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Abstract 
 
    Choosing optimal hyperparameters for support vector machines is an important step in 
SVM design. This is usually done by minimizing either an estimate of generalization error or 
some other related performance measures. In this paper, we empirically study the usefulness 
of several simple performance measures that are very inexpensive to compute. The results 
point out which of these performance measures are adequate functionals for tuning SVM 
hyperparameters. For SVMs with L1 soft-margin formulation, none of the simple measures 
yields a performance as good as k-fold cross-validation. 
 
Keywords: Support vector machine; Model selection; Generalization error estimate; 
Performance measure; Hyperparameter tuning. 
 
 
1 Introduction 
 
    Support vector machines (SVMs) [12] are extensively used as a classification tool 
in a variety of areas. They map the input ( x ) into a high dimensional feature space 
( )(xz φ= ) and construct an optimal hyperplane defined by 0=−⋅ bzw  to separate 
examples from the two classes. For SVMs with L1 soft-margin formulation, this is 
done by solving the primal problem: 
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where ix  is the i-th  example, iy  is the class label value which is either +1 or –1. 

(Throughout the paper, l  will denote the number of examples.) This problem is 
computationally solved using the solution of its dual form: 
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where )()(),( xxxxk φφ ⋅=  is the kernel function that performs the nonlinear 
mapping. Popular kernel functions are: 
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    To obtain a good performance, some parameters in SVMs have to be chosen 
carefully. These parameters include: 

• the regularization parameter C , which determines the tradeoff between 
minimizing the training error and minimizing model complexity; 
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• parameter (σ or d ) of the kernel function that implicitly defines the nonlinear 
mapping from input space to some high dimensional feature space. (In this 
paper we particularly focus on the Gaussian kernel.) 

These “higher level” parameters are usually referred as hyperparameters. Tuning 
these hyperparameters is usually done by minimizing the estimated generalization 
error such as the k-fold cross-validation error or the leave-one-out (LOO) error.  
While k-fold cross-validation error requires the solution of several SVMs, LOO error 
requires the solution of many (in the order of the number of examples) SVMs. For 
efficiency, it is useful to have simpler estimates that, though crude, are very 
inexpensive to compute. During the past few years, several such simple estimates 
have been proposed. The main aim of this paper is to empirically study the usefulness 
of these simple estimates as measures for tuning the SVM hyperparameters. 
 
    The rest of the paper is organized as follows.  A brief review of the performance 
measures is given in section 2. The settings of the computational experiments are 
described in section 3. The experimental results are analyzed and discussed in section 
4. Finally, some concluding remarks are made in section 5. 
 
 
2 Performance Measures 
 
    In this section, we briefly review the estimates (performance measures) mentioned 
above. 
 
2.1 K-fold Cross-Validation and LOO 
 
    Cross-validation is a popular technique for estimating generalization error and there 
are several versions. In k-fold cross-validation, the training data is randomly split into 
k  mutually exclusive subsets (the folds) of approximately equal size. The SVM 
decision rule is obtained using 1−k  of the subsets and then tested on the subset left 
out. This procedure is repeated k  times and in this fashion each subset is used for 
testing once. Averaging the test error over the k  trials gives an estimate of the 
expected generalization error. 
 
    LOO can be viewed as an extreme form of k-fold cross-validation in which k  is 
equal to the number of examples. In LOO, one example is left out for testing each 
time, and so the training and testing are repeated l  times. It is known [9] that the LOO 
procedure gives an almost unbiased estimate of the expected generalization error. 
 
    K-fold cross-validation and LOO are applicable to arbitrary learning algorithms. In 
the case of SVM, it is not necessary to run the LOO procedure on all l  examples and 
strategies are available in the literature to speed up the procedure. In spite of that, for 
tuning SVM hyperparameters, LOO is still very expensive. 
 
2.2 Xi-Alpha Bound 
 
    In [7], Joachims developed the following estimate, which is an upper bound on the 
error rate of leave-one-out procedure. This estimate can be computed using α  from 
the solution of SVM dual problem (D) and ξ  from the solution of SVM primal 
problem (P): 
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Here card denotes cardinality and 2
∆R  is an upper bound on 2),( ∆+≤≤ Rcxxkc  for all 

x , x  and some constant c . We refer to the estimate in (1) as the Xi-Alpha bound. 
 
