Manuscript Number: 3262

Fast Generalized Cross Validation Algorithm For
Sparse Model Learning

S Sundararajan Shirish Shevade S. Sathiya Keerthi
Philips Electronics India Ltd Computer Science and Automation Yahoo! Research Labs
1 Murphy Road, Ulsoor Indian Institute of Science 210 S.DeLacey Avenue
Bangalore, India Bangalore, India Pasadena, CA-91105, USA
Abstract

In this paper we propose a fast incremental algorithm for designing linear re-
gression models. The proposed algorithm generates a sparse model by optimizing
multiple smoothing parameters using the generalized cross validation approach. The
performances on synthetic and real-world datasets are compared with other incre-
mental algorithms such as Tipping and Faul’s fast Relevance Vector Machine, Chen
et al.’s Orthogonal Least Squares and Orr’s Regularized Forward Selection. The

results demonstrate that the proposed algorithm is competitive.

1 Introduction

In recent years, there has been a lot of focus on designing sparse models in machine learn-
ing. For example, the support vector machine (SVM) (Cortes and Vapnik, 1995) and
the relevance vector machine (RVM) (Tipping, 2001; Tipping and Faul, 2003) have been
proven to provide sparse solutions to both regression and classification problems. Some
of the earlier successful approaches for regression problems include Chen et al.’s orthogo-
nal least squares and Orr’s Regularized forward selection algorithms (Chen, Cowan, and

Grant, 1991; Orr, 1995b).



In this paper, we consider only the regression problem. Often, the target function

model takes the form:

Y00 = 3 tndn( (1)

For notational convenience, we do not indicate the dependency of y on w, the weight

vector. The available choices in selecting the set of ‘basis vectors’ {¢,,(x),m =1, ..., M}

N

make the model flexible. Given a dataset {x,,t,},_;,

t, € RV n, we can write the target
vector t = (ty,....,ty)" as the sum of the approximation vector y(x) = (y(x1), ..., y(xn))*
and an error vector 7:

t =®w + 7 (2)

where ® = (¢ ¢, d,,) is the design matrix and ¢, is the i* column vector of ®

of size N x 1 representing the response of the i** basis vector for all the input samples

xj, J = 1,...,N. One possible way to obtain this design matrix is to use a Gaussian
kernel with ®;; = exp(—%). The error vector i can be modeled as an independent

zero mean Gaussian vector with variance o2.

In this context, controlling the model complexity in avoiding over-fitting is an
important task. This problem has been addressed in the past by regularization approaches
(Bishop, 1995). In the classical approach, the sum squared error with weight decay
regularization having a single regularization parameter o controls the trade-off between
fitting the training data and smoothing the output function. In the local smoothing
approach, each weight in w is associated with a regularization or ridge parameter (Hoerl
and Kennard, 1970; Orr, 1995a; Denison and George, 2000). An interested reader can refer
to (Denison and George, 2000) for a nice discussion on the generalized ridge regression

and Bayesian approach.

For our discussion, we consider the weight decay regularizer with multiple regular-

ization parameters. In this case, the optimal weight vector is obtained by minimizing the



following cost function (for a given set of hyperparameter values, a, 0?):

1 1
C(w,a,0%) = Tﬂ”t_ dw||> + §WTAW (3)
where A is a diagonal matrix with elements & = (ay, ..., ap)T, and the optimal weight
vector is given by
1
w = —QS_1<I>Ty (4)
o

T
where S = R+ Aand R = % Note that this solution depends on the product ao.
This solution is same as the maximum aposteriori (MAP) solution obtainable from defin-

ing the Gaussian likelihood and Gaussian prior for the weights in a Bayesian framework

(Tipping, 2001).

The hyperparameters are typically selected using iterative approaches like marginal
likelihood maximization (Tipping, 2001). In practice, many of the a; approach oco. This
results in the removal of associated basis vectors, thereby making the model sparse. The
final model consists of a small number of basis vectors L (L < M), called relevance vectors
and hence, is known by the name Relevance Vector Machine (RVM). This procedure is
computationally intensive and needs O(M?3) effort at least for the initial iterations while
starting with the full model (M = N or M = N + 1 if the bias term is included). Hence,
it is not suitable for large datasets. This limitation was addressed in (Tipping and Faul,
2003), where a computationally efficient algorithm was proposed. In this algorithm, basis
vectors are added sequentially starting from an empty model. It also allows to delete the

basis vectors which may subsequently become redundant.

