
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. X, JANUARY XXXX 1

A Fast Tracking Algorithm for Generalized
LARS/LASSO

S Sathiya Keerthi and Shirish Shevade

Abstract— This paper gives an efficient algorithm for tracking
the solution curve of sparse logistic regression with respect to
the

���
regularization parameter. The algorithm is based on ap-

proximating the logistic regression loss by a piecewise quadratic
function, using Rosset and Zhu’s path tracking algorithm on the
approximate problem, and then applying a correction to get to
the true path. Application of the algorithm to text classification
and sparse kernel logistic regression shows that the algorithm is
efficient.

Index Terms— Sparse logistic regression, Generalized LARS,
LASSO

I. INTRODUCTION

Consider a binary classification problem with parameter
vector �����	� and training set, 
���������������������� where:  �!�"�#�
is the input vector of the $ -th training example and ��� is the
corresponding target taking values from 
�%&�('	%)� . Using the
linear model * ��+ �-,� � ��%.�
and the probability function/ �����10  ��� + %%325476�8�9 �;:(� + ��� * � �=<7�
we get the training problem corresponding to >@? -regularized
logistic regression as

ACBEDFHGJI ����� +LK < � ,NM �O2 �P
������Q ��:��=� �SR��

where Q �S:J� +UT�V&W ��%X2"4 6 8 � is the logistic regression loss func-
tion and M is a symmetric positive semidefinite regularization
matrix.

The logistic regression model given above has been pop-
ularly used (usually with M +ZY where Y is the identity
matrix) in applications such as text categorization [4] and
gene selection for microarray data [11, 12]. Kernel logistic
regression (KLR) [14], which is a powerful tool for building
nonlinear classifiers, also fits into our model. In KLR, we
have: [ +]\ , ^�`_ +ba �Sc.����cd_(� , and M �`_ +ea �Sc.���fcd_�� , wherec�� , $ + %&�(gdg(gh� \ � are the original training input vectors, anda is the kernel function; the effect of the bias term can be
brought about by adding a constant to the kernel function. In
all these mentioned applications, the number of coefficients in

S Sathiya Keerthi is with Yahoo! Research Labs, 210 S.DeLacey Avenue,
Pasadena, CA-91105, USA. Email: selvarak@yahoo-inc.com

Shirish Shevade is with the Department of Computer Science
and Automation, Indian Institute of Science, Bangalore, India. Email:
shirish@csa.iisc.ernet.in

� 1 is large and also, a small fraction of them are sufficient
for achieving the best possible classification accuracy. Sparse
logistic regression is a modified model that is very effective
in the selection of a relevant subset of coefficients.2 The
modification is done by including the > � regularizer:ACB�DF G)i ����� + G.I �����-2kjNl��3l�� �Sm��
This formulation which uses, both > ? and > � regularizers,
is called as the Elastic Net model [15]; as shown in [15],
sometimes there is value in keeping both regularizers. The
well-known LASSO model [13,4,11,12] is a special case of
(4) and corresponds to setting K +on . Throughout this paper
we will consider the model in (4) and take K to be some fixed
value. Our focus is on the tracking of the solution of (4) with
respect to j . When j is large3 � +pn is the minimizer ofG)i , which corresponds to the case of all coefficients being
excluded. As j is decreased, more and more coefficients take
positive values. When jrq n , the solution of (4) approaches
the minimizer of G I , where all � _ are typically non-zero. Thusj offers a very useful and controlled way of obtaining sparse
solutions.

Recently, some fast algorithms have been given for solving
(4). Genkin et al [4] and Shevade and Keerthi [12] have given
a cyclic coordinate descent method that is quite efficient. Roth
[11] gives an interesting variation of the IRLS (Iteratively
Reweighted Least Squares) method. These algorithms are set-
up to solve (4) for a given value of j . When (4) is to be
solved for several values of j (say, during the determination
of j by cross validation) these algorithms efficiently obtain the
solutions by seeding, i.e., the � obtained at one j is used to
start-off the solution at the next nearby value of j . Even then,
they are not efficient enough if a fine tracking of solutions
with respect to j is needed.

