37], [60] require an optimal partition to
be obtained as long term investments are involved. Finding an
optimal partition requires finding an optimal assignment ma-
trix, , such that .
This is a well defined discrete optimization problem [26] and
many attempts have been made in this direction using various
search techniques. Direct exhaustive enumeration of partitions
for partitioning 100 patterns into five clusters requires exam-
ining 10 partitions [26], which precludes its use in practice.
Some of the deterministic search techniques include dynamic
programming [10], integer programming [56] ,[67], and branch
and bound techniques [49]. A deterministic annealing approach
has been considered by Roseet al. [57] which can be viewed
as a sequential version of the mean field annealing approach in
neural networks [65]. This approach employs an annealing tech-
nique in which the error surface gets smoothed, converging to a
better local minimum, but the global optimum is not guaranteed.

Simulated Annealing (SA) [46] and Evolutionary Ap-
proaches (EA) [40] which belong to the class of stochastic

search approaches have been employed in solving the clustering
problem. Klein and Dubes [47], Selim and Alsultan [58], and
Brown and Huntley [18] have investigated the applicability of
the SA algorithm for pattern clustering by solving the discrete
optimization formulation. Babu and Murty [9] have applied SA
approach for finding an optimal initial seed values such that the
chosen algorithm, K-means, converges to an optimal partition.

Evolutionary methods are population based stochastic
optimization techniques that naturally fit for parallelization.
The clustering problem has been attempted by many researches
using evolutionary methods. Raghavan and Birchard [54] have
used GA’s to optimize within group sum of variances clustering
criterion function. Other attempts using GA’s include [13],
[38], [44], and [53]. An integrated approach that combines
K-means and genetic algorithms has been investigated [7] for
optimizing SEC. Another evolutionary approach, called evolu-
tionary programming, has been employed by Fogel [29] to find
fuzzy min-max clusters in the data by fitting hyper-rectangles
in multidimensional space. Evolution strategies have been used
to accomplish both hard and fuzzy c-means clustering tasks [8].

Almost all of these approaches try to solve the combinato-
rial optimization formulation of the clustering problem except
[7]–[9]. One of the drawbacks of SA is that it consumes a lot of
computational time and is sequential in the nature of its search.
On the other hand, evolutionary approaches are a natural fit for
parallelization, but are not suitable for large values ofand

. Connectionist approaches [48], [52] are well suited for clus-
tering by providing a scope for massive parallelization. Parsi
et al. [52] investigated the applicability of Hopfield neural net-
work for clustering. By its deterministic nature of search, it con-
verges to a local optimal partition. A group update approach in
the context of Hopfield model has been proposed to improve
convergence speed and has been applied to solve a set partition
problems [5].

The function optimization formulation of SEC facilitates
identifying optimal cluster centers such that optimal pattern
assignment can be obtained. This formulation is given by

(1)

where

if
otherwise

The above criterion function is a real-valued parameter function
and the problem turns out to find , i.e., optimal cluster cen-
ters, so that can be found. Note that any ties, i.e., a pattern
equidistant from two or more cluster centers, are resolved by as-
signing associated pattern to one of the equidistant clusters.

III. CONNECTIONIST APPROACHES FORFUNCTION

OPTIMIZATION

In optimization theory, finding a global optimal solution for
a NPP with range constraints is termed as a global optimization
problem. There are a number of methods available in the litera-
ture to locate local extrema, but the global optimization problem
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is very difficult to solve in a finite number of steps. Many ap-
proaches have been proposed in the literature to solve global
optimization problems [24], [25]. Connectionist approaches be-
long to a class of parallel approaches for solving difficult op-
timization problems [1]. To the best of our knowledge, no at-
tempt has been made to solve a general function optimization
problem using stochastic connectionist approach which tries to
find a global extrema of a given function. Some approaches have
been proposed in the literature for optimizing quadratic func-
tions.

The first approach proposed by Chua and Lin [21] attempts to
solve a NPP using a network with small circuits interconnected
together. Tank and Hopfield [62] proposed the first neural net-
work model for solving a linear programming problems. Other
neural network approaches include [16], [27], [45], and [70]. All
these approaches are a type of parallel gradient descent methods
and do not guarantee a global optimal solution. Even though
much of the literature in the optimization field addresses solving
functions that are quadratic in nature, in real life, we encounter
many nonquadratic, discontinuous and other types of functions.
The existing connectionist approaches are inadequate to solve
them. In the following, we present the general formulation of
the function with constraints.