There are various other basis vector selection heuristics which can be used to design
sparse models (Chen et al., 1991; Orr, 1995b). Chen et al. (1991) proposed an orthogonal
least squares algorithm as a forward regression procedure to select the basis vectors. At

each step of the regression, the increment to the explained variance of the desired output



is maximized. Orr (1995b) proposed an algorithm which combines regularization and
cross-validated selection of basis vectors. Some other promising incremental approaches
are the algorithms of Csato and Opper (2002), Lawrence, Seeger, and Herbrich (2003),
Seeger, Williams, and Lawrence (2003) and Smola and Bartlett (2000). But they apply
to Gaussian processes and are not directly related to the problem formulation addressed

in this paper.

Generalized Cross Validation (GCV) is another important approach for the selec-
tion of hyperparameters and has been shown to exhibit good generalization performance
(Sundararajan and Keerthi, 2001; Orr, 1995a). Orr (1995a) used the GCV approach to
estimate the multiple smoothing parameters of the full model. This approach, however,
is not suitable for large datasets due to its computational complexity. Therefore, there is
a need to devise a computationally efficient algorithm based on GCV approach to handle

large datasets.

In this paper, we propose a new fast incremental GCV algorithm which can be used
to design sparse models exhibiting good generalization performance. In the algorithm,
we start with an empty model and sequentially add the basis functions to reduce the
GCV error. The GCV error can also be reduced by deleting those basis functions which
subsequently become redundant. This important feature offsets the inherent greediness
exhibited by other sequential algorithms. This algorithm has the same computational
complexity as that of the algorithm given in (Tipping and Faul, 2003) and is suitable
for large datasets as well. Preliminary results on synthetic and real-world benchmark
datasets indicate that the new approach gains on generalization but at the expense of a

moderate increase in the number of basis vectors.

The paper is organized as follows. In Section 2, we describe the GCV approach and
compare the GCV error function with marginal likelihood function. Section 3 describes the

fast incremental algorithm, computational complexity and the numerical issues involved;



the update expressions mentioned in this section are detailed in the Appendices I to VI.

In Section 4, we present the simulation results. Section 5 concludes the paper.

2 Generalized Cross Validation

The standard techniques that estimate the prediction error of a given model are the leave-
one-out (LOO) cross-validation (Stone, 1974) and the closely related GCV described
in (Golub, Heath, and Wahba, 1979; Orr, 1995b). The generalization performance of
the GCV approach is quite good, like that of the LOO cross-validation approach. The
advantage in using the GCV error is that it takes a much simpler form compared to the

LOO error and is given by

YNt — y(xi))?

V(ia,o°) = N (tr(P))? (5)
where
P=1I- @Silcjf (6)

o

When this GCV error is minimized with respect to the hyperparameters, many of the «;

approach oo, making the model sparse.

The equation (5) can be written as

Ve, o?) = N(:r(iff)’)g? (7)

Note that P is dependent only on ¢ = «o?. This means that we can get rid of 2 from

(4) and (5). Then, it is sufficient to work directly with . However, using the optimal ¢



obtained from minimizing the GCV error, the noise level can be computed from:

tTP?%t
~2 —
” T w®) ®)

We now discuss the algorithm, proposed by Orr, to determine the optimal set of

hyperparameters.

2.1 Orr’s Algorithm

Starting with the full model, Orr (1995a) proposed an iterative scheme to minimize the
GCV error (7) with respect to the hyperparameters. Although this algorithm was origi-
nally described in terms of the variable (;, we describe it here using the variables o;; and
o? for convenience. Each «; is optimized in turn while the others are held fixed. The
minimization thus proceeds by a series of one-dimensional minimizations. This can be

achieved by rewriting (7) using

CLjA? — 2bjAj + Cj

t'P%t =
A}
5:A; — €
r(P) = 229 9
r(P) = 2%
where
a; = t"P% 9)
b = (t"Plg,)(t"P;¢,) (10)
¢ = (] Pi9;)(t"P;9;) (11)
5 = tr(P)) (12)



¢j = (¢;Po)) (13)

The above relationships follow from the rank-one update relationship between P and P;.
1 T
P =P - A_ij¢j¢j P; (14)

. 71 .T
where P; = I— Eﬂ& and

A = quTP]-qu + ajo® (15)

Here, ®; denotes the matrix ® with the column ¢; removed. Therefore, S; = R; + A;
with the subscript j having the same interpretation as in ®;. Note that S; does not

contain «; and hence, P; also does not contain ;.

