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Abstract

In this paper we consider the problem of Gaussian process classifier (GPC) model selection
with different Leave-One-Out (LOO) Cross Validation (CV) based optimization criteria
and provide a practical algorithm using LOO predictive distributions with such criteria to
select hyperparameters. Apart from the standard average negative logarithm of predictive
probability (NLP), we also consider smoothed versions of criteria such as F-measure and
Weighted Error Rate (WER), which are useful for handling imbalanced data. Unlike the
regression case, LOO predictive distributions for the classifier case are intractable. We
use approximate LOO predictive distributions arrived from Expectation Propagation (EP)
approximation. We conduct experiments on several real world benchmark datasets. When
the NLP criterion is used for optimizing the hyperparameters, the predictive approaches
show better or comparable NLP generalization performance with existing GPC approaches.
On the other hand, when the F-measure criterion is used, the F-measure generalization
performance improves significantly on several datasets. Overall, the EP-based predictive
algorithm comes out as an excellent choice for GP classifier model selection with different
optimization criteria.

Keywords: Gaussian process classification, Model Selection, LOO, Cross Validation,
Predictive distributions, Smoothed F-measure, Weighted Error Rate, Precision, Recall,
Imbalanced data

1. Introduction

Gaussian process (GP) models are flexible and powerful probabilistic models that are used
to solve classification problems in many areas of application (Rasmussen and Williams,
2006). In the Bayesian GP setup, latent function values and hyperparameters that are
involved in modeling are integrated with chosen priors. However, the required integrals
are often not analytically tractable (due to various choices of likelihoods and priors) and
closed form analytic expressions are not available. Two important problems in this context
are finding good approximations for integrating over the latent function variables and the
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hyperparameters. There have been two approaches reported in the literature. In the first
approach, both the latent function variables and the hyperparameters are integrated out
within some approximations. Williams and Barber (1998) used Laplace approximation to
integrate over the latent function variables and Hybrid Monte Carlo (HMC) to integrate
over the hyperparameters. Neal (1998) used Gibbs sampling to integrate over the latent
function variables and HMC to integrate over hyperparameters; this method is more accu-
rate, but it is computationally expensive. In the second approach, only the latent function
variables are integrated out and the hyperparameters are optimized on some well-defined
objective function. This latter problem of choosing hyperparameters that define the model
is essentially the Gaussian process model selection problem and in this paper we focus on
this problem.

There are two commonly used approaches to address this model selection problem. They
are marginal likelihood or evidence maximization and minimization of LOO-CV based av-
erage negative logarithmic predictive probability (NLP). Both these approaches are avail-
able for GP regression model selection (Rasmussen and Williams, 2006; Sundararajan and
Keerthi, 2001). For GP classifier model selection, Gibbs and MacKay (2000) used a varia-
tional approximation method to integrate over the latent function values and estimated the
hyperparameters by maximizing marginal likelihood (ML). Laplace approximation and Ex-
pectation Propagation (EP) approximation (Rasmussen and Williams, 2006; Seeger, 2003)
are other methods that have been used to integrate over the latent function variables. Then,
the marginal likelihood is optimized using gradient information obtained with any one of
these approximations (Rasmussen and Williams, 2006; Seeger, 2003). Kim and Ghahra-
mani (2006) presented an approximate Expectation-Maximization (EM) algorithm to learn
the hyperparameters. In the E-step, they used EP to estimate the joint density of latent
function values and in the M-step, the hyperparameters were optimized by maximizing a
variational lower bound on the marginal likelihood.

In this paper, we consider the approach of using LOO-CV based predictive distributions
to address the GP classifier model selection problem. In a related work, Opper and Winther
(2000) used LOO error estimate to choose rough hyperparameter values by scanning a range
of values. In the EP framework (Minka, 2001), cavity distributions directly provide LOO
error estimates during training and were used to assess predictive performance and select
automatic relevance determination (ARD) type hyperparameters (Qi et al., 2004). The
LOO-CV based predictive distributions obtained from probabilistic least squares classifier
were used in the minimization of NLP for GP classifier model selection (Rasmussen and
Williams, 2006).

In practice, while measures like marginal likelihood and average negative logarithmic
predictive probability measures are very useful, other measures like F-measure (van Rijs-
bergen, 1974) and Weighted Error Rate (WER) are also important and useful, for instance
in applications like medical diagnostics, image understanding, etc, where the number of
positive examples is much smaller than the number of negative examples. Several works
that use such measures for hyperparameters optimization exist in the non-GP literature.
Hong et al. (2007) proposed a kernel classifier construction algorithm based on regularized
orthogonal weighted least squares (ROWLS) estimation with LOO-Area Under the ROC
Curve (AUC) as model selection criterion for handling imbalanced datasets. Jansche (2005)
proposed the training of a probabilistic classifier based on a logistic regression model by
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optimizing expected F-measure. Here an approximation to F-measure was made so that
the F-measure is smoothed and becomes a smooth function of model weights. Seeger (2007)
proposed a general framework for learning in probabilistic kernel classification models with
a large or structured set of classes. He optimized the kernel parameters by minimizing the
NLP over k-folds. Keerthi et al. (2006) considered the task of tuning hyperparameters in
SVM models based on minimizing smooth performance validation functions like smoothed
k-fold CV error. The last three works did not use LOO-CV in their work.

This paper is aimed at addressing two issues. First, the proposed method is different
from the work of Opper and Winther (2000) and Qi et al. (2004) in that we optimize the
hyperparameters directly in the continuous space and any standard non-linear optimization
method can be used. It is also different from the LOO-CV based probabilistic LS method
(Rasmussen and Williams, 2006) in that we use the more accurate EP approximation than
the LS approximation. Second, criteria such as F-measure and WER, which are needed for
tackling imbalanced problems, have not been considered in GP classifier designs.

We define smoothed LOO-CV based measures using predictive distributions as a func-
tion of GP classifier model hyperparameters. Thus, the objective functions can be optimized
using standard non-linear optimization techniques. We investigate usage of LOO-CV pre-
dictive distributions obtained from expectation propagation approximation. Actually, the
proposed algorithm can also be used with Laplace approximation. However, Kuss and
Rasmussen (2005) showed for binary classification problems that the EP approximation is
better than the Laplace approximation. Therefore, we restrict our attention to using the
EP approximation here.