Function Optimization:We define the function to be opti-
mized along with the constraints imposed on the search space.
The constraints define a feasible search space. The general func-
tion with constraints is defined as

Minimize
Subject to

where are inequality constraints and
are equality constraints. These constraints define a
feasible region . Note that is a vector of size . In the cur-
rent context, for obtaining extrema we need to transform this
constrained optimization problem into an unconstrained opti-
mization problem using penalty methods. In the penalty func-
tion approach, the function is penalized when a solution violates
any of the constraints. This forces the solution to lie in the region
of interest, . This can be done by minimizing a new function,

, given by
where is the th penalty function which gives no penalty or
zero value if the constraint satisfies its equality or inequality.
If there is a constraint violation, it returns a positive penalty in
order to restrict the scope ofto . In the extreme case, one
can consider infinite penalties. In principle, using infinite penal-
ties, minimizing is equivalent to minimizing and the
global extrema obtained for will be the global extrema for

. In practice, incorporation of this type of infinite penalty
functions may not be required. Depending on the problem at

hand, one can use either a linear or quadratic penalty function
expressions as shown at the bottom of the page, whererep-
resents a linear function, represents a quadratic function,
and coefficients denote positive constants [64]. Some special
constraints that are very useful in the search process are range
constraints. These constraints define the possible limiting values
of variables. Let the bound constraints be

, where vectors and define lower
and upper bounds of variables. These constraints can also be
incorporated in the function using penalty methods. These con-
straints can be used explicitly to generate a feasible search point.
To ensure that the generated point is a feasible point [16], the
following function is defined:

if
if
if

Now the function turns out to be
. By explicitly forcing

to lie in , the search will be relatively faster and it also
reduces the number of penalty functions. Bound constraints
can easily be handled by the connectionist approach using the
function . In the next section, we present a connectionist
approach for finding a global extremum of a general function
with range constraints.

IV. STOCHASTIC CONNECTIONISTAPPROACH FORGLOBAL

OPTIMIZATION

In this section, we present a connectionist approach for gen-
eral function optimization with range constraints and then in-
vestigate the applicability of the proposed approach to solve the
clustering problem. The advantages of the proposed approach
over the existing connectionist approaches for optimizing NPP
are as follows:

1) global optimum is guaranteed asymptotically (restricted
case);

2) no constraints on the type of the function being optimized,
such as continuity and existence of derivatives;

3) highly parallelizable;
4) scalable to support large scale function optimization.
We are not adhering to the notion of a node as a simple

thresholding unit and assume that it has processing capability
to support the specific requirements. The idea of a node being
a simple processor is quite convincing in the case of learning
and representation tasks, where even the failure of a few
nodes in the network may not degrade the performance of the
network. However, in the context of optimization task, a node
failure during the optimization process leads to inappropriate
solutions. In fact, this entails an investigation for a compromise

if
or if

if
or if
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between the node capability and the parallelization achievable.
With this assumption of increased processing capability, we
show how a broader range of problems can be solved using
connectionist approaches. The approach investigated here can
be viewed as an extension of the Boltzmann Machine that is
used to solve combinatorial problems [1], [2]. Earlier investi-
gations in this direction include employing the SA algorithm
to solve continuous valued parameter optimization problems
[14], [15], [23], [66]. We first present the network architecture
followed by the node update rules.

The number of nodes is equal to the number of variables to
be optimized. Network is fully connected, i.e., each node is
connected to every other node and can be viewed as a graph

, where is a set of nodes, , and repre-
sents a set of connections associated with nodes, .
Each connection is associated with a weight called connection
weight, . These weights are assumed to be symmetric, i.e.,

. Each node outputs a real value. All weights are
equated to 1 . Connections are used to get the values
of other variables from other nodes.