Thus, equation (7) can be seen as a rational polynomial in «; alone, with a single
minimum in the range [0, 00]. The details of minimizing this polynomial with respect to
«; are given in appendix I. After one complete cycle in which each parameter is optimized
once, the GCV score is calculated and compared with the score at the end of the previ-
ous cycle. If significant decrease has occurred a new cycle is begun, else the algorithm
terminates. As detailed in (Orr, 1995a), the computational complexity of one cycle of
the above algorithm is O(N?), at least during the first few iterations. Although, this
will consequently reduce to O(LN?) as the basis vectors are pruned, this algorithm is not

suitable for large datasets.

2.2 Comparison of GCV error with marginal likelihood

We now compare the GCV error and marginal likelihood by studying their dependence on

«;. In the marginal likelihood method, the optimal o;’s are determined by maximizing the



marginal likelihood with respect to c;. On the other hand, the GCV error is minimized

to get the optimal «;’s.

First, we study the behaviour of the GCV error with reference to ;. The term in
the denominator of the GCV error has tr(P) = §; — —X; where d; and ¢; are independent
of a; and P is a positive semi-definite matrix. Further, ¢r(P) increases monotonically as
a function of ¢;. Therefore, maximizing the ¢7(P) (in order to minimize the GCV error)
will prefer the optimal value of «; to be co. Thus, the denominator term in equation (7)
prefers a simple model. The term, tTP?t, in the numerator of equation (7) is the squared
error at the optimal weight vector in (4). Let g(a) = t"P?t. Differentiating g(a) with

respect to a;, we get

dole) 2
(9ozj Az

where b; and c; are independent of «; and ¢;, A; > 0. If b; is non-positive then g(c;)
is a monotonically decreasing function of a;. Minimization of g(a;) with respect to «;
would thus prefer «; to be co. On the other hand, if b; is positive, then the minimum of
g(;) would depend upon the sign of ¢2b;5; —¢; where 5; % TS j¢;, B_; is T with the
contribution of basis vector j removed and ¥ = 0% + PA~1®. Note that P = 02X L.
Therefore, the optimal choice of o; using the GCV error method depends on the trade-off
between the data dependent term in the numerator and the term in the denominator that

prefers «; to be oo.

The logarithm of marginal likelihood function is
1 Ty—1
£(a) =~ [Nlog(2m) + log [Z] + t"7't] .

Considering the dependence of £(«) on a single hyperparameter «;, the above equation



can be rewritten (Tipping and Faul, 2003) as,
L(a) = L(a—;) + ()

~2
aj_)+ qj_ .
aj—i-sj ij'f‘Sj

where (o) = 3 |log( L(a_;) is the marginal likelihood with ¢;

excluded and is thus independent of «;. Here, we have defined g; def QSJTE:}t. Note that
¢; and 5; are independent of c;. The second term in /(«;) comes from the data dependent
term, t7X't, in the logarithm of the marginal likelihood function and maximization of
this term prefers a; to be zero. On the other hand, the first term in /() comes from the
“Ockham factor” (Tipping, 2001) and maximization of this term chooses ¢ to be co. So
the optimal value of o is a trade-off between the data dependent term and the Ockham

factor.

Note that t"3X't = Ht"P?t + w Aw. The term on the left hand side of this
equation appears in the negative logarithm of marginal likelihood function while the first
term on the right hand side of this equation appears in the numerator of the GCV error.
The key difference in the choice of the basis function is because of the additional term
that is present in the data dependent term of the marginal likelihood. For the marginal

likelihood method, it has been shown that for a given basis function j, if (7? < 5; then the

22
S%
optimal value of ¢ is 0o; otherwise, the optimal value is . (Tipping and Faul, 2003).

_2 _
q; g

For the GCV method, the optimal value of a; depends on gj, 5; and some other quantities
as detailed in Appendix I. Further, the sufficient condition for a basis function to be not
relevant for the marginal likelihood method is ¢; < §; and that for the GCV error
method is b; < 0. Note that b; is independent of s; but is dependent on ¢;. In general,
a relevant vector obtained using marginal likelihood (or GCV error) method need not be
relevant in the GCV error (or marginal likelihood) method. This fact was also observed

in our experiments.