We conduct experiments on two criteria: the standard average negative logarithm of
predictive probability (NLP) and a smoothed version of F-measure. On the NLP crite-
rion we compare our method (EP-CV(NLP)) against the LOO-CV based probabilistic least
squares (LS) classifier (Rasmussen and Williams, 2006) and standard GP classifier doing ML
maximization using EP approximation. We refer the latter two methods as LS-CV(NLP)
and EP(ML) respectively; the abbreviations in parentheses refer to the type of objective
functions used. The experimental results on several real world benchmark datasets show
that the proposed method is better than the LS-CV(NLP) method and is quite competitive
to the EP-ML method. On the F-measure criterion we compare the EP-CV(NLP) method
with the EP-CV(FM) method. In the latter method we optimize over the F-measure instead
of the NLP measure. We also compare with a two-step method! where, in the first step we
optimize over the hyperparameters using the NLP measure and, in the second step we opti-
mize only the bias hyperparameter using the F-measure. Experimental results demonstrate
that this method is also inferior to the EP-CV(FM) method.

The paper is organized as follows. We give a brief introduction to Gaussian process
classification and ML optimization criteria in Section 2. In Section 3 we give a general
set of smooth LOO-CV based optimization criteria and illustrate their use with LOO-CV
predictive distributions. Optimization aspects and specific algorithm are given in Section
4. In Section 5 we discuss related work on LOO-CV based GPC model selection. In Section
6 we present experimental results and then conclude the paper in Section 7.

1. This method was suggested by an anonymous reviewer.
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2. Gaussian Process Classification

In binary classification problems, we are given a training data set S composed of n input-
target pairs (x;,y;) where x; € RP, y; € {+1,—1}, i € T and I = {1,2,...,n}. The
true function value at x; is represented as a latent variable f(x;). The goal is to compute
the predictive distribution of the class label y, at test location x,. In standard GPs for
classification (Rasmussen and Williams, 2006), the latent variables f(x;) are modelled as
random variables in a zero mean GP indexed by {x;}. The prior distribution of {f(X,)}
is a zero mean multivariate joint Gaussian, denoted as p(f) = N(0,K), where f =
[f(x1),..., f(x)]", X, = [x1,...,X,] and K is the n x n covariance matrix whose (4, j)*"
element is k(x;,x;), denoted as K; ;. One of the most commonly used covariance functions
is the squared exponential covariance function given by: cov(f(x;), f(x;)) = k(xi,x;) =

Bo exp(—% Zszl %%’“)2) Here, By represents signal variance and the remaining S;’s rep-
resent width parameters across different input dimensions. Let 3 == [5y, (1, ..., Op]. These
parameters are also known as automatic relevance determination (ARD) hyperparameters.
We call this covariance function the ARD Gaussian kernel function. Next, it is assumed
that the probability over class labels as a function of x depends only on the latent function
value f(x). For the binary classification problem, given the value of f(x) the probability
of class label is independent of all other quantities: p(y = +1|f(x),S) = p(y = +1|f(x))
where S is the dataset. The likelihood p(y;|fi) can be modelled in several forms such as
a sigmoidal function or cumulative normal ®(y;f;) where ®(z) = [°_ é exp(—“’;)dw.

Assuming that the examples are i.i.d, we have p(y|f) = Hfil p(yi|fi; ). Here, 7y represents
hyperparameters that characterize the likelihood. The prior and likelihood along with the
hyperparameters @ = [3, 7] characterize the GP model. With these modelling assumptions,
we can write the inference probability given 8 as:

MWMﬁﬁ%=/MMAwMﬁMmﬁﬁm (1)

Here, the posterior predictive distribution of latent function f, is given by:
p(filS,x4,0) = /p(f*|x*,f,ﬁ)p(f|5,0) df.

where p(f|S,0) o Hf\il p(yil fi,v) p(f|X, B). In a Bayesian solution, the class probability
at the test point z, would be obtained by integrating over the hyperparameters weighted
by their posterior probability

MWmﬁ%:/Mwmﬁﬁmwﬁw-

In general there is no closed form expression available for this integral and it is expensive to
compute. Therefore, instead of integrating over the hyperparameters, a single set of their
values is usually estimated from the dataset by optimizing various criteria as mentioned
earlier and then used in (1).



PREDICTIVE APPROACHES FOR (GAUSSIAN PROCESS CLASSIFIER MODEL SELECTION

2.1 Marginal Likelihood Maximization

Marginal likelihood or evidence maximization (Rasmussen and Williams, 2006) is commonly
used to estimate the hyperparameters during model selection. The marginal likelihood is
given by:

P(y[X. ) /Hp yil fi ) p(EIX, B) df (2)

This integral cannot be calculated analytically except for a special case like GP regression
with Gaussian noise. Therefore, certain approximations are needed to compute these quan-
tities. Laplace approximation and EP approximations are two popular methods used for
this purpose. To gain more insight into the quality of the Laplace and EP approximations,
Kuss and Rasmussen (2005) carried out comprehensive comparisons of these approxima-
tions with (the more exact) Markov Chain Monte Carlo (MCMC) sampling approach in
terms of their predictive performance and marginal likelihood estimates. They found that
EP is the method to be used for approximate inference in binary GPC models, when the
computational cost of MCMC is prohibitive. Hence in our study we restrict ourselves to the
more accurate EP approximation given in the next subsection. With the EP approximation
the hyperparameters are learnt by optimizing marginal likelihood with gradient informa-
tion (Rasmussen and Williams, 2006; Seeger, 2003) using standard non-linear optimization
techniques.

