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Abstract. Semi-supervised learning has been widely studied in the literature.
However, most previous works assume that the output structure is simple enough
to allow the direct use of tractable inference/learning algorithms (e.g., binary la-
bel or linear chain). Therefore, these methods cannot be applied to problems with
complex structure. In this paper, we propose an approximate semi-supervised
learning method that uses piecewise training for estimating the model weights
and a dual decomposition approach for solving the inference problem of finding
the labels of unlabeled data subject to domain specific constraints. This allows us
to extend semi-supervised learning to general structured prediction problems. As
an example, we apply this approach to the problem of multi-label classification (a
fully connected pairwise Markov random field). Experimental results on bench-
mark data show that, in spite of using approximations, the approach is effective
and yields good improvements in generalization performance over the plain su-
pervised method. In addition, we demonstrate that our inference engine can be
applied to other semi-supervised learning frameworks, and extends them to solve
problems with complex structure.

1 Introduction
Over the past decade, a variety of semi-supervised learning methods have been sug-
gested in the literature; these methods use unlabeled data to yield a good lift in gen-
eralization performance when labeled data is sparse. One particular model, initially
proposed by Joachims [12] for binary support vector machines, has given impressive
results on problems involving large feature spaces, such as those encountered in text
classification and natural language processing. This model has been nicely extended to
multi-class classification, ordinal regression and structured output problems [31, 5, 2].
The key ideas behind these methods are: (a) using the labels of the unlabeled data (YU )
as extra variables and the associated loss function in training; (b) optimizing the model
weight vector (θ) and YU via alternating optimization steps; (c) using constraints on
YU that come from domain knowledge to effectively guide the training towards good
solutions; and (d) employing annealing to avoid getting caught in local minima.

The probabilistic structured output model in [5] is useful only when the output struc-
ture is simple, e.g., linear chains, that allows inference and learning computations to be
done in a tractable fashion. In this paper we go beyond and focus on problems with more
complex output structure. For such problems, making approximations in inference and
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learning is inevitable. In many practical situations, the complex output structure is such
that: (a) the output has several components with sparse inter-component intersections;
and (b) learning computations involving each component viewed as a separate piece is
tractable (known as piecewise training [32]). Thus, if we replace the likelihood terms
in the semi-supervised training objective function with composite likelihood [20] terms
involving the components, then the θ determination step becomes tractable; we do not
obtain the component marginals from the underlying intractable joint distribution. The
components-based structure also lets us to use dual decomposition based inference tech-
niques [16, 14] which have matured over recent years. The use of these approximations
in the semi-supervised learning method is neat since alternating optimization allows the
two approximations to be used independently in an iterative loop without crossing each
other.

We illustrate our approach by applying it to the problem of multi-label classification
and developing all the details for it. Detailed empirical analysis on several benchmark
datasets shows the effectiveness of the approach. Despite the approximations, the semi-
supervised method gives good lift in performance over the plain supervised method.
Also, when tested on small datasets where exact inference and learning are feasible, the
generalization performance of our method is competitive with that obtained by the semi-
supervised learning method using exact inference and exact learning. Furthermore, our
inference engine could be used with other semi-supervised learning methods; experi-
mental comparison with such methods show that the proposed method performs signif-
icantly better.

The rest of the paper is organized as follows. We review the related work in Section
2. In Section 3 we provide a background on semi-supervised learning, label assignment
problem, and composite likelihood. Section 4 gives the details behind the determination
of YU subject to domain constraints. Section 5 develops the details of the proposed
method for the multi-label classification problem. Experimental results are given in
Section 6. Section 7 concludes the paper.

2 Related Work

Some related works have a resemblance to the method proposed in this paper. Compos-
ite likelihood methods [20], Piecewise training [32], message-passing algorithm [10],
and large-margin methods with approximate inference [30, 6, 18] have been proposed
for approximate learning. However, they have been used only in the supervised learning.
Dual decomposition methods have been combined with training in the supervised learn-
ing of large margin models [26, 15], but the ideas do not transfer to semi-supervised
learning and probabilistic models.

Approximate inference algorithms for general structure (e.g., [9, 14, 16, 28, 25]) have
been widely studied in the literature. However, most of them do not consider solving
the inference problem with constraints from prior knowledge. On the other hand, many
studies have been conducted to solve specific inference problems with constraints (e.g.,
[17, 3]). Recently, Martins et al. [24] proposed a decomposition method to solve gen-
eral label assignment problems with first-order logic constraints. However, it is not clear
how to inject the corpus-level constraints into their framework. In this paper, we extend
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a dual decomposition method [16] to solve general constrained inference problem in-
volved in our semi-supervised learning framework.

Several semi-supervised learning algorithms [2, 23, 36, 40, 1, 34, 7] have been pro-
posed in the literature. However, with a few exceptions, they all focus on the cases
that exact inference and learning are tractable. In such cases, there is no need to use
an approximate algorithm. Note that for some problems with a special structure, ef-
ficient exact algorithms have been developed (e.g., Viterbi algorithm for linear chain
structure). They might be faster than a general approximate inference/learning tool. We
refer the readers to an example in [3, Section 6.1], where they showed that by using
a dynamic programming algorithm to leverage the problem structure, a Lagrangian re-
laxation method is more efficient than a general approximate inference solver. In addi-
tion, some works have been conducted to study semi-supervised learning approach for
multi-label classification problems [4, 8, 22, 38]. However, they do not use constraints
from domain knowledge and the settings are different from ours.