We now discuss the effect of scaling on the GCV error. First note that the GCV
error is a function of P. With the scaling of the output t, there will be an associated
scaling of basis functions. However, P is invariant to such scaling (see equation (6)). This
will make the GCV error invariant to scaling. Also, a similar result holds for the log

marginal likelihood function.

3 Fast GCV Algorithm

In this section we describe the fast GCV (FGCV) algorithm which constructs the model
sequentially starting from an empty model. The basis vectors are added sequentially and
their weightings are modified to get the maximum reduction in the GCV error. The GCV
error can also be decreased by deleting those basis vectors which subsequently become

redundant.

By maintaining the following set of variables for every basis vector, m, we can find

the optimal value of «,, for every basis vector and the corresponding GCV error efficiently.

T = t'Po, (16)
VYm = ¢ Py, (17)
En = t'P?9,, (18)
Un = P P, (19)
In addition, we need
v = tr(P) (20)
q = t'P% (21)

10



Further, updation of these variables, after every minimization process, can be done

efficiently using rank-one update given in (14).

We now give the algorithm and discuss the relevant implementation details and

storage and computational requirements.

3.1 Algorithm

1. Initialize 02 to some reasonable value (e.g. var(t) x .1).

2. Select the first basis vector ¢ (which forms the initial relevance vector set) and set
the corresponding oy to its optimal value. The remaining a’s are notionally set to

Q.

3. Initialize S™!, w (which are scalars initially) and the variables given in equations

(16)-(21).

old .

4. . = 0.

5. For all j, find the optimal solution «; keeping the remaining «;, ¢ # j fixed and
the corresponding GCV error. Select the basis vector k for which reduction in the

GCV error is maximum.
6. If 04°'9 < oo and «y < 00, the relevance vector set remains unchanged.
7. If 04.° = 00 and oy, < 00, add ¢, to the relevance vector set.
8. If a;,°'" < oo and a;, = 0o, then delete ¢, from the relevance vector set.
9. Update S™!, w and the variables given in equations (16)-(21).

10. Estimate the noise level using equation (8). This step may be repeated once in, for

example, five iterations.

11



11.

3.2

If there is no significant change in the values of @ and o2, then stop. Otherwise, go

to step 4.

Implementation Details

Since we start from the empty model, the basis vector which gives the minimum
GCV error is selected as the first basis vector (step 2). The details of this procedure
are given in appendix II. The first basis vector can also be selected based on the
largest normalized projection onto the target vector as suggested in (Tipping and

Faul, 2003).

. The initialization of relevant variables in step 3 is described in appendix III.

Appendices IV and I describe the method to estimate the optimal a; and the cor-

responding GCV error (step 5).

Updation of variables in step 9 is done using the details given in appendix V for the
case in step 6 (re-estimation) or step 8 (deletion) of the algorithm. The details

corresponding to step 7 (addition) are given in appendix VI.

. In practice, numerical accuracies may be affected as the iterations progress. More

specifically, the quantities v, and u,, that are expected to remain non-negative may
become negative while updating the variables. When any of these two quantities
becomes negative, it is a good idea to compute the quantities in equations (16)-
(21) afresh using direct computations. If the problem still persists (this typically
happens when the matrix P becomes ill-conditioned, for example, when the width

parameter z used in a Gaussian kernel is large), we terminate the algorithm.

When the noise level is also to be estimated (step 10), all the relevant variables are

calculated afresh. This computation is simplified by expanding the matrix P using
(6)-

12



7. In an experiment, some of the a; may reach 0 as can be seen in appendix I. This
may affect the solution. Therefore, it is useful to set such «; to a relatively small

value, ay,i,. Setting this value to % was found to work well in practice.

3.3 Storage and Computational Complexity

The storage requirements of the FGCV algorithm are more than that of the fast RVM
(FRVM) algorithm in (Tipping and Faul, 2003) and arise from the additional variables

&n and u, to be maintained. However, they are still linear in V.

