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A Stochastic Connectionist Approach for Global
Optimization with Application to Pattern Clustering

G. Phanendra Babiember, IEEEM. Narasimha Murty, and S. Sathiya Keerthi

Abstract—in this paper, a stochastic connectionist approach approach, unsupervised learning is performed in the presence
is proposed for solving function optimization problems with of some labeled patterns.
real-valued parameters. With the assumption of increased pro-  Numerical clustering approaches can further be classified

cessing capability of a node in the connectionist network, we show . to: hi hical titi I h th tic: d f
how a broader class of problems can be solved. As the proposedIn 0: hierarchical, parttional; grap eoretc; and tuzzy

approach is a stochastic search technique, it avoids getting stuck Set-theoretic clustering approaches. Hierarchical approaches
in local optima. Robustness of the approach is demonstrated on build a tree structure or a dendrogram of the given data re-

several multi-modal functions with different numbers of variables.  yealing the pattern associations. On the other hand, partitional
Optimization of a well-known partitional clustering criterion, approaches partition the data set into nonoverlapping clusters.

the squared-error criterion (SEC), is formulated as a function Graph-th ti thod | h algorith for d
optimization problem and is solved using the proposed approach. raph-theoretic methods employ graph algorithms for cden-

This approach is used to cluster selected data sets and the resultsdrogram construction or partitioning the data [3], [43]. Fuzzy
obtained are compared with that of the K-means algorithm and clustering approaches make use of fuzzy set theoretic concepts
a simulated annealing (SA) approach. The amenability of the in order to find fuzzy clusters [11], [12]. Since the applicability
connectionist approach to parallelization enables effective use of of hierarchical clustering methods is limited by the data size

parallel hardware. . S "
[43], in general many applications employ partitional/fuzzy
Index Terms—Clustering, connectionist approaches, function clustering approaches. Partitional clustering approaches are

optimization, global optimization. associated with criterion functions, which can be either global
or local type [43]. A global type criterion function considers the
|. INTRODUCTION entire data set on the whole in the clustering process, whereas

o ... ... approaches using a local type of criterion function operate

;‘USTER anatly_s.|§ Istv?rr]y gs:zfu_l whten C!?St;'f'ciﬂon 'N5n the local characteristics of the data. Partitional approaches

\-s formation pertaining fo the data s not avarable. The Maj 4 ;se |ocal type criterion functions are especially popular
aim of cluster analysis is to find pattern_assomathns byformualg image segmentation [31], [39]. All partitional algorithms
groups of patterns such that a pattern in a group is more sim AAt use the global type of criterion function optimize it to

to other patterns in the same group when compared to pattern Sherate a partition of the data set. A straight forward approach
other groups. Many clustering approaches have been propoge examine all possible partitions and select the one that

in the literature to SUiF Ya”F)“S requirements. These approachigs o izes the criterion. This is practically not possible as
can broagly be classified into: numerlcql [31. [43], [60]; SYMihe number of possible partitions increases exponentially
bolic [36]; and knowledge-based clustering approaches [61]'with the increase in either the number of pattefpds) or the

Many of the conventional approaches are numerical Clbﬁﬂmber of clusterd K). The total number of partitions of

termg apprpaches which assume that patt_erns are PO_'mstHE data into tak clusters is given by Stirling approximation
a d-dimensional space and perform clustering by defining <

BN, K) = (1/KY) i ()R

N . ; , D> ; .

(d|§)5|mllar|ty measure. Symbol_lc clustering approaches are| | the case o — 2. the number of partitions i8¥~1 — 1
suitable to cluster patterns or objects that are often represe f

e : this clearly indicates the exponential complexity involved
by qualitative or symbolic features. On the other hand, knovx1 1 exhaustive enumeration. In this paper, we consider the op-

edge?b_ased clustering approaches use high-level k_nowle #fization of one of the most widely used criterion function
pertaining to a set of problems to perform the clustering tas ared-error criterion (SEC) function

In these approaches, knowledge is embedded into the approa is paper is divided as follows. Section Il presents the SEC

for sol\_/mg a plass of p.rqblems. Recently, fuzzy (_:Iusterlng (?lfmction and describes the search techniques used to optimize
data with partial supervision has been addressed in [68]. In tlﬂ'.SThe function optimization formulation is also discussed in

Section Il. Earlier work related to the connectionist approaches
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in Section IV. Section V deals with the applicability of thesearch approaches have been employed in solving the clustering
proposed approach to solve the clustering problem. Sectionpbblem. Klein and Dubes [47], Selim and Alsultan [58], and
presents results and comparisons for selected data sets. Cori@tawn and Huntley [18] have investigated the applicability of

sions are provided in the last section. the SA algorithm for pattern clustering by solving the discrete
optimization formulation. Babu and Murty [9] have applied SA
[I. SQUARED-ERROR CRITERION FUNCTION approach for finding an optimal initial seed values such that the

Many criterion functions are variants of the SEC and it find%hgse? ?Igorlthm, Kt'rTzanS’ converg(?st_to anboptngnal ?artr']tlo?'
applications in several fields [22], [37]. Several algorithms have volutionary - methods are population based stochastic

been proposed in the literature to optimize the SEC includi t|m|zat|op techniques that naturally fit for parallelization.
K-means and ISODATA algorithms. Gordon and Henderso e clustering problem has been attempted by many researches

[35] have formulated the minimization of SEC as a nonlinea‘tlrSing evolutionary methods. Raghavan and Birchard [54] have
programming problem (NPP) in the following way: Let

used GA's to optimize within group sum of variances clustering
criterion function. Other attempts using GA's include [13],
Y ={y1,...,yn} be aset ofi-dimensional patterns [38], [44], and [53]. An integrated approach that combines
C ={C.,...,Cx} be K mutually disjoint clusters K-means and genetic algorithms has been investigated [7] for
. . optimizing SEC. Another evolutionary approach, called evolu-
O ={o1,...,0x } beK d-dimensional cluster centers. tionary programming, has been employed by Fogel [29] to find
fuzzy min-max clusters in the data by fitting hyper-rectangles

Optimization problem is ’ o . 2 i
in multidimensional space. Evolution strategies have been used

. N oK ) to accomplish both hard and fuzzy c-means clustering tasks [8].
minimize J(W,0) = > 0> " wijllyi = o) Almost all of these approaches try to solve the combinato-
i=1lj=t rial optimization formulation of the clustering problem except
where [7]-9]. One of the drawbacks of SA is that it consumes a lot of
computational time and is sequential in the nature of its search.
-1l =12, wi; €{0,1} On the other hand, evolutionary approaches are a natural fit for

W = [w;;]isanN x K pattern association mattix ~ parallelization, but are not suitable for large valueshofand
K N K. Connectionist approaches [48], [52] are well suited for clus-
Zwii =1, wa > 1; tering by providing a scope for massive parallelization. Parsi
j=1 i=1 et al. [52] investigated the applicability of Hopfield neural net-
) ‘il Wi work for clustering. By its deterministic nature of search, it con-
0 =TF—— verges to a local optimal partition. A group update approach in
2 =1 Wij the context of Hopfield model has been proposed to improve