In the following, we briefly discuss the connection of our method to other semi-
supervised learning frameworks. Our work is closely related to [5] and [29]. These
probability models have been shown to generate the state-of-the-art results on problems
with a tractable structure, but they are not directly applicable to problems with com-
plex structured outputs. When exact inference and learning are tractable, our model is
reduced to a probability model similar to them. Without corpus level constraints, our
model is also related to CoDL [2]. However, CoDL only demonstrate the results using
exact inference algorithm and Perceptron style learning steps, while our probabilis-
tic method is more general. The posterior regularization [7] and Generalized Excep-
tion [23] are probabilistic methods that has several key differences from our method:
(a) they enforce domain constraints only in an expectation sense; and (b) it is unclear if
they applied to problems with complex structured outputs. Transductive SVM proposed
in [40] considers extending structured SVM to a semi-supervised setting. The method
is complicated and the study is only conducted on problems with simple structures
(linear chain and multi-class). Moreover, in their experiments they do not incorporate
prior knowledge via constraints, which are crucial to get good performance in semi-
supervised learning. Yu [36] also considers an extension of a large-margin method and
regularizes the model with the labels assigned to the unlabeled data. Their framework
is different from us, and it is unclear how to train their model on problems with com-
plex structure. Lee et al. [19] proposed a semi-supervised discriminative random field
algorithm with approximate inference. However, their method doesn’t incorporate con-
straints. We will show the value of using constraints in Section 6.2.

Our primary focus is on semi-supervised structured prediction problems whose out-
put structure is too complex to allow exact inference and learning. Therefore, comparing
different semi-supervised learning framework on the problems with tractable structure
is not the focus of this paper. Nevertheless, we show that our inference engine can be
plugged in other semi-supervised learning frameworks such as transductive SVM [40]
and CoDL [2] in Section 6.5.
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3 Semi-Supervised Learning

3.1 Learning Problem

Consider a structured output problem in which a data instance consists of an input
vector x ∈ X and a label vector y ∈ Y . For example, in sequence labeling, x is a
sequence of tokens {x1, . . . , xl} and y is a sequence of scalar labels {y1, . . . , yl}. We
are interested in discriminative models to determine y for given x. This is done by
using a feature vector f(x,y) and a parameter vector θ which define a scoring function
s(x,y, θ) = θ · f(x,y). Then inference is done as y∗ = arg maxy s(x,y, θ). We
assume that the scoring function s(x,y, θ) can be written as:

s(x,y, θ) =
∑

c
φc(yπc), (1)

where c is some break-up of s(·) into sub-scores, πc ⊂ {1, . . . , N} is an index set
associated with c, and yπc = {yj : j ∈ πc} is the label assignment on c. For this
paper c can be taken as a break up into sub-problems such that each sub-problem,
arg maxyπc φc(yπc) is easy to solve, and the dependency among the variables yπc is
considered only within the component c. For example, when single variables are con-
sidered, we are ignoring the label dependency and using a simple model for marginal
probabilities instead of computing them using the entire graph. More examples can be
found in, for example, [39]. Note that we have suppressed the dependency of the poten-
tials on x and θ in (1) for ease of notation.

For probabilistic models, we can define conditional probability using the scoring
function: p(y|x, θ) ∝ exp(s(x,y, θ)). If (X,Y) is a set of data instances {(x,y)},
then p(Y|X, θ) can be re-written as the product of p(y|x, θ) assuming samples are
drawn i.i.d from a fixed distribution. For ease of notation we will simply refer to these
quantities as pθ(Y) and pθ(y).

Let (XL,YL) = {(xL,yL)} denote the set of all labeled instances. Consider
the supervised learning problem of determining θ by maximizing the regularized log-
likelihood:

max
θ
S(θ) = R(θ) + L(YL; XL, θ),

whereR(θ)=−‖θ‖2/2σ2 is a regularizer andL(YL; XL, θ)= 1
nL

∑
xL
LxL(yL; xL, θ)

is the log likelihood term and nL is the number of labeled instances. LxL is the instance
level log likelihood; in the probabilistic model

LxL(yL; xL, θ) = log
exp(s(xL,yL, θ))∑
y∈Y exp(s(xL,y, θ))

.

In semi-supervised learning, θ is learned from both labeled data (XL,YL) and
unlabeled data XU , and we consider the following optimization problem instead:

max
θ,YU

S(θ) + L(YU ; XU , θ) s.t. µ(XU ,YU ) ≥ c, (2)

where YU is the labels assigned to the unlabeled data during the learning. The vector
valued domain constraints µ(XU ,YU ) ≥ c (discussed below) are included to guide the
semi-supervised learning algorithm towards good solutions.
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We can perform alternating optimization over θ and YU to solve (2). While the
optimization of θ can be done using a standard gradient based optimization routine
such as LBFGS, optimization of YU can be done by solving a label assignment problem
with constraints. If the structure is complex, both, optimizing θ and optimizing YU will
be difficult. In the following, we will discuss how to use approximate inference and
learning algorithms to learn θ and YU .