The computational requirements of the proposed algorithm are similar to those of
the FRVM algorithm. Step 5 of the algorithm has computational complexity of O(N).
This is possible using the expressions given in appendix IV. The computational complexity
of the re-estimation or deletion of a basis vector is O(LN) while that of the addition of a
basis vector is O(/N?). Step 10 of the algorithm, however, has a computational complexity

of O(LN?) as it requires the re-estimation of the relevant variables.

We observed that the FGCV algorithm was 1.25 to 1.5 times slower than the FRVM

algorithm in our simulations. The main reasons for this are

1. The error function is shallow near the solution which results in more iterations.
2. Higher number of relevance vectors at the solution.

3. Updation of additional variables, &, and u,.

4 Simulations

The proposed Fast GCV algorithm is evaluated on four popular benchmark datasets and

is compared with the algorithms described in (Tipping and Faul, 2003; Chen et al., 1991;

13



Orr, 1995b) and referred to as Fast RVM (FRVM), Orthogonal Least Squares (OLS) and
Regularized Forward Selection (RFS) respectively. Two of these datasets were generated,
as described by Friedman (1991) and are referred to as Friedman2 and Friedman3. The
input dimension for each of these datasets was four. For these datasets, the training set
consisted of 200 randomly generated examples while the test set had 1000 noise-free ex-
amples and the experiment was repeated 100 times for different training set examples. We
report the normalized mean squared error (NMSE) (normalized with respect to the output
variance) on the test set. The third dataset used was the Boston housing dataset obtained
from the StatLib archive'. This dataset comprised of 506 examples with 13 variables. The
data was split into 481/25 training/testing splits randomly and the partitioning was re-
peated 100 times independently. The fourth dataset used was the Abalone dataset?.
After mapping the gender encoding (male/female/infant) into {(1,0,0),(0,1,0),(0,0,1)},
the ten-dimensional data was split into 3000/1177 training/testing splits randomly. The
partitioning was repeated ten times independently. The exact partitions for the last two
datasets were obtained from http://www.gatsby.ucl.ac.uk/ chuwei/regression.html. For
all the datasets, Gaussian kernel was used and the width parameter was chosen by using
five-fold cross-validation. For the OLS and RF'S algorithms, the readily available Matlab
functions® were used with the default settings. We adhered to the guidelines provided in

(Tipping and Faul, 2003) for FRVM.

The results obtained using the four algorithms (FGCV - Algorithm 1, FRVM -
Algorithm 2, RFS - Algorithm 3 and OLS - Algorithm 4) on these datasets are presented
in Figures 1-4. From these box plots, it is clear that the FGCV algorithm generalizes well
compared to the other algorithms. However, this happens at the expense of a moderate
increase in the number of basis vectors as compared to the FRVM algorithm. It is worth

noting that the sparseness of the solution obtained from the FGCV algorithm is still very

Yhttp://lib.stat.cmu. edu/datasets /boston
2ftp://ftp.ics.uci.edu/pub/machine-learning-databases/abalone/
3hittp:/ /www.anc.ed.ac.uk/ "mjo/software /rbf2. zip

14



T
0.7+ *
0.6
L |
% 0.5 i +
= —
Z 041 + i i ‘
i
0.3 |
[ ] [ |
0.2 EEEEEE T
0.1 Il 1 L L
1 2 3 4
Algorithm
T
2
S80F
S
= it ‘i
260 +
@ I |
o i i
S 40| T
- A
-}
= - —
z = | !
R — . —L
0 Il 1 1 L
1 2 3 4

Algorithm

Figure 1: Results on the Friedman2 dataset

Table 1: Statistical significance (Wilcoxon signed rank) test results on the Friedman2
dataset

FGCV | FRVM | RFS
OLS A7 9.4e-5 | .119
RFS 013 .097
FRVM | 1.3e-12

good. On the Abalone dataset, the FRVM algorithm is slightly better than the FGCV

algorithm on the average.

Box plots in Figures 1-4 show that the distribution of MSE is non-symmetric.
Therefore, we used Wilcoxon matched-pair signed rank tests to compare the four al-
gorithms and the results are given in Tables 1-4. Each box in the table compares an
algorithm in the column to an algorithm in the row. The null hypothesis is that the
two medians of the test error are same, while the alternate hypothesis is that they are

different. The p-value of this hypothesis test is given in the box.