There are reasons why it is useful to have an efficient
algorithm that finely tracks the solution of (4) as a function
of j .

1) Together with cross validation such an algorithm can be
used to locate the best value of j precisely.

1We will assume that the bias term of the classifier is built into s and
that, a value of 1 is put in the corresponding component of each t7u . We will
also assume that each of the other coefficients is also suitably normalized,
say to have unit variance; this is usually needed for the regularizer to work
effectively.

2We are not aware of previous works which use the v � regularizer for
sparse KLR. This method provides an interesting and useful alternative to
Zou and Hastie’s Import Vector Machine [14].

3It is easy to see that, if wyxbz|{f}1~����(����h�������h� � , then the directional

derivatives of the w���s^� � term at s5� � dominate and so s�� � is the
minimizer of �1� .



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. X, JANUARY XXXX 2

2) We can get a good understanding of the coefficients and
their effects on the solution.

3) Many applications place a constraint on the number of
non-zero coefficients. For example, in text categorization
there may be a limit on the number of features that can
be used in the final classifier for fast online processing.
In KLR there may be a need to minimize the number of
basis functions that define the classifier [14]. Tracking
offers a direct way of enforcing such constraints.

Thus, if it is possible to derive an efficient tracking algorithm
that is nearly as efficient as the algorithms mentioned earlier,
it can be very useful. Developing such a tracking algorithm is
the main theme of this paper.

For least squares problems, tracking solutions with respect
to the j parameter has recently become very popular. For the
LASSO model, Osborne et al [7] and Efron et al [2] showed
that the solution path in � space is piecewise linear and gave
efficient algorithms for tracking this path. Efron et al [2] also
derived the LARS algorithm which nearly yields the same path
as the LASSO algorithm, but is much simpler. Rosset and Zhu
[9] described a whole range of problems for which the path
is piecewise linear. Keerthi [5] used their ideas to derive an
effective algorithm for feature selection with linear SVMs.

For logistic regression, the literature on tracking of the
solution path with respect to j is very limited. Madigan and
Ridgeway [6] provided some rudimentary ideas for tracking.
Rosset [10] gave a simple algorithm for tracking by starting
with a large j at which � + n is the solution, varyingj in � decrements, and using the � at one j to seed the
solution at j@' � . This method is slow and inadequate for large
problems. Bach et al [1] consider predictor-corrector methods
(for a related kernel problem); these methods require repeated
factorizations of the Hessian matrix, and so they are expensive
for large number of coefficients.

In this paper we derive an efficient algorithm for tracking
the solution of (4) with respect to j by first making good
use of Rosset and Zhu’s ideas [9] to track an approximate
path and then using a pseudo-Newton correction process to
get to the solution of (4); in the next two sections we give full
details of these two key components of our method. In section
4 we demonstrate the efficiency of the method by making
comparisons with the BBR software of Genkin et al [4].

II. APPROXIMATE TRACKING

We first approximate the logistic regression loss function Qin (3) by a suitable
�
Q that is non-negative, convex, differentiable

and, most importantly, piecewise quadratic. This approxima-
tion is independent of the problem being solved and has to
be done just once. With such an

�
Q available, our method for

a given problem comprises two main steps. In the first step,
we track the solution path corresponding to

�
Q by using the

ideas of Rosset and Zhu [9]. In the second step we apply an
efficient pseudo-Newton process to go from the approximate
path derived in the first step to the true path corresponding to

Q . In this section we take up the details associated with the
first step.