2.2 Expectation Propagation

The EP algorithm is an iterative algorithm which is used for approximate Bayesian in-
ference (Opper and Winther, 2000; Minka, 2001). It has been applied to GP classifica-
tion (Rasmussen and Williams, 2006; Seeger, 2003) . EP finds a Gaussian approximation
q(f|S,0) = N(flm,C) to the posterior p(f|S,0) by moment matching of approximate
marginal distribution and the posterior. Mean and covariance of the approximate Gaussian
are given by:

=Cx 'y Cc=(K!'4+xzH! (3)

where u = (u1,p2,...,un)’ and X = diag(c?,02,...,02) are called site function pa-

rameters. As per the approximation, the posterior is written in terms of the site functions
t(fis iy 02, Zi) = ZiN(filpi, o?) and prior p(f|X, 0) as

N
p(f1X, 0)
0(115.0) = PSS T t(fi oo, 20
=1

The EP algorithm iteratively visits each site function in turn, and adjusts the site parameters
to match moments of an approximation to the posterior marginals. This process requires
replacement of intractable exact cavity distribution with a tractable approximation based
on the site functions and is given by:

ai(f:) /Htf],uj,o],2> p(£[X, 6) df
JFi
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where q\;(f;) o N( fi]u\i,a%i) is the approximate cavity function and is related to the

diagonal entries of the posterior q(f|5,0) as: q\;(fi)t(fi; i, 07, Zi) o< N(filmi, Cis). Here,

the C;; represent the diagonal entries of the matrix C. Using Gaussian identities, the mean
and variance of cavity distribution is related to the site parameters as:
2 m; ,LL 2 _ —92\y—1

e = AGE -t ot = (o)t =) 0

. 2 %
Ci o

Then, EP adjusts the site parameters u;, 01-2 and Z; such that the approximate posterior
marginal using the exact likelihood approximates the posterior marginal based on the site
function well. That is, q\;(fi) p(yil fi) = qi(fi) t(fi; i, 02,7;). This is done by matching the
zeroth, first and second moments on both sides. Thus, the EP algorithm iteratively updates
site parameters until convergence. Though there is no convergence proof, in practice the EP
algorithm converges in most cases. See Rasmussen and Williams (2006) for more details.

Next, within some constant, the marginal likelihood with EP approximation (Rasmussen
and Williams, 2006) is given by:

1 1 =
logq(y|X,0) = —Zlog[K+ 3| — _p/ (K+%)"'p + ) loguy (5)
i=1
o ' (i —pi)? 2 2 L Y
where w; = @(zz)exp<m>,/a\i +o0; and z; = To,@ The hyperparameters are

optimized using gradient expressions with standard conjugate gradient or quasi-Newton
type non-linear optimization techniques.

3. Leave-One-Out Cross Validation based Optimization Criteria

In this section, we give definitions of various LOO-CV based optimization criteria. In
section 4 we give details on how these measures can be optimized using standard nonlinear
optimization techniques. The LOO predictive distributions p(y;|x;, S\;,8), i € I play a
crucial role. Here S\; represents the dataset without ith example. Their exact computation
is expensive. In section 4 we will also discuss how to approximate them efficiently.

3.1 NLP Measure
The averaged negative logarithm of predictive probability (NLP) is defined as:

1 n
G(0) = _ﬁz log p(yilzi, S\i, ) (6)
i=1
This LOO-CV based measure is generic and has been used in the context of probabilistic LS
classifiers (see section 5) and GP regression (Rasmussen and Williams, 2006; Sundararajan
and Keerthi, 2001).

3.2 Smoothed LOO Measures

While measures such as marginal likelihood (5) and NLP in (6) are useful for normal
situations, other measures like F-measure and WER are important, for example, when
dealing with imbalanced datasets. Let us now define these measures.
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Table 1: Confusion Matrix for Binary classification
Positive (Predicted) | Negative (Predicted)
Positive (Actual) a b
Negative (Actual) c d

Consider the binary classification problem with class labels +1 and -1. Assume that
there are my positive examples and n_ negative examples. In general, the performance
of the classifier may be evaluated using counts of data samples {a, b, c,d} defined via the
confusion matrix given in Table 1. Let ny = a+ b and n_- = c+ d. The true positive
rate (TP) is the proportion of positive data samples that were correctly classified (that is,
true positives) and the false positive rate (FP) is the proportion of negative data samples
that were incorrectly classified (that is, false positives) (Hong et al., 2007). These rates

are given by: TP = -%& = -2 and FP = -£ = -2, The misclassification rate is given

a+b ni ctd T n_
by: MCR = %. Note that the true positive rate is also known as Recall (R). Precision is
another important quantity defined as: P = .

Now let us consider the imbalanced data case and assume that n_ > n,. In this case
if MCR is minimized then the classifier will be biased toward the negative class due to
its effort in minimizing the false positives (that is ¢) more strongly than minimizing false
negatives (that is b). In the worst case almost all the positive examples will be wrongly
classified, that is @ — 0 . This results in both P — 0 and R — 0. Thus MCR is not a
good measure to use when the dataset is imbalanced. This problem can be addressed by
optimizing other measures that we discuss next.

The F-measure is one such measure and is defined (van Rijsbergen, 1974) as:

¢ 1-¢\t
rrm - (54159
where 0 < ¢ < 1 and 0 < F¢(P,R) < 1. It has been used in various applications like
document retrieval (van Rijsbergen, 1974) and text classification (Joachims, 2005). It is
particularly preferable over MCR when the dataset is highly imbalanced (Joachims, 2005;
Jansche, 2005).