Many clustering algorithms have been developed to optimigenvergence speed and has been applied to solve a set partition
J(-,-) for a given data set withV patterns ands clusters. Gen- Problems [5].
erally used hill climbing techniques, such as the switching tech-The function optimization formulation of SEC facilitates
nique and K-means algorithm [3], [26] start with an initial partiidentifying optimal cluster centers such that optimal pattern
tion and gradually improve that partition by optimizing the criassignment can be obtained. This formulation is given by
terion function. These techniques converge to a locally optimal N K
partition (see [59] for a detailed convergence proof). Many en- o 2
gineering applications [37], [60] require an optimal partition to 1(0) = Z Zw”Hyi — ol @)
be obtained as long term investments are involved. Finding an
optimal partition requires finding an optimal assignment mavhere
trix, W+, such that/(W=*,-) < JOW,-),vW € {0,1}V¥. . .
This is a well defined discrete optimization problem [26] and w; = { 1, if [y - ojll < llgi —oqll, Vg #
many attempts have been made in this direction using various 0, otherwise
search techniques. Direct exhaustive enumeration of partitioﬂ?e above criterion function is a real-valued parameter function
for partitioning 100 patterns into five clusters requires exam- e P
L - . . ) ) . and the problem turns out to fin@*, i.e., optimal cluster cen-
ining 10°7 partitions [26], which precludes its use in practice

ters, so thatV* can be found. Note that any ties, i.e., a pattern

Some of the deterministic search techniques include dynaml&uidistantfrom two or more cluster centers, are resolved by as-

programming [10], integer programming [56] ,[67], and brancﬁ : . -
and bound techniques [49]. A deterministic annealing approas(:'ﬁmng associated pattern to one of the equidistant clusters.
has been considered by Rosteal. [57] which can be viewed
as a sequential version of the mean field annealing approach in
neural networks [65]. This approach employs an annealing tech-
nigue in which the error surface gets smoothed, converging to dn optimization theory, finding a global optimal solution for
better local minimum, but the global optimum is not guaranteed NPP with range constraints is termed as a global optimization
Simulated Annealing (SA) [46] and Evolutionary Ap-problem. There are a number of methods available in the litera-

proaches (EA) [40] which belong to the class of stochastiare to locate local extrema, but the global optimization problem

=1 j=1

I1l. CONNECTIONIST APPROACHES FORFUNCTION
OPTIMIZATION



12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 1, FEBRUARY 2000

is very difficult to solve in a finite number of steps. Many aphand, one can use either a linear or quadratic penalty function
proaches have been proposed in the literature to solve globapressions as shown at the bottom of the page, whejeep-
optimization problems [24], [25]. Connectionist approaches beesents a linear functio)(-) represents a quadratic function,
long to a class of parallel approaches for solving difficult opand coefficientss; denote positive constants [64]. Some special
timization problems [1]. To the best of our knowledge, no atonstraints that are very useful in the search process are range
tempt has been made to solve a general function optimizatioonstraints. These constraints define the possible limiting values
problem using stochastic connectionist approach which triesdbvariables. Let the bound constraints pe< = < v (u; <
find a global extrema of a given function. Some approaches have < 1;,¢ = 1,...,n), where vectorg: and» define lower
been proposed in the literature for optimizing quadratic funend upper bounds of variables. These constraints can also be
tions. incorporated in the function using penalty methods. These con-
The first approach proposed by Chua and Lin [21] attemptss$traints can be used explicitly to generate a feasible search point.
solve a NPP using a network with small circuits interconnectd@ ensure that the generated point is a feasible point [16], the
together. Tank and Hopfield [62] proposed the first neural ndbllowing function ¢() is defined:
work model for solving a linear programming problems. Other

neural network approaches include [16], [27], [45], and [70]. All Yio i Syi < Vi

these approaches are a type of parallel gradient descent methods 9(yi) = q mi o < Vi

and do not guarantee a global optimal solution. Even though vi, iy >, Vi

much of the literature in the optimization field addresses solvifgow the function turns out to befu(z) = flg(z) +

functions that are_qua_draticlin nature, in real life, we eNCOUNRT (1, (g(z))) + -+ + Am(hum(g(x))). By explicitly forcing
many nonquadratic, discontinuous and other types of functionsig |ie in %7, the search will be relatively faster and it also
The existing connectionist approaches are inadequate to sql¥g,ces the number of penalty functions. Bound constraints
them. In the following, we present the general formulation Q3 easily be handled by the connectionist approach using the
the function with constraints. function g(). In the next section, we present a connectionist

Function Optimization:We define the function to be opti- gnproach for finding a global extremum of a general function
mized along with the constraints imposed on the search spaggp, range constraints.

The constraints define a feasible search space. The general func-

tion with constraints is defined as IV. STOCHASTIC CONNECTIONIST APPROACH FORGLOBAL
Minimize f(z) Ve e S OPTIMIZATION

Subjectto hi(z) <0 1<i<gq In this section, we present a connectionist approach for gen-
hj(@)=0 q+1<j<m eral function optimization with range constraints and then in-

wherehy, ..., h, are inequality constraints art, 1, ..., h, vestigate the applicability of the proposed approach to solve the
are equality constraints. These constraints. . ., h,, define a clustering problem. The advantages of the proposed approach
feasible regio®”. Note thatz is a vector of size.. In the cur- over the existing connectionist approaches for optimizing NPP
rent context, for obtaining extrema we need to transform this are as follows:

constrained optimization problem into an unconstrained opti- 1) global optimum is guaranteed asymptotically (restricted
mization problem using penalty methods. In the penalty func-  case);

tion approach, the function is penalized when a solution violates2) no constraints on the type of the function being optimized,
any of the constraints. This forces the solution to lieinthe region  such as continuity and existence of derivatives;

of interest . This can be done by minimizing a new function, 3) highly parallelizable;

feQrgivenbyfo(x) = f(z) + A(h () + - + A (B () 4) scalable to support large scale function optimization.
where); is theith penalty function which gives no penalty or We are not adhering to the notion of a node as a simple
zero value if the constraiit; satisfies its equality or inequality. thresholding unit and assume that it has processing capability
If there is a constraint violation, it returns a positive penalty ito support the specific requirements. The idea of a hode being
order to restrict the scope afto R”. In the extreme case, onea simple processor is quite convincing in the case of learning
can consider infinite penalties. In principle, using infinite penaknd representation tasks, where even the failure of a few
ties, minimizing /() is equivalent to minimizing/() and the nodes in the network may not degrade the performance of the
global extrema obtained fqf.() will be the global extrema for network. However, in the context of optimization task, a node
F0O. In practice, incorporation of this type of infinite penaltyfailure during the optimization process leads to inappropriate
functions may not be required. Depending on the problem sdlutions. In fact, this entails an investigation for a compromise

el ﬁzL(uZ) or %ﬁzQ(uZ), if u; >0
B BilL(us)| or $3:Q(w;), if u; #0

1<i<q

g+1<i<m
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between the node capability and the parallelization achievaldearch space. At thermal equilibrium, the probability that the
With this assumption of increased processing capability, wetwork is in a state: is given by the Boltzmann distribution
show how a broader range of problems can be solved usi3g]
connectionist approaches. The approach investigated here can
be viewed as an extension of the Boltzmann Machine that is () = 1 exp<_@> )
used to solve combinatorial problems [1], [2]. Earlier investi- Zr T
gations in this direction include employing the SA algorithm
to solve continuous valued parameter optimization probletdereZr = [, exp(—(f(z)/T)). As the temperatur& — 0,
[14], [15], [23], [66]. We first present the network architecturéhe distributionr, approximates to global minima. Ateach tem-
followed by the node update rules. perature and variance?, the network is allowed to reach the
The number of nodes is equa| to the number of Variab|estﬁﬁrmal equilibrium. The temperature Schedule, i.e., annealing
be optimized. Network is fully connected, i.e., each node §¢hedule, can be logarithamic [33] and the variance for gener-
connected to every other node and can be viewed as a grafAg neighborhood values can be kept constant at all tempera-
G = {V,E}, whereV is a set of nodes)}’| = n, andE repre- tures or can be decreased depending on the function to be opti-
sents a set of connections associated with nodesy, } € E. mized. Initial variance can be set using the bounds of each vari-
Each connection is associated with a weight called connecti®le, i-e..07 o ¢;[v(i) — p(2)]. From the normal distribution
weight, w;;. These weights are assumed to be symmetric, i.8roperty, we havé>(|z — 20 < X <z + 20]) ~ 0.95. So, ap-
w;; = w;;. Each node outputs a real value. All weights arBroximately 95% of samples generated &Yz, o*) fall in the
equated to Tw,; = 1). Connections are used to get the valug@nge[—20, 20]. Settingo = (v; — y;)/4 will allow 95% of the
of other variables from other nodes. proposed moves to fall within the bounds of the variable
Let the function to be optimized bg ). The state of the net-  After the network reaches thermal equilibrium at a fixed
work is characterized by a vector comprised of output valué&&mperature, both temperature and variance are decreased
of nodes. The state of the network is also called the configy multiplying with o (cooling rate) andx,, respectively.
ration of the network. It is represented by the concatenation bfis process is performed until the temperature is sufficiently
all output values of the nodes as given by= z1z ... z,. decreased. Theoretically speaking, only in sequential mode
The valuef{, _, denotes the function value computed at nod@f network execution will this approach guarantee the global