3.2 Label Assignment Problem (Inference)

To simplify notations let us use Y, X, y and x to represent YU , XU , yU and xU . The
label assignment problem subject to inequality constraints is given by:

max
Y
L(Y; X, θ) s.t. µ(X,Y) ≥ c. (3)

We can use (1) to rewrite (3) as:

max
Y

1
nu

∑
i

∑
c
φi,c(yi,πc) s.t. µ(X,Y) ≥ c, (4)

where the index i refers to ith unlabeled example, c refers to a clique and nu denotes
the number of unlabeled examples. We assume that the constraint function µ can be
written as: µ(X,Y) = 1

nu

∑
i µi(xi,yi). We will also assume that, for each example,

say the i-th, µi decomposes clique-wise, in the same way as (1). Thus, µi(x,y) can be
written as:

∑
c γicµic(x,yc) where some γcs can be zero. These assumptions hold in

most practical structured output scenarios; see [2, 7, 5] for many examples of constraints
arising in different problems. Later we will describe constraints arising in multi-label
classification. A constraint could be instance level (e.g., a particular label has to occur
only once in an example) or corpus level (e.g., the number of occurrences of a particular
label in all the examples is some number). Both these types of constraints fall in the gen-
eral constraint function format described above. Note that an instance level constraint
is a special case of a corpus level constraint and is obtained by setting µi(xi,yi) = 0
for all i except one of them.

If all the constraints are instance level, the solution to (4) can be obtained by solving
the inference problem on each example independently. Otherwise, joint inference is
required. We will discuss the joint inference approach later. The inference problem can
be solved exactly and efficiently only for restricted structured output types (e.g., linear
chain, tree with low-width). For general structured output problems, Master-Slave type
methods have been proposed to solve the inference problem.

3.3 Composite Likelihood Maximization (Learning)

In general structured prediction problems with graphs having cycles, learning algo-
rithms for probabilistic models are intractable due to the need to handle the parti-
tion function. To alleviate the computational intractability of parameter estimation in
supervised learning, composite marginal or conditional likelihood maximization [20]
and piecewise training methods [32] have been proposed. Such models are useful not
only to reduce computational complexity but also to provide robustness to model mis-
specification via using the simpler interactions. We make use of the piecewise train-
ing approach to learn the model parameter vector θ in our semi-supervised learning
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setting. In this approach, the likelihood is approximated by the composition of likeli-
hoods of the components. That is, pθ(y) = exp{L(y; θ,x)} ≈

∏
c p(yπc ; θc), where

p(yπc ; θc) = exp(φc(yπc ;θc))
Zc and Zc =

∑
yπc

exp(φc(yπc ; θc)). We assume that each
component c is tractable (e.g., yπc is a small subset of variables or c is a tree). Note that
we are not marginalizing any underlying intractable joint distribution p(y; θ).

Thus we replace the log-likelihood term L(Y; X, θ) with LC(Y; X, θ) =
∑
c LcC ,

LcC =
∑
i φc(yi,c)−

∑
i log(Zi,c). Note that the first term (which is critical for infer-

ence) remains the same as in the full likelihood maximization of general structured pre-
diction models. It is in the second term (involving the partition function) where we make
a tractable simplification. It is possible to learn the model parameters of components in-
dependently in situations where there is no overlap of parameters between components.
In general, we allow overlaps (i.e., share parameters across the components) keeping
tractability in mind so that the parameters of components are optimized together. How-
ever, unlike [32] where the components considered are factors of the graphical model,
we allow general user specified components involving more than one factor, as long as
inference on them is tractable. (In section 5, we illustrate this approach on the multi-
label classification problem, using trees as components sharing model parameters in a
fully connected graph.)

With this approach, the semi-supervised learning problem (2) can be written as:

max
θ,YU

R(θ) + LC(YL; XL, θ) + CmLC(YU ; XU , θ) s.t. µ(XU ,YU ) ≥ c. (5)

where Cm is a regularization parameter introduced to provide annealing capability,
which we discuss next.

3.4 Annealing steps for solving (5)

The objective function in (5) (and in (2)) is a non-concave function. In practice, we can
apply annealing steps using the parameter Cm to avoid being trapped in a bad local
minimum. The optimization procedure has a double loop. In the outer loop, we gradu-
ally increase Cm from a small positive value (e.g., tripling the value in every iteration
starting from 10−4) to one. This allows the unlabeled data to gradually influence the
modeling process in achieving a better optimum. In the inner loop, we alternatively up-
date the label assignment YU and the model θ, where θ is updated using the LBFGS
routine [21]. For efficiency sake we set the maximal number of LBFGS iterations to
be 25 and stop the inner loop after five rounds; we found this sufficient to get good
solutions.