Let us get into more details on the functioning of the F-measure. When ¢ — 0, we get
F¢(P,R) — P. Then optimizing the F-measure means we are interested only in maximizing
the Precision. On the other hand, when ¢ — 1, we get F¢(P,R) — R. In this case we
are interested only in maximizing the Recall. The user can choose an appropriate value for
¢ depending on how much of importance he/she wants to give to the precision and recall.
Thus, the F-measure combines precision and recall into a single optimization criterion by
taking their (-weighted harmonic mean. In the imbalanced data case mentioned above
MCR minimization can potentially result in F¢(P, R) — 0. By maximizing the F-measure
we can prevent the classifier from being completely biased towards the negative class. Note
that F(P, R) can be re-written in terms of a, b and ¢ as:

a

Fela,bye) = a+ b+ (1—¢Q)c

(7)

7
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In all our experiments we set ¢ = 0.5. In this case, it becomes Fy5(P,R) = % and

can also be written as: Fys(a,b,c) = Then, maximizing Fy5(a,b, c) is equivalent

to maximizing 3%. Thus, we can maximize Fp5(a, b, c) by both minimizing the error (that
is, b + ¢) and maximizing the true positives. The trade-off kicks-in since maximizing the
true positives tends to increase the false positives. Thus maximizing the F-measure controls
both the true positives and the error appropriately. In general the F-measure summarizes
a classifier’s ability to identify the positive class and plays an important role in the evalu-
ation of binary classifier. As a criterion for optimizing hyperparameters F-measure can be
computed on an evaluation or validation dataset. However, in practical situations involving
small datasets? it is wasteful to employ a separate evaluation set. The LOO-CV approach
would be useful in such situations and we show next how the F-measure can be estimated
with such approach.
Hong et al. (2007) estimated TP and F'P as:

n

= 1

TP = — S T(ivi, vi
- ; (973 i),

— 1 &

FP = FZF(g\iyiayi)'
T =1

Here §\; represents predicted label for ith sample. Therefore g\;y; takes value +1 when the
prediction matches with the actual label and —1 otherwise. T'(u,v) is an indicator function
which is 1 if w = 1 and v = 1. Similarly, F'(u,v) is one if u = —1 and v = —1. Otherwise,
these functions take zero values. Hong et al. (2007) used these estimates to compute AUC =
W as an approximation of AUC and used this criterion to select a subset of basis
vectors in a kernel classifier model construction procedure for imbalanced datasets. Note
that this definition of AUC is applicable only for a hard classifier (fixed non-probabilistic
classifier) with binary outputs. See Hong et al. (2007) for more details. In a strict sense such
a definition of AUC is not suitable for a probabilistic classifier like GP classifier that provides
continuous probabilistic output. However, we can make use of this approach of defining T'P
and F'P as above to compute the quantities a, b and ¢ that are needed to evaluate the F-
measure in (7). There are two issues associated with these estimates. The first issue is that
these estimates are not smooth (in fact, not even continuous) functions of hyperparameters.
Therefore they cannot be used directly in any approach that uses gradient-based nonlinear
optimization methods to tune the hyperparameters. Secondly, these estimates do not use
predictive probability values which is particularly important when we want to take variance
also into account. In non-GP contexts Jansche (2005) and Keerthi et al. (2006) addressed
the first issue by defining smoothed F-measure or other validation functions by replacing
the indicator function with a sigmoid function, which makes the optimization criterion as a
smooth function of hyperparameters. However, they did not consider a LOO approach and
used a validation set instead. Jansche (2005) considered maximum a posterior probabilities
and Keerthi et al. (2006) used sigmoidal approximations for SVM models. Here, we propose
to combine LOO based estimation and smoothed version of the quantities {a, b, ¢, d} denoted

2. GP models are known to be particularly valuable for problems with small datasets.
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as A(9), B(0), C(0) and D(0). We can set

AB) = Y plyi=+1]ai, 8, 6) (8)

iy =+1

Since ny = a + b, we can write B(0) = ny — A(0). With my denoting the number of
examples predicted as positive, we can parameterize it as m4(0) = A(0)+ C(0). This can
be rewritten as:

m(0) = Y plyi = +1|zi, 5,0 (9)
i=1

Thus, the smoothed F-measure can be defined from (7) as:

_ A(6)
g+ (1= ¢)ma(6)

Note that D(@) can be defined in a similar fashion as m_(60) = B(0) + D(0). Using these
quantities, other derived quantities like TP(0) and FP(0) can be defined as LOO based
estimates. Then, smoothed LOO estimates of WER can be obtained as shown below.

The WER measure is another useful measure for imbalanced datasets. Using the quan-
tities defined above, its smoothed version can be written as:

F¢(6) (10)

WER(®: 1) — ny(1—TP(0)) + Tn_FP(G)' (1)
ny +7TNn_

where 7 is the ratio of the cost of mis-classifications of the negative class to that of the
positive class and 0 < 7 < 1. Thus by choosing a suitable 7 value for a given problem
and optimizing over the hyperparameters we can design classifiers without becoming biased
toward one class. Note that for ease of notation we have omitted hat on TP(:) and FP(-).
Following the work of Hong et al. (2007) one can also define

1+ TP(6) — FP(8)

AUC(0) = .

(12)

and optimize over the hyperparameters. As mentioned earlier, such a definition is not
suitable for the GP classifier. Nevertheless it is interesting to note that it has the desirable
property of trading-off between high TP and low FP. Also, on comparing this definition of
AUC with (11) we see that they are related in the sense that maximizing AUC is same as
minimizing WER when 7 =1 and ny = n_.

Overall we see that the LOO-CV predictive distributions can be used to define vari-
ous criteria that are smooth functions of hyperparameters resulting in smoothed LOO-CV
measures. Now given that the LOO-CV predictive distributions are readily available from
the EP algorithm, we can optimize the various smoothed LOO-CV measures directly using
standard non-linear optimization techniques.

4. EP-CV Algorithm for Choosing Hyperparameters

Various criteria such as (6), (10), (11) and (12) depend on the hyperparameters 6 via the
predictive distributions p(y;|z;, S\;,@). With cumulative Gaussian likelihood, they can be
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written as: ( )
Yilmi +7

Pyl 55,0) = o(—2—=) (13)
1+ U%Z.

Note that (13) is obtained from (1) with p(fi|z:, S\;, 0) = N (i, O'%i). The hyperparameter

~ is referred to as the bias parameter and it helps in shifting the decision boundary with
the probability value % In general, the bias hyperparameter « is very useful (Rasmussen

and Williams, 2006; Seeger, 2003) and can be optimized.

EP Approximation

To compute (13) we need the LOO mean j; and variance U%i Vi. With the EP approx-
imation, they can be computed using (4). Full details of gradient calculations needed for
implementing hyperparameter optimization are given in the appendix.

We take the expectation-maximization (EM) type approach for hyperparameters op-
timization. This is because gradient expressions involving implicit derivatives (with site
parameters varying as a function of hyperparameters) are not available due to the iterative
nature of the EP algorithm. This approach results in the following algorithm.