The approximate loss function
�
Q can be formed by placing

knot points on the : axis and choosing
�
Q
� �

to be a constant

in each of the intervals defined by the knot points. A look at
Figure 1 will help appreciate the approximation ideas that we
give below. Since Q

� �
is symmetric about : +yn , it is a good

idea to choose the knot points to be placed symmetrically
about : + n . Thus we can choose positive values, � ��� � ?��gdg(g � �	� and choose the knot points to be 
7'
� � � ��E�N��� 
� � � ������ ,
forming �=< a 2 %.� intervals in the : axis. We can also choose� a 2 %�� second derivative values, 
�� � � ���� I and define

�
Q
� �

as:�
Q
� � ��:)� + � I , if '
� ��� : � � � ; and, for $��b% , �

Q
� � �S:J� + � � ,

if '
� ���N��� :��e'
� � or � � �L: � � ����� .4 Since
�
Q needs to

be convex we require all � � to be non-negative. Integrating�
Q
� �

twice we can get
�
Q
�

and
�
Q . This leads to two integration

constants which form additional variables. To suit the logistic
regression loss function, we enforce the following additional
constraints: � � + n ;

�
Q
� � n � + ' n g � ;

�
Q
� ��� � + n ;

�
Q
� ��'�� � +'	% ; and

�
Q ��� � + n (this helps ensure that

�
Q is a non-negative

function). These constraints imply that, for :r� ��'�� �d'
� ��� ,�
Q
� � ��:)� + n ,

�
Q
� ��:)� + '	% and, for : ��� � � � �k� , �

Q
� � �S:)� + n ,�

Q
� ��:)� + n . Even after the above mentioned constraints are

enforced, there is still freedom left in choosing the 
� ��� and
�� ��� . Since first derivatives play a very important role in path
tracking algorithms, it is a good idea to resolve this freedom
by making

�
Q
�

as close as possible to Q
�
, say, by minimizing

the integral of the square of the difference between the two
functions. We stress again that this optimization problem is
independent of the classification problem being solved. It just
needs to be solved once; then the optimized

�
Q can be used for

all problems.
The value of a which defines the approximation also needs

to be chosen. Although choosing a to be big will yield
excellent approximations, it leads to inefficiencies in path
tracking as we will point out later in this section. We have
found aC+ < to be quite sufficient for all problems that we have
tried. The corresponding parameters and the approximations
that we have derived are given in Figure 1.

The approximate loss function
�
Q can be compactly written

as
�
Q �S:)� + �? ����:)��: ? 2"!J�S:)��:#2$#)�S:)� where ����:)� , !J�S:)� and #)��:)�

are appropriately defined piecewise constant functions of :
(and so their derivatives can be taken to be zero at non-
knot points). ����:)� is same as

�
Q
� �

and it plays an important
role in the tracking algorithm. !J�S:J� plays a role in gradient
calculations. For starting the algorithm we use the fact that
!J� n � + ' n g%� , which comes from the constraint,

�
Q
� � n � + ' n g �

that we imposed earlier; as we will see, for the rest of
the algorithm, the continuity of gradients allows us to do
computations without using the values of !J��:)� at other values
of : . #)��:)� only leads to an additive constant in the objective
function, and so plays no role.

We solve ACBED F �G i ����� + �G I �S��� 2 j�lh�3l � where
�G I �S��� +& ? � , M �r2(' ������ �

Q ��:(����g The gradient,
�) and the Hessian,

�*
of

�G I are given by
�) ���N� + K M � 2 ' � � ���S: � ��: � 2+!J�S: � � � � �  � ,�* �S��� + K M 2 ' � ����: � �� �  ,� . It is useful to note the following:

at � + n we have : + n and so
�) � n � + ',' � n g%�J� �  � ; and, the

change, - �) corresponding to a change -.� in � , assuming that
no crossing of knot points occur during the change, is given
by - �) + K M -.�O2$' � ����:(���.-.:��S���=^� + �* -.��g

4For preciseness we take /10 2 � ��3 .



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. X, JANUARY XXXX 3

−5 0 5
0

1

2

3

4

5

r

Loss

−5 0 5
−1

−0.8

−0.6

−0.4

−0.2

0

r

Derivative

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

r

Second Derivative

Fig. 1. Approximate loss function defined by the parameters: �@��� , / � ����� ��� , /
	���� , ���� � � ����� ,  � � � � � ������� and �	!� � . �� , ���� and
���� �

are shown
as broken lines while

�
,
���

and
��� �

are shown as continuous lines.