4 Solving Label Assignment Problems With Constraints

We begin by discussing a master-slave approach [16] for the inference problem without
constraints. Then, we describe a joint approximate inference algorithm for the label
assignment problem with corpus level constraints.
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4.1 Master-Slave Approach

Let y = {y1, . . . , yN} be a vector of random variables associated with an example;
yj ∈ Yj where Yj is a discrete set. Consider the inference problem for one example
without any constraints.

y∗ = arg max
y

∑
c
φc(yπc). (6)

Note that to avoid notational complexity, we use the same notations as in (1) and assume
that the score is re-written as a composition of scores on sub-problems such that each
sub-problem c is tractable. Let π−1

j = {c : j ∈ πc}. For each a ∈ Yj , introduce
a binary integer variable zj,a indicating whether yj assumes the value a. Let zj =
(zj,1, . . . , zj,|Yj |), a binary vector. Let Zj be the set of vector values taken by zj and
z be a single vector that collects all zj . So, there exists an invertible mapping between
z and y. Denote it by y = bip(z) and z = bip−1(y). Let zπc = {zj : j ∈ πc}. We
slightly abuse notations and write φc(zπc) = φc(bip(zπc)). Let Zπc =

∏
j∈πc Zj . With

these notations, we can rewrite (6) as

max
z

∑
c
φc(zπc) s.t. zj ∈ Zj , j = 1, . . . , N. (7)

In the master-slave approach, new variable vectors {zcπc} are introduced for each
sub-problem and constraints connecting them are introduced via a variable vector z̄
controlled by the master that coordinates an iterative optimization process. Using these
variables we can rewrite (7) as

max
z̄,{zcπc}

∑
c
φc(zcπc) s.t. zcπc ∈ Zπc and zcπc = z̄πc ∀c.

Then, the Lagrangian min-max dual problem can be written as [16]

min
ν

∑
c

max
zcπc

(
φc(zcπc) +

∑
j∈πc
〈νc,j , (zcπc)j〉

)
s.t.
∑

c∈π−1
j

νc,j = 0 ∀j.

This problem can be solved using methods such as the projected sub-gradient method [16]
or the accelerated dual method [14]. Since we are discussing the case without con-
straints, the inference problem for each example is independent and so we simply have
to repeat the above described method to all examples.

4.2 Joint Inference with Constraints

For corpus level constraints joint inference over all examples is needed. Notations be-
come a bit clumsy: when dealing with all examples we need to use yi,πc , z̄i,πc etc.,
instead of yπc , z̄πc etc. We also use zi,πc as a shorthand for zci,πc . Let Ci be the
set of components associated with example i. The m-th constraint can be written as:∑
i

∑
c∈Ci γm,i,cµm,i,c(yi,πc) ≥ cm. Then the joint optimization problem is given by:

max
{z̄i},{zi,πc}

∑
i

∑
c∈Ci

φi,c(zi,πc)

s.t. zi,πc ∈ Zπc and zi,πc = z̄i,πc ∀i, c∑
i

∑
c∈Ci

γm,i,cµm,i,c(zi,πc) ≥ cm,∀m.
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Let us define the following functions: φ̃i,c(zi,πc) = φi,c(zi,πc) + g(zi,πc), g(zi,πc) =∑
m ηm(γm,i,cµm,i,c(zi,πc) − cm), h(ν(i)

c ; zi,πc) =
∑
j∈πi,c〈ν

(i)
c,j , (zi,πc)j〉. Then, the

corresponding Lagrangian min-max problem is given by:

min
{{ν(i)},{ηm}}

max
{zi,πc}

∑
i

∑
c∈Ci

(
φ̃i,c(zi,πc) + h(ν(i)

c ; zi,πc)
)

s.t. zi,πc ∈ Zπc
∑

c∈π−1
i,j

ν
(i)
c,j = 0 ∀i, j, ηm ≥ 0, ∀m.

We use the projected sub-gradient method to solve this problem since the inner max-
imization is not differentiable. Note that for fixed {ηm}, the dual variables {ν(i)} can
be solved independently for each i; this is possible due to the decomposable nature of
the constraint functions across the examples. The examples get coupled only via the
domain constraint dual variables. Therefore, we use an alternate optimization strategy
of optimizing {ηm} and {ν(i)}. Essentially, we run a projected sub-gradient based al-
gorithm over several iterations in an inner loop, and run a similar algorithm in an outer
loop.
Optimizing {ν(i)} with fixed {ηm}. Assume that {ηm} is fixed and consider the sub-
problem involving the i-th example given below:

min
{{ν(i)}

max
{zi,πc}

∑
c∈Ci
U(ν(i)

c , zi,πc ; {ηm}) s.t. zi,πc ∈ Zπc ,
∑

c∈π−1
i,j

ν
(i)
c,j = 0 ∀j

where U(ν(i)
c , zi,πc ; {ηm}) = φ̃i,c(zi,πc)+h(ν(i)

c ; zi,πc). We solve the inner maximiza-
tion problem (i.e., ẑi,πc = arg maxzi,πc U(ν(i)

c , zi,πc ; {ηm}) for fixed ν(i)
c . Then, the

sub-gradient of U(·) with respect to ν(i)
c,j is (ẑi,πc)j . (Note that h(ν(i)

c ; zi,πc) is linear

in ν(i)
c .) Using the prediction, we make the update: ν(i)

c,j(t) ← ν
(i)
c,j(t − 1) − γt∆ν(i)

c,j

where t denotes the t-th step and γt is the learning rate. Assuming that we start with ν(i)

satisfying the equality constraint, the constraint will be satisfied if
∑
c∈C̄j ∆ν