Let the function to be optimized be . The state of the net-
work is characterized by a vector comprised of output values
of nodes. The state of the network is also called the configu-
ration of the network. It is represented by the concatenation of
all output values of the nodes as given by .
The value denotes the function value computed at node
, whose output value is, using other variable values:

. Here, the parameterrepre-
sents the time step at which nodeis updated. Initially the net-
work is started with some random values that fall in the fea-
sible region. Range constraints can be used explicitly to search
in the feasible search space instead of including them into the
objective function. Each node generates a neighborhood value,

, by adding Gaussian noise to the current output value,.
This value, , is computed as ,
where generates a normal random value withvari-
ance, denotes the current time step, and function checks
for the violation of bound constraints. The change in the func-
tion value with the change in variable, , value is given by

. The new value is set as the cur-

rent output according to the following update rule:

if

if rand

otherwise

Here, the function generates a uniform random value
in the range and the parameter is calledtemperature. A
node is updated at a time stepwith a firing probability of .
The average number of nodes that are updated at a time step is

where is the number of nodes in the network. The tem-
perature, , controls the stochasticity in node update rule. We
can directly see the relevance of this approach to the Boltzmann
machine. This update rule is a direct extension of node update
rule [2] in the Boltzmann machine for solving discrete optimiza-
tion problems. Initially, network is started at a high temperature
and then is allowed to reach a thermal equilibrium state charac-
terized by the steady state distribution over the solutions in the

search space. At thermal equilibrium, the probability that the
network is in a state is given by the Boltzmann distribution
[34]

(2)

where . As the temperature ,
the distribution approximates to global minima. At each tem-
perature and variance, , the network is allowed to reach the
thermal equilibrium. The temperature schedule, i.e., annealing
schedule, can be logarithamic [33] and the variance for gener-
ating neighborhood values can be kept constant at all tempera-
tures or can be decreased depending on the function to be opti-
mized. Initial variance can be set using the bounds of each vari-
able, i.e., . From the normal distribution
property, we have . So, ap-
proximately 95% of samples generated by fall in the
range . Setting will allow 95% of the
proposed moves to fall within the bounds of the variable.

After the network reaches thermal equilibrium at a fixed
temperature, both temperature and variance are decreased
by multiplying with (cooling rate) and , respectively.
This process is performed until the temperature is sufficiently
decreased. Theoretically speaking, only in sequential mode
of network execution will this approach guarantee the global
optimum asymptotically. However, even in both synchronous
and asynchronous parallel modes of network execution, the
network converges to a global optimum quite often. In fact, we
can exploit the parallelism offered by connectionist approaches
only in these two modes of network execution. In order to test
the performance of the proposed approach, several standard
test functions are optimized using the asynchronous parallel
mode of execution.

The problem associated with this approach is that it gets en-
trapped in a deep local minimum. In order to avoid this problem,
the network has to be started at high temperature and should be
annealed down slowly. To provide robust search, we generalize
this approach by allowing each node to generate more than one
value of the corresponding variable to select a new value for up-
dating the node. This reduces the chances of getting stuck in a
deep local minimum. Even at zero temperature limit, each node
tries to search for a better solution at which the function value
is better.

A. Generalized Stochastic Connectionist Approach

Each node generates a set of neighborhood points by adding
Gaussian noise to the current output value. Let the generated
points at node be and the current output be

Node output is updated using the following rules:

if set
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Fig. 1. Sequential algorithm.

else select an output value using, a probability vector of size
where

The approach discussed earlier is a special case of this
method, when . The probability vector maintains
the probabilities of transition from the current state to each
of the other states. For example, consider, and

. The probability of remaining in the
same state is 0.3, and the probabilities of accepting the states
1, 2, and 3 are 0.2, 0.2, and 0.3, respectively. One way of
selecting a state is to generate a random number,, in the
range [0–1], and select a state,, such that the sum of all prob-
abilities . In the limit temperature

. As temperature and variance tends
to zero, the probability vector becomes . Algo-
rithm for the generalized stochastic connectionist network is
presented in Fig. 1.

This approach aims at avoiding the deep local minima
problem. We analyze the advantages of setting . The
problem with deep local minima will come when the temper-
ature is near zero and variance is small. At this temperature,
each node tries to locate a neighborhood point better than the
current local minimum. Consider a one-dimensional function
possessing deep local minima as shown in Fig. 2, and let the
current solution be . The only way of coming out of this local
minimum is to search for a point in the range . For ,
the probability of obtaining a neighborhood point in the range

, is .
By generating samples, the probability of generating at

least one point in the range is .