4, whose output value is, using other variable Va|ueﬁ|;-=a — optimum asymptotically. However, even in both synch_ronous
Flat, . at_ a,at,,, ..., o). Here, the parameterrepre- and asynchronous parallel modes of network execution, the

sents the time step at wh.iéhnnodis updated. Initially the net- network converges to a global optimum quite often. In fact, we

work is started with some random values that fall in the fe&&n exploit the parallelism offered by connectionist approaches

sible region. Range constraints can be used explicitly to seaffHY In these two modes of network execution. In order o test
in the feasible search space instead of including them into performance of the proposed approach, several standard

objective function. Each node generates a neighborhood vallf$t functions are optimized using the asynchronous parallel

;,, by adding Gaussian noise to the current output vatye, mode of execution. o , ,
This value,z;,, is computed as!, = g(at, + N(0,52)), The problem associated with this approach is that it gets en-

where (0, 52) generates a normal random value withvari- trapped in a deep local minimum. In order to avoid this problem,
ance.t der;otzes the current time step, and functigh checks the network has to be started at high temperature and should be

for the violation of bound constraints. The change in the fun@nnealed down slowly. To provide robust search, we generalize

tion value with the change in variable;, value is given by this approach by aIIowing each node to generate more than one
Aft = ft g _The new value is set as the Cur_vall'Je of the corresppndlng variable to selectanewlvalue for up-
rent outpd;i;égording‘;mgmtiﬁe following update rule: dating the node. This reduces the chances of getting stuck in a
' deep local minimum. Even at zero temperature limit, each node

zt, iFAfI<0 tries to search for a better solution at which the function value

217

= 2t if exp(— Afi) > rand0, 1) is better.

0 i17 T

zf , otherwise

A. Generalized Stochastic Connectionist Approach

Here, the functiomand(0, 1) generates a uniform random value Each node generates a set of neighborhood points by adding
in the rang€0, 1] and the parametdr is calledtemperatureA  Gaussian noise to the current output value. Let the generated
node is updated at a time steith a firing probability ofp;.  points at node bex;, ,z;,, ..., z;, and the current output be
The average number of nodes that are updated at a time step;is
n*py wheren is the number of nodes in the network. The tem-
peratureI’, controls the stochasticity in node update rule. We xﬁj =g (1':0 N (07 0—72)) L 1<i<W
can directly see the relevance of this approach to the Boltzmann t gt )

, : . ) : D= e, » 1< G WL
machine. This update rule is a direct extension of node update K |wi=ai;
rule [2] in the Boltzmann machine for solving discrete optimiza-
tion problems. Initially, network is started at a high temperature
and then is allowed to reach a thermal equilibrium state charac- , (e C e et .
terized by the steady state distribution over the solutions in the it = m}n{fﬁ}’ Vi, i (fi, < fi,) setwi, =

Node output is updated using the following rules:
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To and T are the initial and final temperatures, and ar is the cooling rate
while (Tp > Tf) do
begin
r=0;
while( r < Maz_Ite) do /* Maz_Ite is the maximum number of iterations */
begin
for each node 7 do
begin
if (p; > rand(0,1)) do /* py is the probability of firing a node*/
generate z;; = g(N(zi,,0?)),1 <j<W;
compute fi; = flzizai, 1 <3 < W fi, = ming{fy;};
if (fi, < fio) = =(-’Ei}, {}? fiis
_ exp(—fi,/To
else P(l) = SW——'——-

T exp(~ig /To)
set x; = s, fi = fi, with probability P();
end
r=r+1
end
To=ar*+Tp,0? =a,*02,1<i < K;

end

Fig. 1. Sequential algorithm.

else select an output value usiiRg a probability vector of size
W where

P = (A:Xp(— th/T) 7
0= (-1 /1)

The approach discussed earlier is a special case of this e
method, whenW = 1. The probability vector maintains
the probabilities of transition from the current state to each
of the otherWW states. For example, considé?,; = 3 and
P = {0.3,0.2,0.2,0.3}. The probability of remaining in the
same state is 0.3, and the probabilities of accepting the states Vi a b
1, 2, and 3 are 0.2, 0.2, and 0.3, respectively. One way of
selecting a state is to generate a random numbein the Fig.2. A function (thick line) along with normal distribution function (dotted
range [0-1], and select a statesuch that the sum of all prob- line) with mean;.
abilities >>'_, P(I) > r. In the limit temperaturél’ — oc),

P() — 1/(W + 1),VI. As temperature and variance tend¥his clearly indicates that this probability increases with the in-
to zero, the probability vector becomés.o, ..., 0.0}. Algo- crease i value and approaches 1.0@5 — oc. The value
rithm for the generalized stochastic connectionist network i W should be chosen carefully. Large valued®fincreases
presented in Fig. 1. the number of function evaluations, whereas small valuég of

This approach aims at avoiding the deep local minimgften lead to local optima entrapment. In our experiments, we
problem. We analyze the advantages of setliig>> 1. The observed that settingy’ = 5 for general function optimiza-
problem with deep local minima will come when the tempettion gives an excellent rate of progress with a high success rate
ature is near zero and variance is small. At this temperatu(e;0.95) and a small number of function evaluations. It was
each node tries to locate a neighborhood point better than tigserved thatV can be set to small values for the functions
current local minimum. Consider a one-dimensional functiofithout deep local minima, but has to be set to higher values for
possessing deep local minima as shown in Fig. 2, and let fla@ctions with deep local minima. In this paper, we compare the
current solution be;. The only way of coming out of this local performance of the proposed approach for different valugg of
minimum is to search for a point in the ranjget]. Foriw =1, (1 and 5). The success rate is defined as a ratio of the number of
the probability of obtaining a neighborhood point in the ranggémes the global optimal solution is obtained to the total number
[a,b], 1S Pap,,y, .y = |f:(1/\/ﬂa) exp(—((v;—x)%/20?)) dx|. oftrials. In the Appendix I, we provide asymptotic convergence

By generatingl¥’ samples, the probability of generating aproof assuming that variance is constant #nd= 1. The possi-
least one point in the rande, b] is (1 — (1 — P,,,b(W:U)W). bility of extending this proof to work for fixed values & (>1)

<W.
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TABLE |

15

COMPARISON OFAVERAGE NUMBER OF FUNCTION EVALUATIONS (AVERAGE TIME OF EXECUTION) TAKEN BY DIFFERENTAPPROACHES

Function GP RCOS H3 H6 S5 S7 S10

(F13) (F2) (F11a) (F11b) (F12a) (F12b) (F12¢)
Bremmermann | 210L{0.5] 250L{1]  505L[2] L 3401L[1] 1700L[8) 500L{17]
Mod. Brem. 300[0.7]  160{0.5]  420L[2]  515[3] 375L[1.5] 405L[1.5] 336L[2]
Zilinskas 5120[80]  8641[175] L 12121L[282]  8892L[214]
Torn 2499[4]  1558[4]  2584]8]  3447[16] 3679[10] 3606[13] 3874[15]
Gomulka/Torn 6654[17] 6084[15] 6144[20)
Gomulka/V.M | 1495[2]  1318[3]  6766[17]  11125[48] 7085[19] 6684[23] 7352[23]
Price 2500(3] 1800(4] 2400(8] 7600(46] 3800[14] 4900{20] 4400[20]
Fagiuoli 158[0.7])  1600[5] 513[5) 2916[100] 2514[7] 2519(9] 2518(13]
INTEROPT 6375(6.3) 4172(10.4] 1113(1.4] 17262(46.4]  3700[11(0.4)] 2426(5.8(.6)] 3463[8.6(.5)]
Vanderbilt/ 557[1(1)] - 1224[4(1)] 1914[12(.62)] 3910[16(.54)] 3421[15(.64)] 3078[15(.81)]
Louie
Connectionist | 321{0.2]  782[.51]  1097[2.2]  1276[3.3) 2569[4] 2571[5] 2437(6.1]
approach (W=1) | (1) (.96) (0.95) (.81) (.48) (.59) (.72)
Connectionist | 772[0.5]  605[0.4]  1436[2.9] 1101[2.85]  9062[14] 4315[8.5] 5010[12.5)
approach (W=5) | (.95) (1) (1) (.88) (.96) (.98) 1)

L: indicates that a local optimum is obtained by the approach.