EP-CV Algorithm:

1. Initialize the hyperparameters 6.

2. Perform E-Step: Given the hyperparameters, we find the site parameters g and X
and the posterior ¢(f|S,0) = N (m,C) using EP algorithm.

3. Perform M-Step: Find the hyperparameters @ by optimizing over any LOO-CV
based measure like (6), (10), (11) or (12) using any standard gradient based optimiza-
tion technique. We carry out just one line search in this optimization process. During
this line search as the hyperparameters change, we perform the following sequence of
operations.

(a) Compute the posterior mean m and covariance C using (3).

(b) Compute the LOO mean p; and variance O‘%i using (4).

(c) Compute the chosen objective function like (6), (10), (11) or (12) and its deriva-
tives.

Note that through out this M-step, it is assumed that the site parameters are fixed
and the values obtained from step (2) are used.

4. repeat steps 2-3 until there is no significant change in the objective function value.

This algorithm worked well in our experiments. A similar EM approach was used by Kim
and Ghahramani (2006) (which they called EM-EP algorithm) in the optimization of a
lower bound on the marginal likelihood.

Since the EP-CV algorithm optimizes the smoothed F-measure it is useful to study the
behavior of the true F-measure as optimization proceeds. We do this study on two of the
datasets described in Table 6 of section 6. The optimization algorithm was terminated when

10
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Car3 Dataset Yeast7 Dataset
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Figure 1: F-Measure Optimization on Car3 and Yeast7 Datasets

there was no significant change in the smoothed F-measure value. From Figure 1 we see that
the smoothed F-measure monotonically increases in both cases. Also as expected, the true
F-measure exhibits a non-smooth behavior expected of a discrete function, and also, the
values of true and smoothed F-measures are not the same. The difference arises because the
smoothed F-measure is based on probabilistic scores, which can take any value between 0.5
and 1 depending on the problem (even when correct classification occurs). The important
point to observe is that, in general, there is an increasing trend in true F-measure value as
the optimization progresses. In the case of Car3 dataset (left panel) we see that clearly. A
similar trend is seen in the case of Yeast7 dataset (right panel) also, except for a small dip
at the 10th iteration. Though such a behavior happens sometimes in early iterations, we
observed that better true F-measure value is almost always obtained as the optimization
progresses.

Computational and Storage Complexities

The computational complexity of the EP-CV algorithm depends on the number of ARD
kernel parameters D. See appendix for more details. For a given problem with D fixed, the
complexity is O(n?). This complexity is same as that of the EP(ML) method (see equation
(5)) and LS-CV(NLP) method given in the next section. Also in many practical problems
a single global scaling hyperparameter for all the input features is sufficient. Finally, the
storage complexities of all the methods are O(n?).

5. Other LOO-CV based Methods

Having discussed our approach in detail it is useful to recall and discuss other LOO-CV
based GPC model selection methods in relation to it.

Opper and Winther (2000) derived a mean field algorithm for binary classification with
GPs based on the TAP approach originally proposed in the statistical physics of disor-
dered systems. They showed that this approach yields an approximate LOO estimator for
the generalization error. This estimate is equivalent to the LOO-CV error estimate ob-
tained from EP (Minka, 2001). Instead of optimizing over the hyperparameters, Opper and
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Winther (2000) used the LOO-CV error count (using indicator functions) to choose rough
hyperparameter values by scanning a range of values.

Qi et al. (2004) used the LOO-CV error estimate obtained from EP to determine ARD
hyperparameters. They worked with the Gaussian process classifier where each input feature
is associated with a weight parameter v; with the prior N (0, Cfl). The hyperparameters
G 1 were obtained by mazimizing the evidence using a fast sequential update based on the
work of Faul and Tipping (2002). The outcome of this optimization is that many (;s would
go to infinity such that only a few nonzero weights v; will be present. Even though the ARD
hyperparameters were optimized by maximizing the evidence, to prevent overfitting Qi et al.
(2004) proposed to select the final model as the one that gives the minimum LOO-CV error
count or probability. As the LOO-CV error count is discrete, they chose the model with
maximum evidence when there is a tie in the count. Compared to this approach, we work
with the GP classifier model (without the weight parameters) detailed in Section 2 and
optimize over the hyperparameters (including ARD) directly with various LOO-CV based
measures (including F-measure, WER etc.) using gradient information.

In this context, the LOO-CV based probabilistic LS classifier (Rasmussen and Williams,
2006) is a more direct LOO-CV based GPC model selection approach. For the sake of
completion we give some details here and later compare our algorithms with this approach
in our experiments. This approach treats classification as a regression problem. Note that
the probabilistic interpretation of LS criterion implies a Gaussian noise model. But the
output y can take only +1 or —1 which is slightly odd. However, this approach is simple
to implement and a probabilistic interpretation is given by passing the predictions through
a sigmoid.

Specifically, the LOO mean u,; and variance J%i, i € I are obtained from LOO-CV
formulation of GP regression and the predictive distributions are obtained via (13). Here,

i and O'%i are given by:

,U\i = Y; — diO’%i O'%i = I—{i (14)
i

where @ = Ky and K = (K + AI)~!. Here \ can either be set to a small positive value
or treated as a regularization hyperparameter with a small upper bound constraint. This is
useful when K can become ill-conditioned during optimization. Finally, the hyperparame-
ters are optimized using (6). We call this method as LS-CV(NLP).

6. Experiments

We conducted two experiments with various methods. See Table 2 for a summary of the
various methods. In the first experiment we compared the performance of EP-CV(NLP)
method with that of EP(ML) and LS-CV(NLP) methods. In the second experiment we
compared the performance of EP-CV(FM) method with that of EP-CV(NLP) and two
step classifier methods. We used the minimize Matlab routine of the GPML Matlab code
available at http://www.gaussianprocess.org/gpml/code/matlab/doc/ for hyperparameters
optimization. In all the experiments we used a single global scaling hyperparameter.

12
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Table 2: Various methods and their descriptions. All the EP-CV methods are optimized
using EP-CV algorithm.