Fig. 2. A function (thick line) along with normal distribution function (dotted
line) with meanv .

This clearly indicates that this probability increases with the in-
crease in value and approaches 1.0 as . The value
of should be chosen carefully. Large values ofincreases
the number of function evaluations, whereas small values of
often lead to local optima entrapment. In our experiments, we
observed that setting for general function optimiza-
tion gives an excellent rate of progress with a high success rate

and a small number of function evaluations. It was
observed that can be set to small values for the functions
without deep local minima, but has to be set to higher values for
functions with deep local minima. In this paper, we compare the
performance of the proposed approach for different values of
(1 and 5). The success rate is defined as a ratio of the number of
times the global optimal solution is obtained to the total number
of trials. In the Appendix I, we provide asymptotic convergence
proof assuming that variance is constant and . The possi-
bility of extending this proof to work for fixed values of
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TABLE I
COMPARISON OFAVERAGE NUMBER OF FUNCTION EVALUATIONS (AVERAGE TIME OF EXECUTION) TAKEN BY DIFFERENTAPPROACHES

is also discussed. In the following section, we present results
related to the optimization of the standard test functions along
with relevant comparisons.

B. Optimization of Standard Test Functions

In order to establish the characteristics of a global optimiza-
tion technique, researchers have used a variety of test func-
tions. The choice of test functions is crucial as each method
has its own merits and drawbacks in solving different types
of functions. A set of seven widely used standard test func-
tions are selected to test and compare the performance of global
optimization approaches. We use these functions along with
some other functions taken from Renpu Ge and Qin [32], and
Breiman and Cutler [17]. Results are compared with those ob-
tained with other approaches. Generally, global optimization ap-
proaches are compared based on the number of objective func-
tion evaluations and the amount of time taken for optimization.
The execution time is defined in terms of standard time units
[17]. Many methods proposed do not consider the scalability of
the approach to solve large scale function optimization prob-
lems. We argue that the scalability of an approach is also an
important criterion in establishing the efficacy of an approach
over others. Results obtained with other approaches have been
taken from [24]. The results obtained with SA are taken from
[14] and [66].

The number of variables in these standard functions are in
the range [2–6]. The functions are referred using the following
abbreviations:

1) Branin function (RCOS);
2) Goldstein and Price (GP) function;

TABLE II
RESULTS ANDCONTROL PARAMETERS FOR THESELECTEDFUNCTIONS

3) Hartman's family of functions (H3, H6);
4) Shekel's family of functions (S5, S7, S10).

Different test functions have been selected from [32]. A func-
tion number or a function abbreviation is used to refer to the
corresponding function. References to these functions are pro-
vided in Appendix II.
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As the proposed approach belongs to a class of probabilistic
search techniques, we performed 100 trials for each of the se-
lected functions on a PC 386. Each trial has been started with
a different starting point that was selected randomly with uni-
form distribution in the search space. The average number of
function evaluations along with the control parameters are pre-
sented. The network was run in the asynchronous parallel mode,
parallel execution, and at any time instant half of the randomly,
with uniform distribution, selected nodes are allowed to change
their output values. All function evaluations computed in par-
allel are considered as a single function evaluation. The program
was run until a global/local optimum is obtained with a precision
of 10 . The initial temperature is set greater than or equal to
the variance of function values obtained for some randomly se-
lected solutions. The cooling rate is set to 0.95. The average
number of function evaluations required for the seven functions,
F2, F13, F11a, F11b, F12a, F12b, and F12c are compared with
the earlier reported results obtained by other procedures. Table I
presents a comparison of the number of function evaluations for
both and cases.

It can be observed that in the case of , the success
rate is small for functions H6 (F11b), S5 (F12a), S7 (F12b) and
S10 (F12c) as they contain deep local minima. Even though the
number of function evaluations is less compared to that of the
other methods, the problems with deep local minima are severe.
For , high success rates can be observed. The average
time of execution taken by each method for each of these func-
tions is presented in Table I. These values are provided in square
([]) brackets.

The time is measured in standard units and one unit of time is
equal to the time consumed for 1000 evaluations of the S5 func-
tion on the PC 386. It can be observed that in most of the cases,
the time taken by the proposed approach is less compared to that
of the other strategies. These results bring out the effectiveness
of the connectionist approach over conventional deterministic
or random strategies. The results of all functions, F1–F13, along
with control parameters, are listed in Table II.