Values in brackets () indicate the success rate. Some approaches don’t have these values

as they were not published or not relevant in the context of the associated approach.

Values in square brackets [] indicate average time of execution taken by different approaches

TABLE I
RESULTS AND CONTROL PARAMETERS FOR THESELECTED FUNCTIONS

is also discussed. In the following section, we present results
related to the optimization of the standard test functions along
with relevant comparisons.

FN|{N| R M Ny | Temperature Variances SR
z10 To Ty ot af‘

B. Optimization of Standard Test Functions 1 | 2| 10 2 398|100 5x107%| 2.0 5x107% | 1.00
2 12/ 10 2 605| 1 107|075 5x1073 | 1.00

In order to establish the characteristics of a global optimiza- 3 | 51 5 5 50| 1 10-°|075 10-% | 0.99
tion technique, researchers have used a variety of test func 4 | 2| 10 5 87| 1  10-¢| 400 5x10-% | 1.00
tions. The choice of test functions is crucial as each methoc 5 | 2| 10 5 446| 10 10-4{075 10-2 | 1.00
has its own merits and drawbacks in solving different types 6 | 2100 5 13410100 10°2| 06 5x103 | 1.00
of functions. A set of seven widely used standard test func- 7 | 2| 10 5 638| 05 1075 {075 5x10% | 1.00
tions are selected to test and compare the performance ofglobi 8 | 2| 10 5 2079 10 10°%| 20 5x107% | 1.00
optimization approaches. We use these functions along witr 9 | 2| 10 20 6915|100 10°%| 20 107 | 0.98
some other functions taken from Renpu Ge and Qin [32], and 10 | 2| 10 20 6649 100 10°°| 20  107% | 0.98
Breiman and Cutler [17]. Results are compared with those ob- 11 | 3| 3¢ 20 143 | 05 107°| 03  107° ) 1.00
tained with other approaches. Generally, global optimizationap- 112 | 6| 3 2 1lo1] 1 10| 03 107 | 0.88
proaches are compared based on the number of objective fun¢ 12 | 4| 10 20 9062 | 05  107°} 03  107° | 0.96
tion evaluations and the amount of time taken for optimization, 12| 4| 10 20 4315} 05 107} 03 107" | 0.98
The execution time is defined in terms of standard time units 20| 4| 10 20 5010} 05 107} 03 107 | 1.00
[17]. Many methods proposed do not consider the scalability of 13 | 2] 10 10 72]10° 107] 05 107]095

h A for functi ber, and t
the approach to solve large scale function optimization prob- I @ SE stand for function number, and success rate

lems. We argue that the scalability of an approach is also ar
important criterion in establishing the efficacy of an approach
over others. Results obtained with other approaches have bee .
taken from [24]. The results obtained with SA are taken from

[14] and [66]. 3) Hartman's family of functions (H3, H6);
The number of variables in these standard functions are in4) Shekel's family of functions (S5, S7, S10).

the range [2-6]. The functions are referred using the followingjgterent test functions have been selected from [32]. A func-

abbreviations: tion number or a function abbreviation is used to refer to the
1) Branin function (RCOS); corresponding function. References to these functions are pro-
2) Goldstein and Price (GP) function; vided in Appendix .

Ny stands for the average number of function evaluations
My(Max_Ite) stands for the number of inner loop iterations
R= Eﬂ;%?-@ stands for the number of outer loop iterations
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As the proposed approach belongs to a class of probabilis 10"
search techniques, we performed 100 trials for each of the :
lected functions on a PC 386. Each trial has been started w
a different starting point that was selected randomly with un- 1°
form distribution in the search space. The average numberEmZ i
function evaluations along with the control parameters are pis
sented. The network was run in the asynchronous parallel mog 10' b . 5 grss
parallel execution, and at any time instant half of the random[g .
with uniform distribution, selected nodes are allowed to chants 0
their output values. All function evaluations computed in pag 15[

10* b

1:Sequential Execution (J}

allel are considered as a single function evaluation. The progré . 2:Parallel Execution (J)
was run until a global/local optimum is obtained with a precisio '° f 5 Sequentia) Exeaution (Time) 3
:Parallel Execution {Time)

of 10~*. The initial temperatur&; is set greater than or equal to
the variance of function values obtained for some randomly <
lected solutions. The cooling rate- is setto 0.95. The average 17 0 100 180 200 0 a0 0 200
number of function evaluations required for the seven functiors, Number of variables

F2, F13, Flla, F11b, F12a, F12b, and F12c are compared V)ﬂiﬂﬁI 3. Number of function evaluationg, and computation time, Time, (in
the earlier reported results obtained by other procedures. Talbdedonds) required to obtain global optimum for function F14 with different
presents a comparison of the number of function evaluations fypnber of variables for both sequential and parallel network executions.
bothiW = 1 andW = 5 cases.

It can be observed that in the casel®f = 1, the success 1¢°
rate is small for functions H6 (F11b), S5 (F12a), S7 (F12b) an .
S10 (F12c) as they contain deep local minima. Even though tl
number of function evaluations is less compared to that of tf_ 1°°
other methods, the problems with deep local minima are seve g,
For W = 5, high success rates can be observed. The averag
time of execution taken by each method for each of these funs ° |
tions is presented in Table |. These values are provided in squig 10' £ .
() brackets. :

The time is measured in standard units and one unit of time 3
equal to the time consumed for 1000 evaluations of the S5 funz 1" ¢ Sparain) Execoton tn o i
tion on the PC 386. It can be observed that in most of the cast 152, e e o™ ]
the time taken by the proposed approachis less comparedtot
of the other strategies. These results bring out the effectivene
of the connectionist approach over conventional determinist 17 o 100 10 mo 280 a0 w0 a0
or random strategies. The results of all functions, F1-F13, alony Number of variables
with control parameters, are listed in Table II. Fig. 4. Number of function evaluationg, and computation time, Time, (in

From these results, we empirically establish the robustnessonds) required to obtain global optimum for function F15 with different
of the proposed connectionist approach in terms of its ability fymber of variables for both sequential and parallel network executions.
find global optima, execution time taken and the success rate

obtained. We test the scalability of the connectionist approagjtal minima. From these experimental resullts, it can be inferred
with respect to the increased number of variables. For testifgt the proposed connectionist approach always gets global op-
scalability, we consider functions F14 and F15. The number gf,um. and has an excellent scalability property.

variables is incre_ased from 25 to 400 in steps (_)f 25 and_the—rhiS approach is employed to solve the clustering problem
network was run in both asynchronous (Sequential Executiqhich is formulated as a function optimization problem. In the
and asynchronous parallel (Parallel Execution) modes by sgkxt section, we discuss the network architecture for solving

ting W = 1 as these functions do not have deep local minimgystering problem and the use of gradient knowledge in the
Inasynchronous mode a node is selected randomly with unifog@arch process.

distribution and is updated in a time step, and in asynchronous
parallel mode a set of nodes is selected randomly with uniform
distribution and are updated in a time step. Figs. 3 and 4 present
the average number of function evaluatiosisand the average  We use the proposed connectionist approach to locate optimal
time of execution for different values affor functions F14 and cluster centers, thus solving real-parameter function optimiza-
F15, respectively. It can be observed that the number of functitbon problem.

evaluations remain almost constant even as the number of variin the proposed network architecture, each node corresponds
ables increases. For function F14 with= 400, the number of to ad dimensional cluster center. Variaklén (1) maps taz; of

local minima is2'9%°, 1t is very difficult for conventional ap- anode in the network. This indicates that the output of each node
proaches to optimize these type of functions because of sevésal real-valued vector. The vectorized node output values can be