We remark that the following comparisons are made with respect to the significance

level of 0.05. If a p-value is smaller than 0.05, then the algorithm in the column (row)

15



0351
03

@

Zoas
02

0.151-

+

+

=

T
-t
i
|
i
Il
3

¥

=

L
2

Algorithm

+
+

+

+

=

=
=

@

|

[
R

I

3

Algorithm

4

Figure 2: Results on the Friedman3 dataset

Table 2: Statistical significance (Wilcoxon signed rank) test results on the Friedman3

dataset

FGCV | FRVM | RFS
OLS | 4.6e-9 | .002 | .054
RFS | 2.1e-6 | .139
FRVM | 3.0e-6

is statistically superior to the algorithm in the row (column). Table 1 suggests that
for the Friedman2 dataset, the FGCV algorithm is statistically superior to the FRVM
and RFS algorithms. On the other hand, it is not significantly different from the OLS
algorithm. The FGCV algorithm is statistically superior to all the other algorithms on
the Friedman3 and the Boston housing datasets as is evident from Tables 2 and 3. For
the Abalone dataset, the results in Table 4 show that the performances of the FGCV
and the FRVM algorithms are not significantly different. However, these algorithms are

statistically superior to the OLS and RFS algorithms.

We also compared the FGCV and FRVM algorithms with the Gaussian process

regression (GPR) algorithm on the Boston housing and Abalone datasets (results reported

16



‘ T ‘
a0+ + T
+ +
+ b
30 i % +
4 ES —
2 i -1 [
201 —* | i |
|
wf o] — — —
L L L L
1 2 3 4
Algorithm
+
14
£ 150
g
> T
%]
g | —
E 100 ¥ ‘ —
s o ——
2.l = — }:‘
| ! i
E 4 —_— ‘ !
L L L 1
1 2 3 4

Algorithm

Figure 3: Results on the Boston housing dataset

Table 3: Statistical significance (Wilcoxon signed rank) test results on the Boston housing
dataset

FGCV | FRVM | RFS
OLS | 2.6e-5 | .096 | .156
RFS .003 .647
FRVM | 2.0e-5

in http://www.gatsby.ucl.ac.uk/ chuwei/regression.html). These comparisons were also
done using Wilcoxon matched-pair signed-rank test with significance level of .05. For the
Boston housing dataset, the performance comparison gave p-values of 3.4e — 10 (FGCV)
and 1.22e — 12 (FRVM). This shows that the GPR algorithm (with all basis vectors)
is statistically superior to the FRVM algorithm. A similar comparison on the Abalone
dataset resulted in the p-values of .012 (FGCV) and .095 (FRVM). On this dataset, the
GPR algorithm is statistically superior to the FGCV algorithm while it is not statistically

superior to the FRVM algorithm.

17



1 2 3 4
Algorithm
80 T T
© 701
2
3
S 60
2 ¥
»
2 50 I
o |
230 1
5
- —

Algorithm

Figure 4: Results on the Abalone dataset

Table 4: Statistical significance (Wilcoxon signed rank) test results on the Abalone dataset

FGCV | FRVM | RFS
OLS | 9.8e-4 | 9.8e-4 | .403
RFS 023 .005

FRVM | .462

5 Conclusion

In this paper we proposed a fast incremental GCV algorithm for designing sparse re-
gression models. This algorithm is very efficient and constructs the model sequentially
starting from an empty model. In each iteration, it adds or deletes or re-estimates the
basis vectors depending on the maximum reduction in the GCV error. The experimen-
tal results suggest that, considering the requirements of sparseness, good generalization
performance and computational complexity, the FGCV algorithm is competitive. Clearly,
this algorithm is an excellent alternative to the FRVM algorithm of Tipping and Faul
(2003).

We mainly compared our approach against OLS, RFS and FRVM since they were

18



quite directly related to our problem formulation. We also compared against GPR. We did
not compare against the other sparse incremental GP algorithms mentioned in (Csato and
Opper, 2002; Lawrence et al., 2003; Seeger et al., 2003) and (Smola and Bartlett, 2000)
since we felt that those methods will be slightly inferior to GPR. But, those comparisons
could be interesting, especially if we compare at the same levels of sparsity. This will be
taken up in future work. It will also be interesting to extend the proposed algorithm to

classification problems.