From these results, we empirically establish the robustness
of the proposed connectionist approach in terms of its ability to
find global optima, execution time taken and the success rate
obtained. We test the scalability of the connectionist approach
with respect to the increased number of variables. For testing
scalability, we consider functions F14 and F15. The number of
variables is increased from 25 to 400 in steps of 25 and the
network was run in both asynchronous (Sequential Execution)
and asynchronous parallel (Parallel Execution) modes by set-
ting as these functions do not have deep local minima.
In asynchronous mode a node is selected randomly with uniform
distribution and is updated in a time step, and in asynchronous
parallel mode a set of nodes is selected randomly with uniform
distribution and are updated in a time step. Figs. 3 and 4 present
the average number of function evaluations,, and the average
time of execution for different values offor functions F14 and
F15, respectively. It can be observed that the number of function
evaluations remain almost constant even as the number of vari-
ables increases. For function F14 with , the number of
local minima is . It is very difficult for conventional ap-
proaches to optimize these type of functions because of several

Fig. 3. Number of function evaluations,J , and computation time, Time, (in
seconds) required to obtain global optimum for function F14 with different
number of variables for both sequential and parallel network executions.

Fig. 4. Number of function evaluations,J , and computation time, Time, (in
seconds) required to obtain global optimum for function F15 with different
number of variables for both sequential and parallel network executions.

local minima. From these experimental results, it can be inferred
that the proposed connectionist approach always gets global op-
timum, and has an excellent scalability property.

This approach is employed to solve the clustering problem
which is formulated as a function optimization problem. In the
next section, we discuss the network architecture for solving
clustering problem and the use of gradient knowledge in the
search process.

V. CLUSTERING WITH THECONNECTIONISTAPPROACH

We use the proposed connectionist approach to locate optimal
cluster centers, thus solving real-parameter function optimiza-
tion problem.

In the proposed network architecture, each node corresponds
to a dimensional cluster center. Variablein (1) maps to of
a node in the network. This indicates that the output of each node
is a real-valued vector. The vectorized node output values can be
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Fig. 5. Sequential algorithm for clustering.

communicated to other nodes with the available network com-
munication facilities or with the help of a specialized hardware
to support parallel transfer of vector output. The values of vari-
ables can be mapped onto range to facilitate analog circuit
realization [16]. The node update rule discussed earlier has to be
extended to accommodate vector valued states. The neighbor-
hood values are generated using

where is the variance associ-
ated with the th component. Note that is a -dimensional
vector and is the th component of the -dimensional
vector. It is evident that stochastic search is performed by sam-
pling the neighborhood. This process consumes excessive com-
putational time which increases with the increase in the number
of dimensions. We can make use of knowledge about the gra-
dient in order to increase the speed of search, and the stochastic
search is done using the gradient direction. Assume that the gra-
dient at is . The neighborhood points
generated are given by , where

. The variance, , is estimated using the normal
distribution property , so

.
In the case of the clustering problem, we can obtain the partial

derivative with respect to a cluster center. The gradient direction
at a node can easily be computed by assigning patterns to

the nearest cluster centers and computing new cluster center.
The gradient now is . The network is initialized
with random cluster centers and is annealed down slowly by
starting with a high initial temperature , and an initial variance

Fig. 6. Simulated annealing algorithm.

. We use an exponentially decreasing temperature schedule.
The temperature and variance are decreased by multiplying with
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TABLE III
RESULTSOBTAINED WITH K-MEANS AND SA APPROACHES FORGTD

TABLE IV
RESULTSOBTAINED WITH SCA FOR GTD

and , respectively. The sequential algorithm
for clustering is presented in Fig. 5.

Computational Complexity:In the sequential implementa-
tion of the algorithm, the complexity of the algorithm depends
on the values of , Max_Ite, , and . Let

be the number of external loop iterations.
Here the time complexity of each function evaluation is given
by . So the expected run complexity of the algorithm
is where is firing probability of node. Note
that the value of for is the same for all nodes. So
once it is computed, all nodes can make use of it. The expected
run time complexity of the parallel algorithm is presented later.