.
(55)

10° L 4 ]

r of fi

V. CLUSTERING WITH THE CONNECTIONISTAPPROACH
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To and Ty are the initial and final temperatures, and
ar is the cooling rate
while (To > Tf) do

begin
r=0;
while( r < Maxz_Ite) do
begin
for each node 7, (1 < i < K), do (in parallel), 1 <i < K
begin
if (py > rand(0,1)) do
compute new cluster center o; by assigning the nearest patterns to the cluster i
compute gradient b; = (0; — 0:), T = 0s;
generate z;;{l) = g(N (zi0(l), lb—l‘b-(f—ll'az)), 1<j<W,1<l<d;
compute fij = Jio;=s,;,1 < § < W; fu = ming{fi;};
if (fu < fio) 0i = za, Jyo; = fur;
exp(—fit/Te
else P(l) = —W—ﬁ—u—ijex J‘('-f.-j/m
set 0; = a1, Jy,,, = fu with probability P(I),
end
r=r+1;
end

To = ar * Ty, 02 = a, * 2

end

Fig. 5. Sequential algorithm for clustering.

communicated to other nodes with the available network com S; is the initial solution,

munication facilities or with the help of a specialized hardware gg is the function value (squared-error) of the solution So
to support parallel transfer of vector output. The values of vari-
ables can be mapped orjto 1] range to facilitate analog circuit
realization [16]. The node update rule discussed earlier hasto k i
extended to accommodate vector valued states. The neighbc Pegin

Ty and T} are initial and final temperatures
while (To > Ty)

hood values are generated using(l) = g(x, (1) +N (0, 07)), 1=0;
1 <1 <d1 < j < W whereosi is the variance associ- while (I < Maz_Ite)
ated with thelth component. Note that;, is a d-dimensional begin

vector andz;,({) is the {th component of thel-dimensional
vector. It is evident that stochastic search is performed by san
pling the neighborhood. This process consumes excessive cor

generate neighborhood solution S; from S

compute £g, value

putational time which increases with the increase in the numbe if £, > Eso

of dimensions. We can make use of knowledge about the gre begin

dient in order to increase the speed of search, and the stochas if (exp (—&1;50—)) > rand(0,1))
search is done using the gradient direction. Assume that the gr. So = 815Es, = Esy;

dient atz,, is b, = —(8J/dz;,). The neighborhood points end

generated are given by, = g(x, + (bi,/||bi,||)B), where

B = N(0,0?). The variancey?, is estimated using the normal else So = 513y = s

distribution propertyP(z — 20 < X < x4 20) = 0.95, SO =i+
o = [[bi, l/4. end
Inthe case of the clustering problem, we can obtain the partie To = a * Tp;

derivative with respect to a cluster center. The gradient directiol 4

b; at a node can easily be computed by assigning patterns to _ _ _

the nearest cluster centers and computing new cluster ¢énter™9- 6 Simulated annealing algorithm.

The gradient now i§i0 = 17;0 — xz;,. The network is initialized

with random cluster centers and is annealed down slowly by. We use an exponentially decreasing temperature schedule.
starting with a high initial temperatufi, and an initial variance The temperature and variance are decreased by multiplying with
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TABLE Il
RESULTS OBTAINED WITH K-MEANS AND SA APPROACHES FORGTD

K-Means SA

K MiJ Mal AvJ SD | SR | AvT MiJ MaJ Av] SD | SR | AvT
2 | 121425.8 | 2296520.5 | 124660.5 | 18392.85 | 97 | 0.005 | 121425.8 | 121425.8 | 121425.8 0.0 | 100 { 76.9
3| 77008.6 91126.9 | 83064.2 662.62 | 19 | 0.007 | 77008.6 | 77008.6 | 77008.6 0.0 | 100 { 779
4| 49600.6 84030.4 | 58298.9 | 12398.7 | 10 | 0.006 | 49600.6 | 49600.6 | 49600.6 0.0 | 100 | 78.9
5| 38716.0 78354.2 | 42348.2 6914.2 | 11 | 0.008 | 38716.0 | 38716.0 | 38716.0 0.0 | 100 | 79.8
6| 305354 53354.2 | 34554.6 3379.8 31 0.009 | 30535.4 | 32531.5| 31072.3 | 835.6 | 50 | 80.7
7| 244326 37766.3 | 29477.5 2843.7 21 0.011 | 24432.6 | 24748.5 | 24464.2 | 94.7 | 40| 816
8| 218358 37470.8 | 26480.5 2782.3 010012 | 21483.0 { 22063.2 | 21720.5| 251.7 | 50| 824
9 18970.5 293374 | 23172.9 2312.5 010013 185504 [ 19323.3 | 19076.3 | 286.8 | 30 | 83.8

10 | 16843.3 32085.8 [ 21150.8 2673.8 010015 163079 [ 17600.8 | 16828.6 | 4476 | 10 | 84.2

TABLE IV
RESULTS OBTAINED WITH SCAFORGTD
w=1 W=3

K MiJ MaJ Av] SD | SR | AvT MiJ Mal Av] SD | SR | AvT
2 | 121425.8 | 121425.8 | 121425.8 0.0 | 100 | 0.030 | 121425.8 | 121425.8 | 121425.8 0.0 |1 100} 0.11
3| 77008.6 | 77008.6 | 77008.6 0.0 | 100 | 0.13 | 77008.6 | 77008.6 | 77008.6 0.0 | 100 | 036
4| 49600.6 | 49600.6 | 49600.6 0.0 | 100 | 027 | 49600.6 | 49600.6 | 49600.6 0.0 | 100 | 0.80
5| 38716.0 | 38716.0 | 38716.0 0.0 | 100 0.42 | 38716.0 ) 38716.0 | 38716.0 0.0 | 100 | 1.20
6 | 305354 ] 305354 { 305354 00| 100§ 051 305354 | 305354 | 305354 0.0 | 100 | 1.55
71 24432.6 | 24432.6 | 244326 0.0 100 { 234 | 24432.6 | 244326 | 24432.6 001|100 | 4.35
8| 21483.0 | 21507.1 | 21487.1 837 | 80| 3.57 | 21483.0 | 21483.0 | 21483.0 0.0 | 100 | 11.37
9 | 18550.4 | 19053.3 | 18616.9 | 149.58 | 60 { 575 | 18550.4 | 18550.4 | 18550.4 0.0 | 100 | 16.53
10 | 16307.9 | 16578.8 | 16441.8 | 102.56 | 30 | 8.84 | 163079 | 16578.8 | 16441.8 | 102.56 | 30 | 23.75

ar (<1) anda, (<1), respectively. The sequential algorithm 1’ ' ' T
for clustering is presented in Fig. 5. o ety e
Computational Complexitytn the sequential implementa-
tion of the algorithm, the complexity of the algorithm depends
on the values oW, N, K, d, Max_ltg 1y, T, andar. Let
R (=°27,/T7/Ty) be the number of external loop iterations.
Here the time complexity of each function evaluation is given
by O(NKd). So the expected run complexity of the algorithm
is O(pyW NKd) wherep, is firing probability of node. Note
that the value of/ for z;,, = o; is the same for all nodes. So
once it is computed, all nodes can make use of it. The expectes
run time complexity of the parallel algorithm is presented later.