References

Bishop, C. (1995). Neural Networks for Pattern Recognition. Clarenden Press, Oxford.

Chen, S., Cowan, C. F. N., and Grant, P. M. (1991). Orthogonal least squares learning

for radial basis function networks. IEEE Trans on Neural Networks, 2, 302—-309.

Cortes, C., and Vapnik, V. N. (1995). Support vector networks. Machine Learning, 20,
273-297.

Csato, L., and Opper, M. (2002). Sparse on-line Gaussian processes. Neural Computation,

1/(3), 641-668.

Denison, D., and George, E. (2000). Bayesian prediction using adaptive ridge estimators.

Tech. Report. See http://stats.ma.ic.ac.uk/dgtd/public_html/Papers/grr.ps.

Friedman, J. H. (1991). Multivariate adaptive regression splines. Annals of Statistics, 19,
1-141.

Golub, G. H., Heath, M., and Wahba, G. (1979). Generalized cross-validation as a method

for choosing a good ridge parameter. Technometrics, 21, 215-223.

Hoerl, A. E., and Kennard, R. W. (1970). Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics, 12, 55-67.

19



Lawrence, N., Seeger, M., and Herbrich, R. (2003). Fast sparse gaussian process methods:

The informative vector machine. In NIPS, pp. 609-616.

Orr, M. J. L. (1995a). Local smoothing of radial basis function networks. In Proceedings

of International Symposium On Neural Networks Hsinchu, Taiwan.

Orr, M. J. L. (1995b). Regularization in the selection of radial basis function centres.

Neural Computation, 7(3), 606-623.

Seeger, M., Williams, C., and Lawrence, N. D. (2003). Fast forward selection to speed up
sparse Gaussian process regression. In Bishop, C. M., and Frey, B. J. (Eds.), Pro-
ceedings of the Ninth International Workshop on Artificial Intelligence and Statistics

San Francisco. Morgan Kaufmann.

Smola, A. J., and Bartlett, P. L. (2000). Sparse greedy Gaussian process regression. In
NIPS, pp. 619-625.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions (with

discussion). Journal of Royal Statistical Society (series-B), 36, 111-147.

Sundararajan, S., and Keerthi, S. S. (2001). Predictive approaches for choosing hyperpa-

rameters in Gaussian processes. Neural Computation, 138(5), 1103-1118.

Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal

of Machine Learning Research, 1, 211-244.

Tipping, M. E., and Faul, A. (2003). Fast marginal likelihood maximisation for sparse
Bayesian models. In Bishop, C. M., and Frey, B. J. (Eds.), Proceedings of the
Ninth International Workshop on Artificial Intelligence and Statistics San Francisco.

Morgan Kaufmann.

20



Appendices
Appendix I. a Estimation using GCV approach

Using equations (9)-(13), the numerator of the derivative of GCV error with respect to
a; can be shown to take the form, g; + hja; where g; = (§;b; — a;e;)v; — (¢ — bje;),
h,j = ((Sjbj — CL]'EJ')O'2 and

v = $/P;, (22)

It is easy to verify that the denominator of the derivative of GCV error with respect to
o is non-negative and noting that a; > 0, the solution can be obtained directly using
g; and h; or using the sign information of the gradient. More specifically, the optimal

solution o (lying in the interval [0, 00)) is obtained from one of the following possibilities:
(1) If {g;,hj} < 0, then oj = o0.
(2) If {g;,h;} > 0, then, a; = 0.
(3) If g; < 0,h; > 0, then unique solution exists and is given by a; = —%.

(4) If g; > 0,h; < 0, then unique solution exists and is given by a;; = —,’;—;. But,
in this case the derivative changes from positive value to negative value while crossing
zero. Therefore, it is possible to have solution either at 0 or at co. In this case, we can

evaluate the function value at 0 and oo and choose the right one.

5) When h; = 0, the solution is dependent on the sign of g,.
j j

Appendix II. Selection of the First Basis Vector

Two quantities that are of interest in finding the GCV error for all the basis vectors are
given by:

a2 — 2b, A, +
A7,

t"Pit = (23)

21



3 .
OL b, + apo?

tr(Pp) = (24)
where P,, = I — %507’_’2‘1#”, S,, = w and A,, = S,,. Then, the optimal
solution ¢, can be obtained, as described in appendix I, from the coefficients (9)-(13)
using P; = I. After substituting the optimal solution , into (23) and (24), we can
evaluate the GCV error for a given m. Finally, the basis vector j is selected as the index

for which the GCV error is minimum.