METHOD DESCRIPTION
EP(ML) MARGINAL LIKELIHOOD MAXIMIZATION WITHIN EP APPROXIMATION.
THAT 1S, OPTIMIZE (5) OVER 6.
EP-CV(NLP) NEGATIVE LOGARITHMIC PREDICTIVE LOSS MINIMIZATION WITHIN EP APPROXIMATION.

THAT IS, OPTIMIZE (6) OVER 6. FOR EASE OF NOTATION, THIS
METHOD IS REFERRED AS NLP IN TABLE 7.

LS-CV(NLP) NEGATIVE LOGARITHMIC PREDICTIVE LOSS MINIMIZATION WITHIN LEAST SQUARES
APPROXIMATION AS DESCRIBED IN SECTION 5. OPTIMIZE (6) OVER 6.
EP-CV(FM) F-MEASURE MAXIMIZATION WITHIN EP-CV APPROXIMATION.

THAT 1S, OPTIMIZE (10) OVER 6. FOR EASE OF NOTATION, THIS
METHOD IS REFERRED AS FM IN TABLE 7.

NLP-FM(BIAS) | IN THE FIRST STEP, HYPERPARAMETERS ARE OPTIMIZED USING EP-CV(NLP) METHOD.
IN THE SECOND STEP, ONLY THE BIAS PARAMETER (7) IS OPTIMIZED USING
EP-CV(FM) METHOD.WE ALSO REFER THIS METHOD AS TWO-STEP METHOD.

Table 3: Data sets description: NLP Experiment. Here, n, D, p and nr represent the num-
bers of training examples, input dimension, test examples and train/test partitions
respectively.

DATASET n D |p nr

BAaNANA 400 2 4900 | 100
BREASTCANCER | 200 9 77 100
DIABETES 468 8 300 100
GERMAN 700 20 | 300 100
HEART 170 13 | 100 100
IMAGE 1300 | 18 | 1010 | 20

RINGNORM 400 20 | 7000 | 100
SPLICE 1000 | 60 | 2175 | 20

THYROID 140 5 75 100
TITANIC 150 3 2051 | 100
TWONORM 400 20 | 7000 | 100
WAVEFORM 400 21 | 4600 | 100

13



S. SUNDARARAJAN AND S. SATHIYA KEERTHI

Table 4: NLP Performance

DATASET/METHOD EP(ML) EP-CV(NLP) | LS-CV(NLP)
BANANA 23.90 £ 0.81 | 24.26 £ 1.06 33.88 £ 1.89
BREASTCANCER 53.57 £ 4.75 | 54.12 £ 5.27 55.58 + 5.03
DIABETES 47.74 £ 1.96 | 47.97 £ 2.09 50.72 £ 2.13
GERMAN 48.67 £ 2.74 | 49.05 £ 2.76 50.51 + 2.30
HEART 40.16 £ 5.36 | 40.03 £ 5.00 45.11 £ 4.91
IMAGE 8.26 + 1.07 8.45 + 0.97 22.70 + 0.66
RINGNORM 16.88 £0.93 16.56 £ 1.01 28.48 £ 0.75
SOLAR 57.25 £ 1.38 | 57.35 £ 1.42 59.61 + 1.34
SPLICE 28.48 + 0.88 | 29.60 £ 0.79 36.83 £ 0.42
THYROID 10.21 £ 3.76 | 9.94 £ 3.69 25.33 £ 4.86
TITANIC 66.86 + 1.97 | 51.73 £ 1.73 | 53.78 £ 14.08
TWONORM 8.31 + 0.88 9.08 + 1.97 25.94 + 0.53
WAVEFORM 23.01 £ 0.89 | 22.97 £ 0.67 32.63 £ 0.59

Table 5: Test Set Error Performance

DATASET/METHOD EP(ML) EP-CV(NLP) | LS-CV(NLP)
BANANA 10.41 £ 0.65 | 10.51 + 0.50 10.93 £ 0.67
BREASTCANCER 26.52 + 4.89 | 26.61 4+ 4.80 | 25.94 £ 4.59
DIABETES 23.28 &+ 1.82 | 23.41 4+ 1.82 24.30 £+ 2.51
GERMAN 23.36 & 2.11 | 23.48 4+ 2.00 | 23.94 £ 2.33
HEART 16.65 £ 2.87 | 16.62 + 3.08 17.91 £+ 4.21
IMAGE 2.82 £ 0.54 2.77 £ 0.51 2.74 + 0.65
RINGNORM 4.41 £+ 0.64 4.29 + 0.69 5.05 + 0.99
SOLAR 34.20 &+ 1.75 | 34.27 &+ 1.80 | 35.03 £+ 1.89
SPLICE 11.61 £ 0.81 | 11.85 + 0.83 11.83 &+ 0.80
THYROID 4.37 £ 2.19 4.20 + 2.17 6.97 £ 3.78
TITANIC 22.64 + 1.34 | 22.50 &= 0.98 | 22.99 £+ 2.81
TWONORM 3.05 + 0.34 3.19 + 0.51 3.43 + 0.43
WAVEFORM 10.10 £ 0.48 9.95 £+ 0.48 11.70 +£ 0.88
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Table 6: Data sets description: F-Measure Experiment. Here, n, D, p, nr and PPF repre-
sent the numbers of training examples, input dimension, test examples, train/test
partitions and approximate percentage of positive examples respectively.