We now apply the tracking algorithm of Rosset and Zhu
[9]. Suppose we are working with some fixed j and � is
the solution. Let

� + 
������ _��+ n � and
���

be the
complement set of

�
. Let us use the following notations

for a vector � : �
 is the vector of size 0 � 0 containing �J_ ,
� � � ; and, when �._!�+ n#" � , $ W D �%� � is the vector containing
the signs of � . For a symmetric matrix & , &' will denote
the 0 � 0)( 0 � 0 matrix obtained by keeping only the rows and
columns of & corresponding to

�
. Optimality requires that�)  2 j�$ W D ���  � + n and 0 �) _ 0 � j " �O� � � . The first set of

equalities define a piecewise linear path for � . Tracking them
(typically by decreasing j ) yields a part of the full solution
path. This tracking can be done until one of the following
occurs: (a) some � � � �

gives 0 �) _�0 + j , which means that
coefficient corresponding to � has to leave

� �
and enter

�
;

(b) some �O� � has � _ + n , which means that � has to leave�
and go to

� �
; and, (c) for some training example index$ , :�� hits a knot point, which means that we have to switch�

Q ��:���� from one quadratic model to another. The algorithm
starts from � +Ln and repeatedly applies the above ideas to
track the entire path. The full algorithm is given below. It is
a revised version of Algorithm 1 of [9] with some changes
made to show calculations concerning j ,

�) and : explicitly.
It is worth mentioning here that the computational complexity
of this algorithm is similar to that of Algorithm 1 of [9] and
is comparable to the training cost associated with finding the
solution just at a few selected values of j [2].

Algorithm for tracking the approximate path.

1) Initialize: � + n , : + n , � �L+ ��� n � " $ , �) +' ' � n g%�J� �  � , � + *
+�W A *-,�_ 0 �) _ 0 , j + A *.,�_ 0 �) _ 0 ,
-.�) + ' �* 6 � $ W D � �)  3� , -.�) 0/ + n , -.:(� + ��� -.� ,  � " $ ,
- �) + �* -.� .

2) While ( j�1 n )

a) 2 �|+ ACB�D 
3241 n �^0 �) _ 252 - �) _ 0 + j '62^�7� � ��� �
b) 2 ? + ACB�D 
3241 n �)� _ 282 -.� _ + n �9� � � �

c) 2;: + A B�D 
32'1 n ��:(��282 -.:(� hits a knot point for
some $f�

d) 2 + A B�D 
32��.�<2�?)�=2;:)� , j?> j '52 , �5> ��2@2 -.� ,:A>p:|282 -.: , �) > �) 282 - �)
e) If 2 + 2 � then add coefficient attaining equality at

2 to
�

.
f) If 2 + 27? then remove coefficient attaining n at 2

from
�

.
g) If 2 + 2 : for example $�B , set � �DC to the value of

� �S: �EC � of the new knot zone.
h) Set -.�  Z+ ' �* 6 � $ W D � �)  � , -.�  / + n , -.: � +��� -.� , ^� " $ , - �) + �* -.�

�*
and its updatings using the ��� are not mentioned in

the algorithm, but they should be obvious. Since
�* 6 � is

required in steps (1) and (2h), it is useful to maintain and
update a Cholesky decomposition of

�*  . Changes caused
by steps 2(e), 2(f) and 2(g) lead to changes in

�*  ; the
corresponding changes to the Cholesky decomposition can be
done by standard updating methods. If the number of knot
points, �=< a 25%.� is large, then the algorithm will pass through
step 2(c) many many times, causing the algorithm to become
expensive. The LARS version of the algorithm corresponds
to leaving out steps 2(b) and 2(f). In this algorithm, coef-
ficients entering

�
never leave it; thus, it is much simpler

to implement. Practical experience shows that the LASSO
solutions and LARS algorithms produce nearly the same paths.
For the rest of the paper we will only consider and use
the path obtained from the LARS algorithm. If we assume
that the “knot crossing” events occur FC� \ � times, then every
iteration of the above algorithm needs FC�S[ \ � effort (for steps
2(a) through 2(d)) and FC�S[ ? � effort for step 2(h). Hence,
FC��[e2 \ � iterations of the algorithm will require FC��[ \ ? �
effort if [G1 \ .