(i)
c,j = 0

where C̄j = {c : c ∈ π−1
i,j }. This can be ensured by setting ∆ν

(i)
c,j = (ẑi,πc)j −

1
|C̄j |
∑
c∈C̄j (ẑi,πc)j (i.e., removing the mean from each component’s optimal assign-

ment). This update for ν is indeed the Euclidean projection on the feasible set. By
assumption, each component c is tractable; therefore, the optimal assignment ẑi,πc can
be easily found. For example, in simple cases involving only a single node or a pair
nodes in the graph, the optimal assignment can be found by enumeration. For more
complex component such as trees, the max-product algorithm [27] can be used to find
the optimal assignment.
Optimizing {ηm} with fixed {ν(i)}. Consider the sub-problem of optimizing {ηm}
given by:

min
{ηm}

max
{zi,πc}

∑
i

∑
c∈Ci
U({ηm}, zi,πc ; ν(i)

c ) s.t. zi,πc ∈ Zπc ηm ≥ 0 ∀m.

We solve this problem using the projected sub-gradient method; the parameters η(t)
m

are updated as: η(t)
m ← [η(t−1)

m − γ̃t∆ηm]+ where + indicates projection on the non-
negative orthant, and ∆ηm =

∑
i,c∈Ci (γm,i,cµm,i,c(ẑi,πc)− cm). For fixed η(t)

m , the
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optimal assignments ẑi,πc ,∀c, i can be found as earlier. Once the optimal assignments
are obtained, we follow [16, Section IV.B] to obtain the final primal solution.

5 Multi-Label Classification Example

The method proposed in Sections 3-4 is applicable to any general structured prediction
problem. To demonstrate the usefulness of this method, we show how our method can
be applied to the multi-label classification problem and conduct related experiments.
Here we use one formulation, given in [6]. We consider a pair-wise fully connected
graph (to take care of all label correlations). Then, the scoring function s(x,y; θ) can
be written as:

s(x,y; θ) =
∑

p
sp(zp; θp(zp)) +

∑
p,q 6=p

spq((zpq); θpq(zpq)) (8)

where the indices p and q run over the nodes (classes), sp(·), spq(·) denote the node and
edge scores computed using the class and label dependent model parameters θp(zp)
and θpq(zpq); y = {−1, 1}K is a K-dimensional vector, where K is the number of
classes. With binary label assignment for each class, zp ∈ Zp is a 2-dimensional vector,
and Zp = {(1, 0), (0, 1)}. zpq ∈ Zpq is a 4-dimensional binary vector with only one
unit element. There exists a mapping between y and z as described in Section 4.1:
zp = bip−1(yp) and zpq = bip−1(yp, yq). For linear models, the scores are computed
as: sp(zp; θp(zp)) = θp(zp) · x and spq(zpq; θpq(zpq)) = θpq(zpq) · x, where x is the
feature vector. This setting has been used to study approximate learning or inference in
the supervised learning setting [6, 26, 39]. However, we are not aware of any existing
work studying this formulation in the semi-supervised setting.
Composite likelihood. Given the score having the form given in (8), composite like-
lihood can be defined in many different ways (e.g., [39]). In this paper, we define a
composite likelihood function composed of K spanning tree models where each tree
has one class at its root and the remaining classes as leaf nodes. Then, we can write the
score for each tree as:

sk(x,y; θ̄k) =
1
K

∑
p
θp(zp) · x +

1
2

∑
q 6=k

θpq(zpq) · x

and the likelihood function as pθ(Y) =
∏
k pk(Y; θ̄k) where θ̄k = {θp, θp,q : q 6=

k, p = 1, . . . ,K}, pk(Y; θ̄k)= exp(sk(x,y;θ̄k))P
y exp(sk(x,y;θ̄k))

. Note that s(x,y; θ)=
∑
ksk(x,y; θ)

(scaling factors ensure the equality), and potentials are shared across the models. There-
fore, all the models are learned jointly. 1 Since each sub-problem is a tree, the partition
function and its gradient can be easily computed2; also, inference can be efficiently
done. 3 See Komodakis et al, [16] for a discussion on the choice of sub-problems used
in the decomposition.

1 For other complex structured outputs, if the potentials are not shared then components could
be learned independently.

2 Evaluating the partition function of each sub-problem can be done in O(Kln), where K, l, n
are the numbers of classes, features, instances, respectively. Therefore, compute the composite
likelihood requires O(K2ln).

3 Our inference algorithm is an iterative process. If the number of iterations is fixed, labeling l
instances cost O(K2ln).
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Data set l ltri ltst n K

scene 2,407 1,684 723 294 6
yeast 2,417 1,691 726 103 14
emotions 593 415 178 72 6
rcv 6,000 4,200 1,800 47,236 30
tmc2007 28,596 20,018 8,578 30,438 22

Table 1. Data statistics (l: total number of samples, ltri: number of train samples, ltst: number of
test samples, n: number of features, and K: number of classes). The train set is further split into
two parts: labeled train and unlabeled train (see text for details).