Funcation Value (J)
3
T

VI. EXPERIMENTAL RESULTS .
10 . l . ‘ l , . . ‘
. . 0 100 200 300 400 500 600 700 800 900 1000
Several data sets have been extensively tested using the pri Number of funcion evalutions

posed approach fd¥’ = 1 and3. In most of the cases (near) _. ) , )
. . . . . . Fig. 7. Squared-error corresponding to the states in Markov chain.

optimal solutions are obtained. All simulations are carried out

on a PC/AT 386 machine. The network was run in asynchronous

parallel mode by allowing randomly selected half of the nodésom the unselected list. Note that the selected nodes are updated

in the network to update their output values in each iteratiowithout changing the optimization value until all are done. All

There are several ways to select nodes randomly. In our expéuiaction evaluations performed in parallel are accounted as a

mentation, we allowed each node to fire with a probability, single function evaluation while computing the time of execu-

setto 0.5. If the number of nodes selected for firing ugipgx- tion. Here an iteration is defined as one complete asynchronous

ceed half of the total number of nodes, we removed some of tinedate. The value dflax_lIteis set to 100. In our experiments,

nodes randomly from the list to ensure that total nodes that wilith regard to the clustering problem, we tested With= 1 and

be updated are half:/2). In case the number nodes selected fd’ = 3. It should be noted that the data has to be made available

firing are less than half, then new nodes are selected randomigh every node. This is possible with MIMD message passing
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TABLE V
RESULTS OBTAINED WITH K-MEANS AND SA APPROACHES FORBTD

K-Means SA
K| MiJ| MaJ| Av| SD|[SR]| AvT| MiJ| MaJ| AW | SD]| SR| AvT
2 | 336.12 | 337.24 | 336.26 | 022 | 67 | 0.027 | 336.12 | 336.12 | 336.12 | 0.0 | 100 | 105.72
3| 227.22 | 319.67 | 230.05 | 9.38 | 56 | 0.030 | 227.22 | 227.22 | 227.22 | 0.0 | 100 | 107.36
418091 | 221.81 | 193.24 | 13.69 | 23 | 0.054 | 180.91 | 180.91 | 180.91 | 0.0 | 100 | 108.81
5|160.23 | 211.80 | 170.03 | 9.56 | 2 | 0.062 | 160.23 | 160.55 | 160.29 | 0.13 | 80 | 109.38
6| 143.27 | 183.16 | 154.3¢ | 7.30 | ©0]0.071 | 141.46 | 144.31 | 142.64 | 1.26 | 70 | 110.95
7| 12877 | 17864 | 139.96 | 6.38 | 0| 0.084 | 126.27 | 131.21 | 127.23 | 1.47 | 60 | 11251
81 117.74 | 148.07 | 120.87 | 747 | 00002 | 113.50 | 118.20 | 116.35 | 1.58 | 40 | 113.08
9| 105.34 | 144.07 | 12087 | 7.47| 0 0.105 | 102.74 | 109.56 | 105.33 | 1.95 | 20 | 115.68
10| 96.08 | 137.41 | 11401 | 870 | o|o0.100| 9272 | 99.30| 96.01|263| 0] 117.24
machines such as PARAM [63]. These type of machines provide TABLE VI
a suitable environment to parallelize the proposed approach and RESULTS OBTAINED WITH SCA FORBTD

to handle data of size upto 4 MB.
We present the results obtained for the four standard data sets:

1) German towns data (GTD);
2) British towns data (BTD);
3) Fossil data;

4) 80X data.

Experiments were carried out for various numbers of clusters,
2 < K < 10. Results are compared with that obtained with the
SA approach and K-Means algorithm.

The SA algorithm used for comparison is provided in Fig. 6.
In SA, the solution is represented as a vector of gizavith
each value representing the corresponding cluster label associ-
ated with that pattern. The neighborhood is generated by simply ] ] ]
reassigning a randomly selected pattern to a different clustéréstimated by setting’,., to 0.75 and final temperature is es-
The initial, 7, and final, 7}, temperature values in SA are estimated by setting it t¢>) 0.999.
timated by using the acceptance rati, which is given by In all trials for SC_ZA, we used the asy_nchronous parallel mode
X = (my +my xexp(—AET/T))/(m1 + my), wherem; and of network exec_ut|0r_1 (Parallel Execution) ensuring that half of
m are the number of perturbations for which there is a redufle nodes are fired in the network at each time step. All func-
tion and increase in the objective function value, respectivefiPn evaluations performed in parallel are accounted as a single
Observe that the perturbations are accepted with a probabi Wctlon evalugtlon while computing the tlm.e of execution. The
exp(—AET), whereAE+ is the average value of all incrementd<-Means alg_o_rlthm was executed for 100 times for each_of the_:
in objective function value due to, moves. Initial and final data se_zts._lnlt!al c_Iuster center_s are selected randomly with uni-
temperatures are set such that the valug’ds 0.75 and(>) form distribution in the_boundmg search space. Bo_th SA and
0.999, respectively. In order to allow sufficient time to convergeCA were run for ten times for all data sets by setting appro-
to high quality solutions, the cooling rates is set to 0.99. priate temperature values. The cooling rate is set to 0.95 in all

Similarly, the acceptance ratig;. associated with a node CaS€s

in SCA can be determined as follows: plus3ptminus6ptplus3pt-Cérman Towns DataThis data set is taken from Spath [60]
minus6pt and consists of cartesian coordinates of 59 towns in Germany.

The K-means algorithm [30] results are shown in Table Ill. In
table, MiJ, MaJ, AvJ, SD, SR, and AvT are the minimum, max-

wW=3

MiJ Mal Avl | SD | SR | AvT
336.12 | 336.12 | 336.12 | 0.0 | 100 | 0.09
227.22 1 227.22 | 227.22 | 0.0 | 100 | L.77
180.91 | 180.91 | 180.91 | 0.0 | 100 [ 5.92
160.23 | 160.55 | 160.26 | 0.10 | 90 | 11.23
141.46 | 142.97 | 141.80 | 0.55 | 70 | 12.26
126.28 | 127.16 | 126.45 | 0.27 | 70 | 13.13
113.50 | 113.59 | 113.53 | 0.04 | 70 | 14.61
102.74 | 103.44 | 103.04 | 0.26 | 40 | 16.27
92.68 | 9341 | 92.86 | 0.22 | 30 | 17.36

5 =
OO o NI S N ks W N

my +mo <1 _ L ) imum, average, standard deviation, success rate and average ex-
Y L) L, exp(=ATy/T) 3) ecution time of the results obtained for the selected number of
T my +ma runs. Observe that the success rate decreases rapidly with the in-

) crease of the number of clustékS The SA temperature values
where P(l) = exp(—AJ/T)/(1 + 23;1 exp(—AJ,/T)); found forK = 2 and10 are7, = 15000.0 and7’; = 300.0,
AJo=0,AJ; = —(Jp, — Jr,). Herem; andm, are the same and 7, = 2500.0 and 7y = 40.0, respectively. Results are
as above. One can estimate the average acceptancetagio shown in Table Ill. The SCA values found féf = 2 and10
by using individual acceptance ratios of all nodes in the netwogke 7, = 5000.0 andZ’; = 4500.0, andZ,, = 2000.0 and
when operated in asynchronous parallel mode. This is estimaigd = 50.0, respectively, withW” = 1. As the value ofR in-
(approximately) by, , = Z;‘zl &, /n. Starting temperature creases with the increase &f, the average run time increases.
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TABLE VII
RESULTS OBTAINED WITH K-MEANS AND SA APPROACHES FORFOSSIL DATA