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. X, JANUARY XXXX 4

III. PSEUDO-NEWTON CORRECTION PROCESS

The path described in the previous section is already a good
approximation of the true path corresponding to logistic re-
gression. But, the quadratic approximation of the loss function
is not interpretable as negative log-likelihood. So, it is a good
idea to get more closely to the true path, which is done by
applying a correction process. Let j�� and j�� be the j values
at two consecutive runs of steps 2(a)-2(h). In the interval,�=j � �fj � � let

�
denote the set of non-zero coefficients. For most

applications it is usually sufficient to obtain a precise solution
just at the midpoint, j + ��j � 2 j � � � < .5 Let us now describe the
correction process. At the given j , we first use the approximate
path to get the initial solution, � I . Let ��� + $ W D � �)  �S� I ��� . For
the LARS version we solve the nonlinear system,

)  + j��� � �7�
where )  is the gradient of GJI in (3) and is given by

)  + K M' �  ' P
�

� ,
	 ��' :����%32 � ,
	 ��' :(��� � �   N� �����
Applying Newton’s method on (6) is expensive since that will
involve the repeated determination of the Hessian of G&I and
its inverse. Instead, we employ a fixed matrix, *  that is an
approximation of the Hessian, and do the following pseudo-
Newton iterations:

��� ��� + � � ' * 6 � )  �e� � n ���&�
The cheapest choice for *  is

�*  , the Hessian of
�G I which

(together with its Cholesky factorization) is available as a by-
product of the approximate tracking algorithm of the previous
section. Using the tolerance, � + % n 6 : , we terminate the
iterations in (7) when%0 � 0 l )  �'�j��� #l�� � j �����
We have also found another construction for *  that shows
much better convergence properties on (7), but requires some
extra work. Let us now describe the details of this construction.
The exact Hessian of GJI with respect to �  is given by*  + K M  2 ' ��� �S:(����  ��= , N� where � �S:(��� + ������� 6 8 9��� � � ������� 6�8�9 ����� .
While doing the approximate tracking algorithm of section 2,
it is usually the case that, in the initial stage when the key
coefficients get picked up, the :.� go through a lot of change.
But, after the important coefficients get picked up, the :J� (and
therefore, the � ��:.��� ) undergo only small changes. With this in
mind, we can think of fixing the � ��:.��� values at some stage
of the algorithm and using it to define *  . For a given choice
of � �"� � let us define

*  + K M  2 P
� � �=) N��^,  N� �����

In the beginning of the approximate tracking algorithm (step
1) we set � � + n g <�� " $ and compute * (by (9)) and also

5If precise solutions are needed at other values of w in that interval, then
the correction process described below can be repeated at those values. If
a full path is needed, we can first get the precise solutions at a few points
in the interval using the correction process and then apply an interpolation
technique.

its factorization (this is just a square root operation since
there is only one coefficient). At each pass through step
2(e), *  is updated to one higher dimension using the � � .
Whenever the correction process is required at some j , say
at the mid-point of an interval, �=j����1j �1� , we use the current
approximation *  and apply the pseudo-Newton iterations in
(7). We allow a maximum of �"!$# � iterations where �"!$# � +A *., 
7% n&n �.0 � 0 � % n&n � . If the iterations do not converge within
those many iterations, that is probably an indication that the
� � that have been used are outdated; so we compute them
fresh as � � + � �S:(��� , using the current values of :.� , recompute
*  using (9) and also do the Cholesky factorization of *

from scratch. Such a process works quite efficiently. Non-
convergence of (7) within �"!$# � iterations (which prompts the
complete re-determination of * and its factorization) takes
place only occasionally and so the whole process is efficient.