VI. EXPERIMENTAL RESULTS

Several data sets have been extensively tested using the pro-
posed approach for and . In most of the cases (near)
optimal solutions are obtained. All simulations are carried out
on a PC/AT 386 machine. The network was run in asynchronous
parallel mode by allowing randomly selected half of the nodes
in the network to update their output values in each iteration.
There are several ways to select nodes randomly. In our experi-
mentation, we allowed each node to fire with a probability,,
set to 0.5. If the number of nodes selected for firing usingex-
ceed half of the total number of nodes, we removed some of the
nodes randomly from the list to ensure that total nodes that will
be updated are half . In case the number nodes selected for
firing are less than half, then new nodes are selected randomly

Fig. 7. Squared-error corresponding to the states in Markov chain.

from the unselected list. Note that the selected nodes are updated
without changing the optimization value until all are done. All
function evaluations performed in parallel are accounted as a
single function evaluation while computing the time of execu-
tion. Here an iteration is defined as one complete asynchronous
update. The value ofMax_Iteis set to 100. In our experiments,
with regard to the clustering problem, we tested with and

. It should be noted that the data has to be made available
with every node. This is possible with MIMD message passing
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TABLE V
RESULTSOBTAINED WITH K-MEANS AND SA APPROACHES FORBTD

machines such as PARAM [63]. These type of machines provide
a suitable environment to parallelize the proposed approach and
to handle data of size upto 4 MB.

We present the results obtained for the four standard data sets:

1) German towns data (GTD);
2) British towns data (BTD);
3) Fossil data;
4) 8OX data.

Experiments were carried out for various numbers of clusters,
. Results are compared with that obtained with the

SA approach and K-Means algorithm.
The SA algorithm used for comparison is provided in Fig. 6.

In SA, the solution is represented as a vector of sizewith
each value representing the corresponding cluster label associ-
ated with that pattern. The neighborhood is generated by simply
reassigning a randomly selected pattern to a different cluster.
The initial, and final, , temperature values in SA are es-
timated by using the acceptance ratio,which is given by

, where and
are the number of perturbations for which there is a reduc-

tion and increase in the objective function value, respectively.
Observe that the perturbations are accepted with a probability

, where is the average value of all increments
in objective function value due to moves. Initial and final
temperatures are set such that the value ofis 0.75 and
0.999, respectively. In order to allow sufficient time to converge
to high quality solutions, the cooling rate, is set to 0.99.

Similarly, the acceptance ratio, associated with a node
in SCA can be determined as follows: plus3ptminus6ptplus3pt-
minus6pt

(3)

where
. Here and are the same

as above. One can estimate the average acceptance ratio
by using individual acceptance ratios of all nodes in the network
when operated in asynchronous parallel mode. This is estimated
(approximately) by . Starting temperature

TABLE VI
RESULTSOBTAINED WITH SCA FOR BTD

is estimated by setting to 0.75 and final temperature is es-
timated by setting it to 0.999.

In all trials for SCA, we used the asynchronous parallel mode
of network execution (Parallel Execution) ensuring that half of
the nodes are fired in the network at each time step. All func-
tion evaluations performed in parallel are accounted as a single
function evaluation while computing the time of execution. The
K-Means algorithm was executed for 100 times for each of the
data sets. Initial cluster centers are selected randomly with uni-
form distribution in the bounding search space. Both SA and
SCA were run for ten times for all data sets by setting appro-
priate temperature values. The cooling rate is set to 0.95 in all
cases.

German Towns Data:This data set is taken from Spath [60]
and consists of cartesian coordinates of 59 towns in Germany.
The K-means algorithm [30] results are shown in Table III. In
table, MiJ, MaJ, AvJ, SD, SR, and AvT are the minimum, max-
imum, average, standard deviation, success rate and average ex-
ecution time of the results obtained for the selected number of
runs. Observe that the success rate decreases rapidly with the in-
crease of the number of clusters. The SA temperature values
found for and are and ,
and and , respectively. Results are
shown in Table III. The SCA values found for and
are and , and and

, respectively, with . As the value of in-
creases with the increase of, the average run time increases.
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TABLE VII
RESULTSOBTAINED WITH K-MEANS AND SA APPROACHES FORFOSSIL DATA

The statistics of the results are listed in Table IV for and
. Observe that SCA with could find solutions

with 100% success rates for all values ofexcept for .