K-Means SA
K MiJ Mal Av] SD | SR | AvT MiJ MaJ Av] | SD | SR | AvT
2 | 4464.59 | 4464.59 | 4464.59 0.0 | 100 | 0.028 | 4464.59 | 4464.59 | 4464.59 | 0.0 | 100 | 223.2
3| 3408.52 | 4319.79 | 3613.01 | 209.9 | 10 | 0.076 | 3408.52 | 3408.52 | 3408.52 | 0.0 | 100 | 225.5
4 | 2760.85 | 3764.94 | 3088.55 | 326.74 | 3 | 0.109 | 2760.85 | 2959.80 | 2860.32 | 99.45 | 40 | 227.7
5 | 2313.20 | 3702.34 | 2650.56 | 285.33 | 0 | 0.146 | 2312.13 | 2312.13 | 2312.13 | 0.0 | 100 | 229.8
6 | 2022.82 | 3629.90 | 2390.96 | 319.70 | 0 | 0.163 | 2021.75 | 2191.81 | 2062.21 | 65.44 | 40 | 231.9
7 | 1826.22 | 3553.49 | 2174.10 | 274.13 | 0 | 0.192 | 1809.55 | 1943.25 | 1901.32 | 36.21 | 10 | 234.1
8 | 1653.24 | 2656.27 | 1971.76 | 235.62 | 0 | 0.231 | 1689.24 | 1846.17 | 1741.75 | 60.48 | 0 | 236.1
9 | 1517.91 | 2619.49 | 1818.55 | 204.27 | 0 | 0.241 | 1520.21 | 1778.77 | 1595.71 | 76.46 | 0 | 238.2
10 | 1432.76 | 2406.27 | 1687.33 | 202.87 | 0| 0.282 | 1391.53 | 1485.80 | 1449.73 | 23.92 | 10 | 2403
The statistics of the results are listed in Table IVigr= 1 and TABLE VI
W = 3. Observe that SCA witli¥ = 3 could find solutions RESULTS OBTAINED WITH SCA FOR FOSSIL DATA
with 100% success rates for all valuestofexcept fork” = 10. W =3
It can be observed that the solutions obtained in both the MiJ | MaJ Av]] SD [SR (%) | AvT
cases, i.e., folW = 1 andW = 3 are almost_ equally good. 2 | 4464.59 | 4464.59 | 446459 | 0.0 100 | 0.07
We do not know whefch.er error surface.for agiven data set con- 3 | 3408.52 | 3408.52 | 340852 | 0.0 100 | o052
sists of.deep local minima or not. Testing with different values | 2760.85 | 276085 | 2760.85 | 0.0 100 | 068
qf W will be helpful in these cases. \_N(_a may assume that a func- s | 231213 | 231213 | 2312.13 | 0.0 100 | 231
tion _does not C(_)ntaln de_ep local minima if results of the same 61202175 | 200175 | 200175 | 0.0 100 | 652
guality are obtained for different values®f. One advantage of
. : . i 71 1809.55 | 1809.55 | 1809.55 { 0.0 100 | 12.43
operatmg WIFh avalue ofV > 1isthatit reduges much pf the 8 | 164052 | 1646.99 | 1643.76 | 2.93 5o | 19.47
communication cost as well as the computational cost involved
in mapping and re-mapping the variable values. In the subse- 9 | 1815.72 | 1520.19 | 1518.92 ) 1.56 10 2491
guent experimentd is set to 3. Fig. 7 depicts the output state 10 | 139153 | 1403.03 | 1397.64 | 3.71 10 | 2034

sequence of a network in a trial. It can be clearly observed that
the near optimal solution(s) is reached within the first 100 iter-

ations. This indicates that the proposed connectionist approach©Ssil Data:This data set is taken from [19] and consists of
is capable of obtaining near-optimal results very quickly. 87 Nummlitidae Speciments from the Eocene Yellow limestone

We obtained bett its th ed by | i and K formation of north western Jamaica. Each specimen is a six-
¢ obtained betier results than reported by Ismaitand Ramgi, - nsional vector and this data set consists of three clusters
[42] using heuristic methods. For GTD, for clustéfs= 9 and 0]
K = 10, the proposed appr(_)ach could obtain new Iowgr boun[:isthe K-means algorithm results are shown in Table VII. Ob-

18 ?53'43 alr;d ig g%ig W'tz Tgh;gcgg s%:ates aga||r;st tresr rve that the success rate decreases rapidly with the increase
ported results 4o an -0V, 1Nese resulls clediihe number of cluster’. The temperature values found for
substantiate the advantage of the proposed approach. K = 2 and10 areT,, = 1000.0 andT; = 40.0, andT, = 25.0

British Towns DataThis data set is taken from Andrews [4]3nd T; = 2.0, respectively. Results are shown in Table VII.

and consists of 50 four-dimensional samples. The oiginal datge SCA temperature values found f&f = 2 and 10 are

set consists of 155 samples each with 57 variables. The present- 850.0 and7; = 500.0, andZ, = 95.0 andT} = 1.0,

data set is the first four principle components of the first Sfaspectively. The statistics of the results are listed in Table VIIL.

samples forming four clusters [20]. 80X data:This data set is taken from [43] and consists of 45
The K-means algorithm results are shown in Table V. Theatterns each with eight features. This data set is derived from

SA temperature values found féf = 2 and10 are7, = 21.0 the Munson hand printed FORTRAN character set. This data

andT; = 1.0, andZ, = 15.0 andZ; = 0.4, respectively. set consists of features extracted from a digitized, &4 & 24

Results are shown in Table V. The SCA temperature valuggd, hand written characters 8, O, and X. Each character has 15

found for K = 2 and10 areZ, = 100.0 andZ; = 80.0, representative patters, thus forming a data set of size 45.

andZ, = 35.0 and1} = 1.0, respectively. The statistics of The K-means results are shown in Table IX. The SA tem-

the results are listed in Table VI. For this data set, in the cagesrature values found fokk = 2 and 10 are7, = 1000.0

K =17,8,9 and10, we found better quality results than the reand?’; = 2.0, andZ, = 15.0 andZ}; = 1.0, respectively.

ported results of this data set using hybrid breadth/depth fiResults are shown in Table IX. The SCA temperature values

search technique [42]. The squared-errors obtained using Sfoand for K = 2 and10 are’, = 150.0 andZy = 80.0, and

are 126.27, 113.50, 102.74 and 92.68 as against the publistigd= 50.0 and’; = 1.0, respectively. The statistics of the re-

values 127.18, 114.09, 103.49 and 97.43. sults are listed in Table X. These results clearly demonstrate the
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TABLE IX
RESULTS OBTAINED WITH K-MEANS AND SA APPROACHES FORBOX
K-Means SA

K MiJ MaJ Av] SD | SR | AvT MiJ Mal Avl | SD | SR | AvT

2| 1507.49 | 2011.35 | 1549.69 | 109.07 | 50 | 0.045 | 1507.49 | 1507.49 | 1507.49 | 0.0 | 100 | 86.1

3| 1201.21 | 1441.21 | 1289.83 | 62.65 | & | 0.059 | 1201.21 | 1201.21 | 1201.21 | 0.0 | 100 | 87.8

41102621 | 1312.27 | 1128.65 | 82.95 | 7] 0.077 | 1026.21 | 1026.21 | 1026.21 | 0.0 { 100 | 89.3

5| 859.68 | 1232.54 | 981.37 | 72.69 | 1{0.096 | 859.68 | 868.72 | 861.49 | 3.62| 80 | 90.9

6| 733.86 | 1192.76 | 887.62 | 76.00 | 0| 0.109 | 729.26 | 780.92 | 751.48 | 22.36 | 50 | 92.6

7| 650.02 | 1092.17 | 810.34 | 78.80 | O | 0.127 | 641.47 | 641.47 | 641.47 | 0.0 | 100 | 94.2

8| 586.35| 961.05| 739.56 | 84.60 | 0| 0.151 | 580.72 | 591.51 | 585.87 | 3.63| 20| 95.8

9| 544.89 | 972.15| 697.61 | 87.00 | 0| 0.163 | 524.28 | 537.51 | 52863 | 4.57| 30| 97.5

10 | 485.04 ] 817.01 | 634.59 | 80.00 | 0| 0.181 | 471.73 | 480.67 | 477.81 | 2.89| 0| 99.3

TABLE X APPENDIX |
RESULTS OBTAINED WITH SCA FOR 80X. ASYMPTOTIC CONVERGENCE
W=3 For all practical purposes, without loss of generality, we can