For the LASSO version, we also need to watch if, during the
application of (7), a LASSO optimality condition is violated,
e.g., a � �� , $O� �

changes sign. Although such occurrences
are rare, suitable additional steps need to be added to ensure
LASSO optimality. Our future implementation will include
these steps.

IV. NUMERICAL EXPERIMENTS

To give an idea of the speed of our tracking method, we
compare it against the BBR software of Genkin et al [4].
(In the future we intend to do a comparison also with the
GenLASSO code of [11].) BBR employs a cyclic coordinate
descent method and has been shown to be robust and efficient
on large text classification problems. Because BBR does
not allow a mix of > � and > ? regularizers, we do all the
experiments for the case, K + n . We use four datasets. The first
two, Fbis-4 ( \ + <)m%�7R , [ + < n&n&n ) and Ohscal-1 ( \ + %7%&%��7< ,[ + %&%dm&�1� ) are taken from the text categorization domain [5]
where the number of features is very large. For these datasets
linear classifiers work very well and so we employ the sparse
logistic regression models directly on the input variables. The
next two datasets, Waveform and Splice [8], require nonlinear
classification and so we employ KLR, with the kernel function
given by a �ScJ���fch_�� + � ,
	 ��'('!ldc�� ' cd_�l ? � . For Waveform,\�+ m n7n , dimension of c is 21, and ' + n g n �7<1� . For Splice,\ + % n&n&n , dimension of c is 7,6 and ' + n g < . (In each case,
the chosen ' value corresponds roughly to the value at which
the generalization error is best.) For each dataset we chose a
value of j at which the 10-fold cross validation error rate is
quite good and compared the CPU times required by the two
methods to get the solution at this j .

Because BBR and our method use different stopping cri-
teria, we proceed as follows for doing the comparison. BBR
terminates when the relative change in the : values over one
cycle of coordinate descent steps is smaller than a tolerance,
eps. Since the BBR software allows the specification of a
value of eps, we varied eps over a range of values and
chose that value at which the solution of BBR satisfies our
criterion in (8). The CPU time needed by BBR for this eps

6Although the number of original input variables of this dataset is 60, we
only used variables 28-34 since they are the only relevant ones.



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. X, JANUARY XXXX 5

0 20 40 60 80 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T
es

t e
rr

or
 r

at
e

No of features

Waveform

0 20 40 60 80 100
0

10

20

30

40

50

60

70

La
m

bd
a

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

T
es

t e
rr

or
 r

at
e

No of features

Splice

0 200 400 600 800 1000
0

10

20

30

40

50

La
m

bd
a

Fig. 2. Variation of test error rate (continuous line) and w (dotted line) as a function of the number of features (basis functions) chosen, for the Waveform
and Splice datasets.

TABLE I

COMPARISON OF THE EFFICIENCY OF OUR METHOD AGAINST BBR.

T APPROX AND T CORR ARE THE TIMES REQUIRED BY OUR METHOD FOR

THE APPROXIMATE TRACKING AND THE CORRECTION PROCESS;

T TOTAL=T APPROX+T CORR. T BBR IS THE TIME NEEDED BY BBR.

ALL TIMES ARE IN SECONDS ON A 2.5 GHZ MACHINE.

Our Method BBR
Dataset w T Approx T Corr T Total T BBR
Fbis-4 3.5 20.0 5.5 25.5 131

Ohscal-1 4.0 141.1 18.1 159.2 88
Waveform 5.0 2.9 0.7 3.6 4642

Splice 1.0 39.3 21.4 60.7 78685

was compared to the CPU time needed by our method. Table
1 gives the results. Clearly, our method is quite efficient. BBR
is efficient for text classification, but it seems to be inefficient
for KLR, possibly due to the ill-conditioning of the Hessian
caused by the closeness of the training examples. It should be
noted that, while BBR was run to obtain the solution at the
specified j only, our method tracks the solution till that j ;
more specifically, as mentioned at the beginning of section 3,
it gets the solution at the midpoint of each interval,7 �=j � �fj � �
mentioned there, until the specified j value is reached.