Constraints. Following the discussions in Section 3.2, we consider two types of corpus-
level constraints: label distribution constraint (LDC) and label correlation constraint
(LCC). LDC constrains the number of times a given label occurs throughout the en-
tire data set and LCC constrains the number of times one label co-occurs with an-
other throughout the data set. In the context of multi-label classification, LDC can be
written in the following forms

∑
y∈Y δ(bip−1(yp), z′p) = n(z′p),∀p = 1, ...K, z′p ∈

Zp, where δ is the Kronecker delta function. LCC is
∑

y∈Y δ(bip−1(yp, yq), z′pq) =
n(z′pq),∀p, q 6= p, z′pq ∈ Zpq. n(z′p) and n(z′pq) are given and estimated by counting
the occurrence/co-occurrence of labels in the data. There are many other possible con-
straints that can be used in multi-label problems. For example, we can restrict the num-
ber of assigned labels for each sample. Local correlations [11] can be also incorporated
in our model via instance level constraints. In the experiments we use LDC and LCC
only. We will show the value of these constraints in Section 6.2.

6 Experiments

In this section, we do experiments on multi-label classification to understand the fol-
lowing: (a) how well the proposed semi-supervised learning framework improves over
the supervised classifier; (b) the role of different constraints on the performance; (c)
the impact of the inference and learning approximations on the performance; and (d)
differences between transductive and semi-supervised solutions.
Datasets and setting. We considered five multi-label datasets from various applica-
tions4. Table 2 lists the data statistics. For rcv, we only used the first set of data. Because
several labels in rcv have only a few positive examples, we removed such labels and
only considered the 30 most frequent labels. For each data set, we constructed 10 ran-
dom train and test splits of 70% and 30%. Then, we performed experiments on different
degrees of labeling (d) by further splitting the train set into two parts: labeled train data
(d%) and unlabeled train data ((100 − d)%). In the training phase, only the labels of
labeled train data are used. Because there are only few labels in the training set when
the degree of labeling is low, we fixed the regularization parameter to a default value
(σ2 = 1) instead of tuning it. We checked in our experiments that the conclusions are
still valid when σ is tuned using a validation set. We evaluate performance in terms of
the Micro-F1 score [35] and conduct Wilcoxon sign-rank test with the significance level

4 Data is available at http://mulan.sourceforge.net.
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(a) rcv (b) emotions
Fig. 1. Performance on test set (red) and unlabeled train set (blue) along iterations for d = 1%.

of 5%. All results in the tables are reported in terms of the mean and standard devia-
tion over the 10 splits. Unless stated otherwise all results correspond to the case where
both, label distribution and label correlation constraints are used. Test set inference is
done collectively by treating it as a sample and applying collective inference with the
constraints.

6.1 Performance of the Proposed Method

We begin by showing the performance (as a function of optimization iterations) of the
proposed semi-supervised learning algorithm with approximate inference and learning.
As we mentioned in Section 3.4, we increase the weight of unlabeled data Cm from
10−4 to 1 by a factor of 3 and for each Cm we conduct five inner iterations. Therefore,
there are 45 total iterations for each trial. Figure 1 shows Micro-F1 scores evaluated on
unlabeled data and test data along iterations when d = 1%. We omit the correspond-
ing plots for scene, yeast, and tmc2007 because they are somewhat similar to that
on rcv. In most cases, the model achieves better performance as the number of itera-
tions grows. This result is consistent with the observations made in the semi-supervised
learning literature, e.g., [2, 5]. However, a key difference is that, our results are demon-
strated on problems with complex structured outputs. The test set curve of emotions
dips a bit at the end in Figure 1(b). This because, in the annealing step, we increase Cm
along iterations. As the amount of unlabeled data in emotions is small, large Cm may
overemphasize the unlabeled data, resulting in slightly inferior performance. When de-
gree of labeling is 2% or higher, the performance on emotions does not drop in the
end. In general, when the amount of unlabeled data is small, over-emphasizing it via
large Cm leads to over-fitting.

Next, we show that our semi-supervised classifier (Semi-Sup) is better than the su-
pervised classifier (Sup) that is trained only on the labeled data. We compare the results
with various degrees of labeling d ∈ {1, 2, 4, 8}. For a fair comparison, when evaluating
Sup on test set, the constraints are used. Table 2 shows the results. Overall, the semi-
supervised learning algorithm outperforms the baseline classifier. The improvement is
statistically significant. As d increases, the Micro-F1 score of the methods increases
while the standard deviation decreases, as expected.
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Dataset
Degree of labeling (d)

1% 2% 4% 8%
Semi-Sup Sup Semi-Sup Sup Semi-Sup Sup Semi-Sup Sup

scene 55.2±3.7 51.5±2.7 59.3±2.1 56.9±2.4 63.8±1.4 61.8±2.5 66.9±1.4 66.0±1.6
yeast 42.9±2.1 42.5±1.8 43.4±1.0 43.2±1.2 45.2±1.2 44.5±1.0 45.2±0.9 44.8±0.9
emotions 51.3±5.9 49.9±4.5 55.5±4.3 53.8±3.9 58.8±3.8 58.3±4.3 62.2±2.5 60.5±2.7
rcv 30.5±2.1 27.8±2.0 33.6±1.8 32.2±1.8 36.4±0.9 34.2±1.4 36.3±1.3 34.0±1.4
tmc2007 42.0±1.2 41.3±1.2 43.0±1.1 42.4±1.2 44.1±0.6 41.4±1.7 43.8±0.7 41.4±1.6
Table 2. Comparison of semi-supervised (Semi-Sup) and supervised (Sup) learning algorithms.
Boldface indicates significant improvement of Semi-Sup over Sup.