It can be observed that the solutions obtained in both the
cases, i.e., for and are almost equally good.
We do not know whether error surface for a given data set con-
sists of deep local minima or not. Testing with different values
of will be helpful in these cases. We may assume that a func-
tion does not contain deep local minima if results of the same
quality are obtained for different values of. One advantage of
operating with a value of is that it reduces much of the
communication cost as well as the computational cost involved
in mapping and re-mapping the variable values. In the subse-
quent experiments is set to 3. Fig. 7 depicts the output state
sequence of a network in a trial. It can be clearly observed that
the near optimal solution(s) is reached within the first 100 iter-
ations. This indicates that the proposed connectionist approach
is capable of obtaining near-optimal results very quickly.

We obtained better results than reported by Ismail and Kamel
[42] using heuristic methods. For GTD, for clusters and

, the proposed approach could obtain new lower bounds
18 550.43 and 16 307.96 with high success rates against the re-
ported results 18 970.45 and 16 578.80. These results clearly
substantiate the advantage of the proposed approach.

British Towns Data:This data set is taken from Andrews [4]
and consists of 50 four-dimensional samples. The oiginal data
set consists of 155 samples each with 57 variables. The present
data set is the first four principle components of the first 50
samples forming four clusters [20].

The K-means algorithm results are shown in Table V. The
SA temperature values found for and are
and , and and , respectively.
Results are shown in Table V. The SCA temperature values
found for and are and ,
and and , respectively. The statistics of
the results are listed in Table VI. For this data set, in the cases

and , we found better quality results than the re-
ported results of this data set using hybrid breadth/depth first
search technique [42]. The squared-errors obtained using SCA
are 126.27, 113.50, 102.74 and 92.68 as against the published
values 127.18, 114.09, 103.49 and 97.43.

TABLE VIII
RESULTSOBTAINED WITH SCA FOR FOSSIL DATA

Fossil Data:This data set is taken from [19] and consists of
87 Nummlitidae Speciments from the Eocene Yellow limestone
formation of north western Jamaica. Each specimen is a six-
dimensional vector and this data set consists of three clusters
[20].

The K-means algorithm results are shown in Table VII. Ob-
serve that the success rate decreases rapidly with the increase
of the number of clusters . The temperature values found for

and are and , and
and , respectively. Results are shown in Table VII.
The SCA temperature values found for and are

and , and and ,
respectively. The statistics of the results are listed in Table VIII.

8OX data:This data set is taken from [43] and consists of 45
patterns each with eight features. This data set is derived from
the Munson hand printed FORTRAN character set. This data
set consists of features extracted from a digitized, on a
grid, hand written characters 8, O, and X. Each character has 15
representative patters, thus forming a data set of size 45.

The K-means results are shown in Table IX. The SA tem-
perature values found for and are
and , and and , respectively.
Results are shown in Table IX. The SCA temperature values
found for and are and , and

and , respectively. The statistics of the re-
sults are listed in Table X. These results clearly demonstrate the



BABU et al.: STOCHASTIC CONNECTIONIST APPROACH FOR GLOBAL OPTIMIZATION 21

TABLE IX
RESULTSOBTAINED WITH K-MEANS AND SA APPROACHES FOR8OX

TABLE X
RESULTSOBTAINED WITH SCA FOR 8OX.

superiority of SCA in obtaining better clusters characterized by
the squared-error value for eight-dimensional data.

The connectionist approach presented in this paper is suitable
for clustering small or medium sized data sets with a moderate
or large number of clusters [6]. Parallel algorithms can be devel-
oped for SCA to make use of parallel hardware for optimizing
large scale functions.

VII. CONCLUSION

In this paper, we have investigated the applicability of a new
stochastic connectionist approach for solving the clustering
problem. A stochastic connectionist approach along with its
generalized version has been proposed and its efficacy is
showed over a variety of test functions. The clustering problem
has been formulated as a function optimization problem and
the proposed connectionist approach has been employed to
solve it. The results obtained with the proposed approach for
four data sets demonstrate superiority over K-means and SA
approach. One of the major advantages of this approach over
other stochastic methods is that, it utilizes gradient knowledge
and performs stochastic search along the gradient direction.
This facilitates faster convergence to the desired partition. The
parallelism that can be obtained with the proposed approach is
proportional to the number of clusters.