Figure 2 gives plots of j and test error rate as functions
of the number of examples chosen, for Waveform (3600 test
examples) and Splice (2175 test examples). For the Waveform
dataset, a small fraction of the kernel basis functions (about
one-tenth) seems to be sufficient for obtaining the best gen-
eralization, while the Splice dataset requires a large fraction
of the basis functions. The sparse logistic regression approach
(combined with cross validation) can be used to infer these
effectively. It is useful to note from the plots for Waveform
in Figure 2 that, at the point where test error rate stabilizes

7For each of the datasets there are hundreds of such intervals.

nearly to a flat curve, j is still varying sharply. So it is difficult
to determine, beforehand, the j value at which the error rate
stabilizes. Methods such as BBR will have to try several values
of j in order to stop at the right point, whereas, in our tracking
method, determining this point is easily done.

V. CONCLUSION

In this paper we proposed an algorithm for tracking the
solution curve of sparse logistic regression. The algorithm is
based on approximating the logistic regression loss by a piece-
wise quadratic function, tracking the piecewise linear solution
curve corresponding to it, and then applying a correction step
to get to the true path. Experimental results on benchmark
datasets suggest that the proposed algorithm is fast and so it is
a useful tool for doing feature selection in linear classifiers and
for designing nonlinear classifiers via sparse kernel logistic
regression.

REFERENCES

[1] Bach, F.R., Thibaux, R. & Jordan, M. I. (2005) Computing
regularization paths for learning multiple kernels. In NIPS-17, Cam-
bridge, MA: MIT Press.

[2] Efron, B., Hastie, T., Johnstone, T. & Tibshirani, R. (2004)
Least angle regression. Annals of Statistics, 32(2):407-451.

[3] Friedman, J.H. & Popescu, B.E. (2004) Gradient directed
regularization. Technical Report, Department of Statistics, Stanford
University, Stanford.

[4] Genkin, A., Lewis, D.D. & Madigan, D. (2004) Large-scale
Bayesian logistic regression for text categorization. Technical Report,
DIMACS, New Jersey.

[5] Keerthi, S.S. (2005) Generalized LARS as an effective feature
selection tool for text classification with SVMs. In Proceedings of
the 22nd International Conference on Machine Learning.

[6] Madigan, D. & Ridgeway, G. (2004) Discussion of “Least angle
regression” by Efron, Johnstone, Hastie, and Tibshirani. Annals of
Statistics 32(2):465-468.

[7] Osborne, M., Presnell, B. & Turlach, B. (2000) On the Lasso
and its dual. Journal of Computational and Graphical Statistics
9(2):319-337.



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. X, JANUARY XXXX 6

[8] Rätsch, G. (1998-2005). Benchmark repository.
http://ida.first.fraunhofer.de/ � raetsch/

[9] Rosset, S. & Zhu, J. (2004) Piecewise linear regularized
solution paths. Technical Report, Stanford University, Stanford.

[10] Rosset, S. (2005) Tracking curved regularized optimization
solution paths. In Advances in Neural Information Processing Systems
17. Cambridge, MA: MIT Press.

[11] Roth, V. (2002) The Generalized LASSO: a wrapper approach
to gene selection for microarray data. IEEE Transactions on Neural
Networks, Vol. 15, 2004.

[12] Shevade, S.K. & Keerthi, S.S. (2003) A simple and efficient
algorithm for gene selection using sparse logistic regression. Bioin-
formatics 19(17):2246-2253.

[13] Tibshirani, R. (1996) Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society, B 58:267-288.

[14] Zhu, J. & Hastie, T. (2005) Kernel logistic regression and
the import vector machine. Journal of Computational and Graphical
Statistics 14:185-205.

[15] Zou, H. & Hastie, T. (2005) Regularization and variable
selection via the Elastic Net. JRSSB, Vol. 67, pp.301-320.