Data d
ALAI ALAI ALEI ELAI ELEI

No LDC LCC Both Both

scene
1 51.6±2.4 54.6±3.5 53.5±3.6 55.2±3.7 56.8±5.9 53.7±5.4 56.6±5.5
2 58.0±1.5 59.1±2.1 59.1±1.9 59.3±2.1 62.6±2.0 60.1±2.6 61.8±2.4
4 61.2±3.2 63.5±1.6 63.2±1.8 63.8±1.4 65.2±1.8 64.2±1.6 64.7±1.9

yeast
1 42.3±2.7 42.8±2.1 42.8±2.3 42.9±2.1 42.1±2.0 42.9±1.7 42.2±1.8
2 42.8±1.5 43.2±1.1 43.0±0.8 43.4±1.0 42.5±1.4 43.1±1.3 43.0±1.5
4 45.0±1.8 45.2±1.2 45.2±1.4 45.1±1.2 44.5±1.3 44.5±1.6 44.0±1.4

emotions
1 48.3±6.2 51.0±5.9 51.1±5.7 51.2±5.9 54.0±5.0 51.7±6.9 52.9±5.6
2 53.2±4.5 55.2±3.9 54.7±4.4 55.5±4.3 55.2±4.8 54.0±3.7 54.6±5.7
4 58.0±3.9 59.0±4.0 59.0±3.9 58.8±3.8 58.4±3.1 57.0±3.2 58.1±3.1

Table 3. Columns 1-4 compare various situations with constraints: without incorporating any con-
straint (No), using label distribution constraints (LDC), using label correlation constraints (LCC)
and using both constraints (Both). Columns 4-7 investigate approximate/exact learning/inference.
We use abbreviations to represent the combinations (e.g., ALEI stands for (A)pproximate
(L)earning with (E)xact (I)nference). Results are in Micro-F1 (%). The best result (mean) of
each column is boldfaced.

In section 3.4, we mentioned the use of annealing to deal with the non-concavity
of the objective function in (5). Experiments show the importance of annealing. For
example, without using annealing, the mean performance of Semi-Sup on scene (d =
1) drops from 55.2% to 54.2%. In addition, incorporating constraints during testing
improves the performance of the classifier. For example, without using constraints, the
mean Micro-F1 scores of Semi-Sup and Sup on scene (d = 1) dropped to 54.9% and
49.6% from 55.2% and 51.5% respectively (see Table 2).

6.2 Using Different Sets of Constraints

The first four columns in Table 3 show the results for different uses of constraints.
Without using constraints, the performance of Semi-Sup is suboptimal. With label dis-
tribution constraint (LDC) the performance is significantly better. In most cases, us-
ing label correlation constraints (LCC) obtains similar results as using LDC. However,
when both constraints are used (Both), the performance gain is enhanced even further.
These results show the importance of using constraints to improve the model.
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6.3 Exact versus Approximation

Next, we investigate the performance difference between using an exact algorithm and
an approximate algorithm during training and inference. We show the results on three
small data sets, scene, yeast and emotions. The number of labels in these data sets
is less than 15. For such cases, exact learning and inference algorithms are tractable.
For exact inference, we explicitly enumerated all possible assignments of labels and
chose the one with the highest objective function value in (6) as the solution. For ex-
act learning, instead of computing composite likelihood, we compute the full likelihood.
Computation of the partition function is the main bottleneck associated with exact learn-
ing. However, when the size of labels is small, the partition function can be computed
exactly using scores for all enumerated label assignments. Columns 4-7 of in Table 3
show the results. In some cases, the approximate algorithm even achieves better per-
formance than the exact one (e.g., ALAI achieves the best result on yeast). However,
except on yeast (d = 1%, 4%), the difference between ELEI and the best result are not
statistically significant. In general, the performance of approximate inference/learning
is competitive with that of exact inference/learning. Regarding the running time, ALAI
takes 4,167 seconds to train a model using yeast data set, while ELEI takes 9,175 sec-
onds. Therefore, the approximation is faster than the exact method, especially when the
number of labels is large. This shows the effectiveness of our semi-supervised learning
framework with approximate inference and training.

6.4 Transductive Setting Experiments

If the test data is known in advance, it can be used in the semi-supervised learning pro-
cess as additional unlabeled data. This has the potential to yield better performance on
the test data. We refer this as the transductive setting, as opposed to the original induc-
tive setting. Comparing the results of the transductive setting with those in Table 2 for
the inductive setting, we found that the transductive setting is statistically significantly
better on emotions data but achieves similar performance as the inductive setting on
the other two data sets. For example, when degree of labeling is 1%, the mean perfor-
mances of the transductive setting are 55.1%, 42.9% and 51.7% on scene, yeast, and
emotions, respectively; compare this with 55.2%, 42.9% and 51.3% for the inductive
setting. The key reason for this is that the original unlabeled train set of emotions is
small, and therefore, including test data in training helps it do better.

Moreover, the transductive setting improves the supervised learning setting. For
example, using the full train set as labeled data and the test set as the unlabled data to
train the model improves the plain supervised learning setting from 74.3% to 74.8% in
Micro-F1 on scene data set.