K MiJ Mal Avl | SD | SR | AvT assume that the continuous search space is discretized, as a dig-
2 | 1507.49 | 1507.49 | 150749 | 0.0 | 100 | 0.12 ital computer storage has only finite precision. et be the
3| 1201.21 | 1201.21 | 1201.21 | 0.0{ 100 | 0.40 precision offered. The number of values a variablean take
4| 102621 | 1026.21 | 1026.21 | 0.0 | 100 | 2.79 within the rangen < = < b, is [(b — a)/Ax|, where|y| de-
5| 85068 | 85068 | 859.68 | 001|100 | 4.78 notes the greatest integer smaller than or equgl. tdhis as-
6| 720261 72096 | 72926 | 0.0 100! 9.04 sumption of the search space being discretized facilitates inter-
7| 64147 | 64298 | 64161 | 045 901 18.12 pretation of the state sequence of network as a Markov chain.
8| 58072 | 58746 | 582.39 | 2.43 | 60 | 2246 The proof of convergence to a global optimal configuration re-
ol 52498 | 529731 52657 | 2.05 | 30 | 23.90 quires the following assumptions: The search space is finite; At
10 47005 | 476.80 | 474.85 | 276 | 10 | 25.49 least one of the configurations in the discretized search spaceis a

global optimal configuration; Variane€® is assumed to be con-
stant. From bound constrainjs,< x < v, we can compute the
o _ o _ size of the search spade)| = [T;_, [ (v(:) — u(¢))/Ax|. Each
superiority of SCA in obtaining better clusters characterized Rigriaples; can take a value from the st = {u(i), u(i) +
the squared-error value for eight-dimensional data. Az,...,v(i)}. Now the search spacis the cartesian product
The connectionist approach presented in this paper is suitag{q;xl’ oSz S =8, XS - xS, . The output values
for clustering small or medium sized data sets with a modergienodes in the network form a configuration or solutiondn
orlarge number of clusters [6]. Parallel algorithms can be develst 5, — S be the set of all optimal solutions. The steady state
oped for SCA to make use of parallel hardware for optimizingjstribution over solutions in the discretized search space with

large scale functions. finite size is given by the Boltzmann distribution
1
= exp(—f(x)/T) (4)
VIl. CONCLUSION T
where

In this paper, we have investigated the applicability of a new
stochastic connectionist approach for solving the clusterin
problem. A stochastic conﬁgctionist approacg along with itg =2 > ) ee(=f@)/D)
generalized version has been proposed and its efficacy is POy 22CTey I CS
showed over a variety of test functions. The clustering problem Zr = Z exp(—f(x)/T).
has been formulated as a function optimization problem and Vaes
the pro posed connection_ist approach has been employed tﬁlhe state transition of the network from state state;j is
solve It. The results obtained W'th_ th_e proposed approach f fined by transitional probabilities from one state to the other.
four data sets demonsirate superiority aver K-means and e transitional probabilities are defined as follows:
approach. One of the major advantages of this approach over
other stochastic methods is that, it utilizes gradient knowledge - GUAZ?} if i £
and performs stochastic search along the gradient direction. iy = {1 =3 s G AT =
This facilitates faster convergence to the desired partition. The TER; s e
parallelism that can be obtained with the proposed approacthnisere®; represents a set of neighborhood configurations of
proportional to the number of clusters. G,; is the probability of generating the configuratigrirom

Ty
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andA;fj is the acceptance probability. In the proposed conneis-enough to prove that one state is aperiodic. Let the function
tionist approach withV = 1, configurationy is a neighbor- values of configurations arg < f;, andG;; > 0. If 4,5 € S,
hood configuration of , if and only if they satisfy the criterion: thenA}} < 1. The aperiodicity of staté can be proved, if we

3r such that(m) = j(m),Vm # r andi(r) # j(r). Thisim- can show thaP’} > 0.

plies that two configurations and j differ at th node output  Proof:

value. The probability of generating a configuratipfiom ¢ by

updating node- is given by Pi=1- > GimAl,
meS, m#£i
F(r)+452 1 i(r) — 2)2
r Y _ . .
Gi; = / N 5 exp <_%> dy (5) > 1 Z ‘sz asA;; <1
jlry—4z T O meS, m#i
PE >0

andG;; = (1/n)G7;, wherel /n is the probability of selecting
rth node for updating.

L Hence, all states in the Markov chain under consideration are
The acceptance probability is given by

irreducible and aperiodic. In order to prove that the distribution

A;f = exp(—(f; — £)T/T) of cor_wfigura_tions after infinite number of iterations of the net-
J work is stationary, we need to prove that the componentg of
where satisfy the equation; P, = ¢; Pf. O
G- ={F . e =° R
¢ - — f;, otherwise.
iz af Pl = S oxp(—i/T)Gy A
Theorem [28]: For any irreducible and aperiodic Markov 1T i — f)*
chain with transition matri¥’ , the steady state distributioq, = —G;jexp(—fi/T) exp <_#)
exists and is independent of the initial distributign The com- Zr T N
ponents ofq can uniquely be determined by th€, ¢} = = Ly exp(—f,/T) eXp(_(f fi) ) .
@i, Vj. Zr T

After infinite nhumbelr) o;; _||'Ferr:;t_|on_i of_ thefnet:/vo_rk ata fl)r:ed We have to prove tha®
tempera_lturéT,t_ e probability distribution of solutions reac €S, differ at position- ands
the stationary distribution. In order to prove that the Markaov

i = Gji. As the configurationsand
€ Ny, 7 € Ny, we have:

chain given by a state transitional matiX reaches the sta- 1 GO+ 5E (i(r) —y)?
- s - G, = exp| — dy
tionary distribution, we use the following Lemma. Y oo . 2,2
Lemma 1 [1]: If the Markov chain is irreducible and aperi- =% . . N
odic and the components qfsatisfy the property 11 exol — ('L(T) —j(r) — Tm)
2ro 2 P o2

ya T
Qi-Pij = qa'Pji

2
i(r)— g(r Az)?

thenq is called the stationary distribution. + exp <_ (o) J2(az + %) )] A

In order to prove the existence of stationary distribution, we
need to show that the Markov chain is irreducible and aperiodic. 1 i+ (y — j(r)?

1) Irreducibility: The Markov chain ofP is irreducible if = Voo /i(r)ﬁ eXP(‘ 952 )dy
P;(¢) > 0,VYi.j, i.e., there exists a nonzero probability of — G :
reaching a state from any other state in a finite number of steps o
(9). We assume that’;; = G/;; and the error due to approxima-

Proof: Letthe statg be reachable frorh A state is said to be tion can be ignored. So we have
reachable from another state, if and only if, there exists a valid 1 £ )
sequence of state transitions from one state to the other. So, the q;fg—g. = Z_Gji exp(—f;/T) exp <_M>
T

probability of reaching statg¢ from state: in ¢ transitions is T
given by(7 > 0) =g P}
PL(q) = Z pL ..pr . This proves that the distribution of solutions or configurations
’ Vit iz iq_1 €S ' H after infinite iterations reach the stationary distribution. Now,
S T T we need to prove that network converges to optimal solutions
= GiilAiil PP qu—leiq—lj .
asymptotically at the zero temperature

we haveG;; > 0andA}; > 0,5 € N;,i # j,50,P5(q) > 0
and this is true for all statesand;j. So every state is reachable
from every other state. Thus proving that the Markov chain ighere
irreducible. O

2) Aperiodicity: If the Markov chain associated with the Opt(i) = {
transition matrix PP is irreducible, then if any one state is
aperiodic, then all states in the Markov chain are aperiodic. It O

1
Lim qr(i) = mOpt(i), Vi

1, ifiesS.
0, otherwise.
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Proof: [14]

fi
lim ¢r(¢) = lim GXP(;T) 5]
7o TN = A Zr

exp(fﬁz—ﬂfi )
= lim

T—0 Zjes exp((f*;fj))

For all states ¢ S..limr_oexp((f* — f;)/T) = 0, and
for all other states; € S,,limr_oexp((f* — f;)/T) = 1.
Solimy_,g qr(i) = Opt(¢)/|S«|. Hence at zero temperature, [19]
the stationary distribution converges to global optimal solutions.
The asymptotic convergence proof #6f > 1 is not undertaken

in this paper. We can have different valud®ffor differentvari-  [20]
ables. Let¥V; be the number of samples being consideredtiby 21]
node. If we assume thd&%; = |(u; — v;)/Ax], Vi, then with

a similar Markov chain analysis, we can prove the asymptoti¢22]
convergence to global optimal solution(s).

[16]

(17]

(18]

(23]

APPENDIX I

Functions 1-12 are taken from [32, pp. 146—-150].

Function 13. [F13] [32, p. 146, Prob. 14] Goldstein-Price[25]
(GP) function. .

Function 14. [F14] [32, p. 146, Prob. 19].
Function 15. [F15] [17, COS function: p. 197, Cosine mix- [27]
ture problem.]

[24]

(26]

(28]
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