DATASET n D P nr | PPE
YEAST7 297 | 8 | 1187 | 50 2
YEASTH 320 | 8 | 1164 | 50 4
CAR3 350 | 6 | 1378 | 50 4
EcoLib 124 | 7 212 50 6
YEAST4 165 | 8 | 1319 | 50 11
BREASTCANCER | 200 | 9 77 100 29
GERMAN 700 | 20 | 300 | 100 30
DIABETES 468 | 8 300 | 100 35

Table 7: F-Measure Performance

DATASET/METHOD NLP FM NLP-FM(BIAS)
YEAST7 32.24 + 15.54 | 42.58 £ 7.84 40.85 £ 8.59
YEASTH 19.79 £ 12.85 | 32.85 £ 8.56 | 28.45 £ 10.57
CAR3 55.89 + 9.30 | 64.35 £ 8.51 62.67 + 8.49
ECOLI5 84.41 £ 6.25 | 83.79 £ 5.90 | 84.08 + 5.86
YEAST4 71.35 £ 3.95 | 73.64 £ 2.97 73.23 £+ 2.81
BREASTCANCER 38.42 £ 10.55 | 47.34 £ 6.44 | 46.98 £ 6.37
GERMAN 54.15 + 4.17 | 57.53 £ 2.95 56.91 £+ 2.87
DIABETES 62.69 £ 3.49 | 66.23 £ 2.87 66.12 £ 2.67

15




S. SUNDARARAJAN AND S. SATHIYA KEERTHI

6.1 NLP Experiment

In this experiment we used the thirteen benchmark datasets available in the web? summa-
rized in Table 3. Let us first consider the results from the first experiment given in Table
4 and Table 5. For the EP(ML) method we used the GPML Matlab code available in the
web?,

We conducted Friedman test (Demsar, 2006) with the corresponding post-hoc tests for
comparison of classifiers over multiple datasets. The comparison over multiple datasets
requires a performance score of each method on each dataset (Demsar, 2006). Here, we
consider the mean over the partitions of a given dataset as the performance score. As
pointed out in Demsar (2006), it is not clear how to make use of the standard deviation
information when the datasets are not independent over the partitions. The Friedman test
ranks the methods for each dataset separately based on the chosen performance score (mean
performance in our case). The best performing method gets the rank of 1, the second best
rank 2 and so on. In case of ties, average ranks are assigned. The Friedman test checks
whether the measured average ranks (over the datasets) are significantly different from
the mean rank under the null hypothesis. Under the null hypothesis all the methods are
equivalent and so their ranks should be equal.

In the case of NLP performance measure, the measured average ranks for the EP(ML),
EP-CV(NLP) and LS-CV(NLP) methods were 1.46, 1.62 and 2.92 respectively. With three
methods and 13 datasets, the F-statistic comparison at a significance level of 0.05 rejected
the null hypothesis. Since the null hypothesis was rejected we conducted the Nemenyi post-
hoc test for pairwise comparisons. This test revealed that the results of the EP(ML) and
EP-CV(NLP) methods are better than the LS-CV(NLP) method at the significance level of
0.05. On the other hand, the post-hoc test did not detect any significant difference in the
results of EP(ML) and EP-CV(NLP) methods. In the case of test set performance measure,
the measure averaged ranks for the EP(ML), EP-CV(NLP) and LS-CV(NLP) methods were
1.62, 1.77 and 2.62 respectively. Note that the average rank of LS-CV method has improved
on the test set error performance. Here again, the null hypothesis is rejected at the same
significance level and the post-hoc test did not detect any significant difference in the results
of EP(ML) and EP-CV(NLP) methods. The results of the EP(ML) and EP-CV(NLP)
methods are better than the LS-CV(NLP) method at the significance level of 0.05 and 0.1
respectively. Thus, we can conclude that EP(ML) and EP-CV(NLP) are competitive to
each other. Further, both these methods perform better than the LS-CV(NLP) method in
this experiment.

We can also make other observations from the tables. We note that the NLP perfor-
mance of the LS-CV(NLP) method is quite inferior on several datasets even though its
test set error performances on most of these datasets (except waveform and thyroid) are
relatively closer. Further, some kind of group behavior can be seen. For example, the
NLP scores are high on titanic, breast-cancer, diabetes, German and flare-solar. Also, the
test set errors are > 20% on these datasets. Consequently, we may consider these datasets
as difficult ones. From Table 4 we observe that the NLP performance of LS-CV(NLP)
is closer to the other two methods on these datasets (compared to its performance on

3. hitp://ida.first. fraunhofer.de/projects /bench/benchmarks.htm
4. http://www.gaussianprocess.orq/gpml/code/matlab/doc/
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other datasets). Next we can order the remaining datasets heart, splice, banana, waveform,
ringnorm, thyroid, twonorm and image in terms of descending difficulty. Note that the dif-
ference in the NLP performance seems to have an increasing trend as the dataset becomes
easier. To understand this we looked at the predictive probabilities of these methods on
both correctly and wrongly classified examples. In the case of thyroid dataset these average
probability scores for the LS-CV(NLP) method were 0.84 (for correct classification) and
0.35 (wrong classification). Here, the averaging was done over all the correctly(wrongly)
classified examples over all the partitions. On the other hand, the corresponding values
for the EP-CV(NLP) were (0.96,0.39). In the case of banana dataset, these scores were
(0.79,0.35) and (0.92,0.29) for the LS-CV(NLP) and EP-CV(NLP) methods respectively.
In the case of German dataset, they were (0.75,0.33) and (0.79,0.32). The scores for the EP-
ML method were very close to that of the EP-CV(NLP) method. In general, we observed
that the predictive probability estimates from the LS-CV(NLP) method were relatively poor
and resulted in poor NLP performance. We looked at the hyperparameter estimates of the
different methods and observed that the LS-CV(NLP) method takes smaller width and sig-
nal variance hyperparameter values on most of the datasets except on the difficult datasets
(mentioned above) compared to the other two methods. Apart from this we did not observe
any specific pattern in the hyperparameter values chosen by these methods. Looking at the
hyperparameter estimates of EP(ML) and EP-CV(NLP), it seems that several solutions in
the space of hyperparameters that give close performances are possible.

6.2 F-measure Experiment

The datasets used in this experiment are described in Table 6. The datasets yeast, car and
ecoli are multi-class datasets and we converted them into binary classification datasets by
considering examples belonging to the class label indicated by the number (for example, 7
in yeast7) as positive class respectively and treating the rest of the examples as negative
class. These datasets are available in the web ®. We created 50 partitions for these datasets
in a stratified manner reflecting the class distributions.