APPENDIX I
ASYMPTOTIC CONVERGENCE

For all practical purposes, without loss of generality, we can
assume that the continuous search space is discretized, as a dig-
ital computer storage has only finite precision. Let be the
precision offered. The number of values a variablecan take
within the range , is , where de-
notes the greatest integer smaller than or equal to. This as-
sumption of the search space being discretized facilitates inter-
pretation of the state sequence of network as a Markov chain.
The proof of convergence to a global optimal configuration re-
quires the following assumptions: The search space is finite; At
least one of the configurations in the discretized search space is a
global optimal configuration; Variance is assumed to be con-
stant. From bound constraints, , we can compute the
size of the search space, . Each
variable can take a value from the set

. Now the search spaceis the cartesian product
of , . The output values
of nodes in the network form a configuration or solution in.
Let be the set of all optimal solutions. The steady state
distribution over solutions in the discretized search space with
finite size is given by the Boltzmann distribution

(4)

where

The state transition of the network from stateto state is
defined by transitional probabilities from one state to the other.
The transitional probabilities are defined as follows:

if
if

where represents a set of neighborhood configurations of
is the probability of generating the configurationfrom
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and is the acceptance probability. In the proposed connec-
tionist approach with , configuration is a neighbor-
hood configuration of , if and only if they satisfy the criterion:

such that and . This im-
plies that two configurations and differ at th node output
value. The probability of generating a configurationfrom by
updating node is given by

(5)

and , where is the probability of selecting
th node for updating.
The acceptance probability is given by

where

if
otherwise.

Theorem [28]: For any irreducible and aperiodic Markov
chain with transition matrix , the steady state distribution,,
exists and is independent of the initial distribution. The com-
ponents of can uniquely be determined by the

.
After infinite number of iterations of the network at a fixed

temperature, , the probability distribution of solutions reaches
the stationary distribution. In order to prove that the Markov
chain given by a state transitional matrix reaches the sta-
tionary distribution, we use the following Lemma.

Lemma 1 [1]: If the Markov chain is irreducible and aperi-
odic and the components ofsatisfy the property

then is called the stationary distribution.
In order to prove the existence of stationary distribution, we

need to show that the Markov chain is irreducible and aperiodic.
1) Irreducibility: The Markov chain of is irreducible if

, i.e., there exists a nonzero probability of
reaching a state from any other state in a finite number of steps

.
Proof: Let the state be reachable from. A state is said to be

reachable from another state, if and only if, there exists a valid
sequence of state transitions from one state to the other. So, the
probability of reaching state from state in transitions is
given by

we have and , so,
and this is true for all statesand . So every state is reachable
from every other state. Thus proving that the Markov chain is
irreducible.

2) Aperiodicity: If the Markov chain associated with the
transition matrix is irreducible, then if any one state is
aperiodic, then all states in the Markov chain are aperiodic. It

is enough to prove that one state is aperiodic. Let the function
values of configurations are , and . If ,
then . The aperiodicity of statecan be proved, if we
can show that .

Proof:

as

Hence, all states in the Markov chain under consideration are
irreducible and aperiodic. In order to prove that the distribution
of configurations after infinite number of iterations of the net-
work is stationary, we need to prove that the components of
satisfy the equation .

Proof:

We have to prove that . As the configurationsand
differ at position and , we have:

We assume that and the error due to approxima-
tion can be ignored. So we have

This proves that the distribution of solutions or configurations
after infinite iterations reach the stationary distribution. Now,
we need to prove that network converges to optimal solutions
asymptotically at the zero temperature

where

if
otherwise.
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Proof:

For all states , and
for all other states, .
So . Hence at zero temperature,
the stationary distribution converges to global optimal solutions.
The asymptotic convergence proof for is not undertaken
in this paper. We can have different value offor different vari-
ables. Let be the number of samples being considered byth
node. If we assume that , then with
a similar Markov chain analysis, we can prove the asymptotic
convergence to global optimal solution(s).

APPENDIX II

Functions 1–12 are taken from [32, pp. 146–150].
Function 13. [F13] [32, p. 146, Prob. 14] Goldstein-Price
(GP) function. .
Function 14. [F14] [32, p. 146, Prob. 19].
Function 15. [F15] [17, COS function: p. 197, Cosine mix-
ture problem.]
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