Appendix III. Initialization

Once the first basis vector,¢;, is selected based on the GCV error with the optimal ay,

initialization of all the relevant quantities are done as follows:

o = 79, — L2 0) (29

T (26)

un = L2 Z;W)Q s (%"SW)A(; 1 9n)” (27)

A ¢m_2<tT¢j)A(<{>? u) (tT¢j)(¢?Aqgm)<¢? %;) (28)
9 :

b N - ‘ﬁfﬂ' (29)

g = tTt — (1) + (t79,)(¢; &) (30)

A, A?

22



where A; = ¢, ¢; + a;o?. Further, w = %, St = [Z—j] and ® = [¢,]. Note that

S~ is a single element matrix when there is a single basis vector.

Appendix IV. Computing «o;

Here, we find the set of coefficients required to compute the optimal «; from the set of

quantities defined in (16) - (21). All the results given below are obtained using the rank

one update relationship between P and P;. With o; = aj‘;fj’;j and ¢; = fég—zft%, we
have
a; = ¢ + Z—J](% + 2@@?;2) (31)
b = oj(gj% + ) (32)
G = 60 (3)
where A; = 9; + aj0? and ¢; = (a]”#)zAi Further,
9;i = (0;b; — aje;); — (8;¢; — bje;) (34)
hj = (0;b; — aje;)o” (35)
where §; = v + —Zﬁ For 7 not in the relevance vector set, we do not have to find the

above set of quantities with P; as A; = co and P = P;. Therefore, the quantities in
equations (9)-(13) required to compute the optimal a; can be found in a much simpler
way. Next, the optimal solution «; is obtained using g; and h; as mentioned earlier. (See

the discussion in the paragraph below equation (22).)

23



Appendix V. Re-estimation and deletion of a basis vector

Recall that the matrix P = I — (I)S;i;(}ﬁ Then, with o2 fixed (at least for the iter-
ation under consideration or for few iterations), change in «; (which is essentially the
re-estimation process itself) results in change in S~'. Let s; denote the j column and
s;; denote the j* diagonal element of S™'. Note that the computations are similar to the
one used for re-estimation except for the coefficient K. In the case of deletion K; = 57
and in the case of re-estimation K; = (s;; + (&; — «;)™')~*. Here, &; denotes the new

optimal solution. The final set of computations required for the re-estimation or deletion

of basis vectors is given below. Defining p;, = sz@Tqu, we have

T'm = Tm + Kjwjpjm (36)
K
Ym = Ym T 0_27p3m (37)

Defining xjm = s, AS™!®" ¢, we have

tm =t + =L i (P + i) (53)
where 7; = 27s7®"®s;. Defining x; = w’As;, we have
b = &n + Kjpjms; + Kjwi(Xjm + pjmT;) (39)
v =0+ T (40)
¢ = q + K;o"w;(2k; + Tjw)) (41)

Finally, w = w — K;w;s; and S™' = S™' — Kjs;s]. Though the set of equations given

above are common for re-estimation and deletion procedures, the j* row and/or column

24



is to be removed from S™!, w and @ after making the necessary updates in the deletion

procedure.

Appendix VI. Adding a new basis vector

On adding the new basis vector j, the dimension of @ changes and a new finite «; gets

defined. Definingl; = 557'®"¢, and e; = ¢, — ®L; and pjm = €] P, we get

Tm = Tm — Wjljm (42)
= Y — L2 43
TYm = Tm 0_2 :u’]m ( )
where s;; = ﬁ and w; = Z4r;. Next, defining vjm, = pjm — I]TAS_1<I>T¢m, we
o2 T
have
S..
gm = fm - ﬁﬂjm(&j _wjuj) — WjilVjim (44)
Uy, = Uy + ﬂum(ﬂuu-m— 2Wim) (45)
0,2 J 0,2 Wi aal} J
Next,
_ Sjj
v =0 - oy (46)
¢ = q + wj(wju; — 2;) (47)
Also,
S—l _ (Sl+$j;1j1? _Sjjlj) (48)
55515 Sjj
W — wjlj
Finally, w = and ® = [® ¢,].
wj

25