Let us consider the results from the second experiment given in Table 7. In this ex-
periment all the results were obtained within the EP-CV framework. The first and second
columns represent results obtained using NLP and smoothed F-measure (i.e., eq. (10)) as
the optimization criterion respectively. The third column represents results obtained from
the two step classifier described earlier. We looked at the hyperparameter estimates of
the different methods. We observed that the bias estimates of the two step classifier were
somewhat closer (within 10%) to those of the smoothed F-measure method on the breast-
cancer, diabetes and German datasets. On the remaining datasets they were different by
more than 40%. The width and signal variance hyperparameter estimates were also quite
different. From Table 7, we observe that the two step method is also good and gives closer
performance to the smoothed F-measure method on several datasets. Further analysis of
the performance results revealed that even though the standard deviations are high, the
smoothed F-measure method gave better performance than the two step method on major-
ity of the partitions on several datasets. We believe that the larger standard deviations in
the results arises from the sensitivity to the dataset with lesser number of positive examples.

5. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/
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To carry out the statistical significance tests, again we used the mean (over the partitions)
as the performance score for each of the methods. The measured average ranks for these
three methods were 2.75, 1.25 and 2.00 respectively. With three methods and 8 datasets,
the F-statistic comparison at a significance level of 0.05 rejected the null hypothesis. The
Nemenyi post-hoc test for pairwise comparisons revealed that only the results of smoothed
F-measure is better than the NLP based method at the significance level of 0.05. In this
experiment the post-hoc test did not detect any significant differences in the comparisons
of smoothed F-measure method with the two step method and the two step method with
the NLP method. However in these two comparisons the rank differences were closer to
the required critical differences at the significance level of 0.1. We also observed that if
we were to conduct Wilcoxon signed-rank test on these methods (as if we were comparing
only two classifiers) then the results were statistically significant at the significance level of
0.05 for all the three pairs. In summary, the results demonstrate the usefulness of direct
optimization of smoothed F-measure.

7. Conclusion

In this paper, we considered the problem of Gaussian process classifier model selection with
different LOO-CYV based optimization criteria and provided a practical algorithm using LOO
predictive distributions with criteria like standard NLP, smoothed F-measure and WER to
select hyperparameters. More specifically, apart from optimization of standard NLP, we
demonstrated its usefulness in direct optimization of smoothed F-measure, which is useful to
handle imbalanced data. We considered predictive distribution arrived from the Expectation
Propagation (EP) approximation. We derived relevant expressions and proposed a very
useful EP-CV algorithm. The experimental results on several real world benchmark datasets
showed comparable NLP generalization performance (with NLP optimization) with existing
approaches. We demonstrated that the smoothed F-measure optimization method is a very
useful method that improves the F-measure performance significantly. Overall, the EP-CV
algorithm is an excellent choice for GP classifier model selection with different LOO-CV
based optimization criteria.
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Appendix: Optimization criteria, approximate predictive distributions
and their derivatives

From the definitions of various optimization criteria like NLP measure (6) and (10) etc, we

see that the chosen measure and its derivatives can be obtained from the LOO predictive

. e Oplyilwi S\, 0 o
distributions p(y;|zi, S\;, @) and their derivatives %ﬂ,\). Here, 0; is 4t component of

the hyperparameter vector . Note that the derivative of the NLP measure (6) is given by:

i a 1|4y S R 0
0GO) _ 1 3 1 Op(yi|wi, 5\, 0) (15)
aej n i—1 @(yizi) 89]
and the derivative of the smoothed F-measure (10) is given by:
9A(0 am4 (0
oF:(9)  n(0) So — A0)(1 — ¢) 252 (16)

00; %)

where n(0) = (ny + (1 — ()m4(0). Note that the derivatives 8’3&6) and 8”5550) are
8p(yi:+l|:1ci,5'\i,9)

directly dependent on 2, . Now, from (13) we see that to define the LOO
predictive distributions, we need the LOO mean p; and variance O'%i. In the case of EP

approximation, analytical expressions to compute these quantities are already available (see
eqn. (4)). Next, we give details on how the derivatives of predictive distributions can be
obtained with these approximations.

Derivatives of Predictive Distributions

For ease of reference we recall (13) here.

Yi(kyg +7)
p(yilzi, S\;,0) = @(\72)
1 —I-O'\i

MY

\/1+U§i

Op(yilxi, 5\i,0) _ N(z)yi <aﬂ\i

2
Then, with z; = and N(z;) = \/% exp(—%) we have

2
2 0o

00, ;W aej)'

Here, ¢; represents any element of @ other than . Similarly, we have

00; 1+ 0,

op(yilxi, $\i,0)  N(z)y:
0 . 2
Y 1+ o3
acr%i
]

g, - Below, we give details on how they can be obtained with the

O
Thus, we need ”\ and
; a0,

EP approximation.
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Derivatives of LOO mean and variance with fixed site parameters: EP
Approximation

In the case of EP approximation, since we resort to EM type optimization, we derive

: Apuns 9o, : :
expressions for 5;\_ and To\- assuming that the site parameters are fixed. From p; =
J J

2 ms; .
oy(as — £5), we have
T

O . 002, o, . C..
Wi i 99N LA <Cii8m, B mia “>.
89j 0'2\,L' 893 (CW)Q 8¢9j 89]
From a%i = ((Ci)™" — 0;H)7!, we have
80%1’ . Uili 8C“
09; — (Cy)? 09 °
Since m = CX !, we have gfg; = %82_1“. Note that C can be re-written using

Sherman-Morrison-Woodbury formula as: C = K — K(K + X)7'K and it is useful to
work with this expression to achieve improved numerical stability (Rasmussen and Williams,
2006) as it avoids inversion of K. Then we have

0C oK

—=(1I- K+ 'K)—1- (K+3%)'K).

g7~ (1 (<4 2)7'K) G — (K4 %))
Note that %%ji, i € I (where I = {1,2,...,n}) are nothing but the diagonal entries of the
above expression. Note also that gf?; can be efficiently computed by taking advantage of

oC

the presence of the vector X~ 'pu. But, to compute 25, & € I we cannot avoid the matrix

J
multiplication with g%j; this results in O(n3) for each 6;. Finally, it is useful to re-write

(K+3%)! = 272 + £ 2K%"2)"!X "2 (Rasmussen and Williams, 2006).
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