6.5 Incorporate the Inference Engine Proposed in Sec. 4 with Existing Methods

As we mentioned in Section 2, the proposed method is related to several methods in
semi-supervised learning literature. However, most existing papers focus on problems
with tractable structure outputs (e.g., linear chains), for which there is no need to use
an approximate algorithm. Therefore, we are not aware of any existing method that we
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Dataset
Degree of labeling (d)

1% 2% 4% 8%
Semi-Sup Sup Semi-Sup Sup Semi-Sup Sup Semi-Sup Sup

TSVM+
scene 45.7±4.0 42.1±2.6 50.7±2.4 45.5±3.2 60.4±1.5 55.9±1.9 64.9±1.2 63.0±1.2
yeast 40.1±2.1 41.1±2.2 40.3±1.3 41.8±1.6 41.2±1.5 43.3±1.2 40.4±1.7 43.2±1.6
emotions 46.8±6.4 50.0±5.7 51.9±4.3 51.5±4.2 54.2±3.5 55.3±5.1 56.7±2.9 57.6±1.8

CoDL+
scene 50.2±9.1 33.8±6.8 56.0±3.5 37.8±3.8 60.8±1.9 45.4±4.7 65.3±1.8 55.4±3.8
yeast 40.9±3.3 39.6±3.0 39.8±2.4 41.5±1.5 40.9±1.7 43.2±1.9 40.5±1.3 44.3±1.9
emotions 52.6±4.3 43.0±8.2 55.9±6.5 44.8±6.3 58.6±3.8 52.5±4.7 62.0±4.0 55.8±4.2

The proposed method
scene 55.2±3.7 51.5±2.7 59.3±2.1 56.9±2.4 63.8±1.4 61.8±2.5 66.9±1.4 66.0±1.6
yeast 43.9±2.1 42.5±1.8 43.4±1.0 43.2±1.2 45.2±1.2 44.5±1.0 45.2±0.9 44.8±0.9
emotions 51.3±5.9 49.9±4.5 55.5±4.3 53.8±3.9 58.8±3.8 58.3±4.3 62.2±2.5 60.5±2.7
Table 4. Comparison of semi-supervised (Semi-Sup) and supervised (Sup) learning algorithms
of TSVM+ and CoDL+. Boldface indicates significant improvement of Semi-Sup over Sup or
vice versa. We reproduce the results of our model from Table 2 for ease of reference.

can directly compare with. However, our inference method introduced in Section 4 can
be applied to other semi-supervised models. In the following, we show two examples,
where we combine our inference engine with CoDL [2] and transductive structured
SVM [40, 6]. We refer the combined methods as CoDL+ and TSVM+, respectively.

TSVM+. TSVM [40] extends a binary transductive SVM model [12] to deal with struc-
tured outputs. However, it cannot deal with complex structured outputs, because it relies
on an exact inference solver. In addition, the model does not use constraints from do-
main knowledge to guide learning. To extend TSVM, we modify the learning algorithm
with an approximate structured SVM approach [6]. The augmented inference problems
involved during the learning are solved approximately using our inference algorithm.
Then, we add prior constraints over y in [40, Eq. OP3] to incorporate with corpus-level
constraints. The resulted optimization problem is solved by a CCCP procedure [37]. We
implemented TSVM+ based upon the Matlab version of structured SVM [33, 13].

CoDL+. CoDL [2] proposed a general framework to incorporate declarative constraints
for structured learning. However, they did not show results on problems with complex
structured output. We implement CoDL using an Averaged Structured Perceptron al-
gorithm and our inference engine. Specifically, Steps 4-7 in [2, Algorithm 2] and Step
4 in [2, Algorithm 3] are replaced by our inference algorithm. We use an L+I setting
with ρk = ∞. CoDL uses a smoothing parameter to combine the models learned from
labeled and unlabeled data instead of using annealing steps. For a better comparison,
we implement the same annealing steps introduced in 3.4 for TSVM+ and CODL+.

Comparison and Discussion. Table 4 shows the performance in micro-F1. Results
show that TSVM+ significantly improves the plain supervised setting on scene, but
achieves a sub-optimal solution on yeast. We suspect that the performance dip is due
to over-fitting (a similar situation is shown in Figure 1(b)). In fact, TSVM+ achieves
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better generative performance at early iterations on yeast. For example, it achieves
42.4% F1 at iteration 17 when Cm = 0.005 and the performance goes down after-
wards. Regarding CODL+, it significantly improves its supervised counterpart on both
scene and emotions. However, it also suffers from over-fitting on yeast data set.

The results in this section are mainly to demonstrate that our inference method can
be incorporated with other semi-supervised models. We noted that extending existing
semi-supervised learner for complex structured output problems is nontrivial. There-
fore, a careful study might further improve the performance of CoDL+ or TSVM+.
Nevertheless, results in Tables 4 show that our method achieves better or competitive
performance with CODL+ and TSVM+ in all cases.

7 Conclusion and Discussion

In summary, we presented an effective semi-supervised learning framework for struc-
tured prediction problems with complex output structure. The proposed framework is
general and can be easily applied to problems other than multi-label classification. Eval-
uating the framework on more complex problems is an important direction. A detailed
and thoughtful comparison with other state-of-the-art semi-supervised multi-label clas-
sification methods is an interesting topic for future study.
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