2.3 Approximate Span Bound 
 
    Vapnik et al [13] introduced a new concept called span of support vectors. Based 
on this new concept, they developed a new technique called span-rule (specially for 
SVMs) to approximate the LOO estimate. The span-rule not only provides a good 
functional for SVM hyperparameter selection, but also better reflects the actual error 
rate. The following upper bound on LOO error was also proposed in [13]: 
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where: LOON  is the number of errors in LOO procedure; � =

*
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n

i iα  is the summation of 

Lagrange multipliers iα  taken over support vectors of the first category (those for 

which Ci << α0 ); m  is the number of support vectors of the second category (those 

for which Ci =α ); S  is the span of support vectors (see [13] for the definition of S ); 

D  is the diameter of the smallest sphere containing the training points in the feature 
space; and the Lagrange multipliers iα  are obtained from the training of SVM on the 

whole training data of size l .  
    Although the right-hand side bound in (2) has a simple form, it is expensive to 
compute the span S . The bound can be further simplified by replacing S  with SVD , 

the diameter of the smallest sphere in the feature space containing the support vectors 
of the first category. It was proved in [13] that SVDS ≤ .  Thus, we get 
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The right-hand side of (2) is referred as the span bound. Since the bound in (3) is a 
looser bound than the span bound, we refer to it as the approximate span bound. 
 
2.4 VC Bound 
 
    SVMs are based on the idea of structural risk minimization introduced by statistical 
learning theory [12]. For the two-class classification problem, the learning machine is 
actually defined by a set of functions ),( αxf , which perform a mapping from input 

pattern ix  to class label { }1,1 +−∈iy . A particular choice of the adjustable parameter 

α  gives a “trained machine”. Suppose a set of training examples 
),(,),,( 11 ll yxyx � are drawn from some unknown probability distribution ),( yxP . 

Then, the expected test error for a trained machine is: 

),(),(
2

1
)( yxdPxfyR αα −= �  

The quantity )(αR  is called expected risk. “Empirical risk” is defined as the 
measured mean error rate on the training set: 
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For a particular choice of α , with probability η−1  )10( ≤≤ η , the following bound 
holds [12]: 
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where h  is the VC-dimension of a set of functions ),( αxf and it describes the 
capacity of the set of functions. The right-hand side of (4) is referred as risk bound. 
The second term of the risk bound is usually referred as the VC confidence. 
 
    For a given learning task, the Structural Risk Minimization Principle [12] chooses 
the parameter α  so that the risk bound is minimal. The main difficulty in applying the 
risk bound is that it is difficult to determine the VC-dimension of the set of functions. 
For SVMs, a VC bound was proposed in [2] by approximating the VC-dimension in 
(4) by a loose bound on it: 

1
22 +≤ wDh                                  (5) 

 
    The right-hand side of (5) is a loose bound on VC-dimension and, if we use this 
bound to approximate h , sometimes we may get into a situation where hl  is so small 
that the term inside the square root in (4) may become negative. To avoid this 
problem, we do the following. Since h is also bounded by 1+l , we simply set h  to 

1+l  whenever 1
22 +wD  exceeds 1+l . 

 
2.5 Radius-Margin Bound 
 
    For SVMs with hard-margin formulation, it was shown by Vapnik et al [13] that 
the following bound holds: 

22

4
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l
ErrLOO ≤                            (6) 

where w  is the weight vector computed by SVM training and D  is the diameter of 
the smallest sphere that contains all the training examples in the feature space. The 
right-hand side of (6) is usually referred as the radius-margin bound. 
 
    The SVM problem with L2 soft-margin formulation can be converted to the hard-
margin SVM problem with a slightly modified kernel function [4]. Chapelle et al [3] 

explored the computation of gradient of 2D  and 
2

w , and their results make these 

gradient computation very easy. In their experiment, they minimize radius margin 
bound using gradient descent technique and the results showed that radius-margin 
bound could act as a good functional to tune the degree of polynomial kernel. 
 

    In this paper, we will study the usefulness of 
22 wD  as a functional to tune the 

hyperparameters of SVM with Gaussian kernel (both L1 soft-margin formulation and 
L2 soft-margin formulation). 
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3 Computational Experiments 
 
    The purpose of our experiments is to see how good the various estimates (bounds) 
are for tuning the hyperparameters of SVMs. In this paper, we mainly focus on SVMs 
with Gaussian kernel. For one given estimator, goodness is evaluated by comparing 
the true minimum of the test error with the test error at the optimal hyperparameter set 
found by minimizing the estimate. We did the simulations on five benchmark 
datasets: Banana, Image, Splice, Waveform and Tree. General information about the 
datasets is given in Table 1. The detailed information of the first four datasets can be 
found in [10]. The Tree dataset was originally used by Bailey et al [1] and was formed 
from a geological remote sensing data; It has two classes: one consists of patterns of 
trees, and the other consists of non-tree patterns. Note that each of the datasets has a 
large number of test examples so that performance on the test set, the test error, can be 
taken as an accurate reflection of generalization performance. 
 
 
Table 1. General information about the datasets 

Datasets 
Number of input 

variables 
Number of training 

examples 
Number of test 

examples 
Banana 2 400 4900 
Image 18 1300 1010 
Splice 60 1000 2175 
Waveform 21 400 4600 
Tree 18 700 11692 

 
 
    One experiment was set up for SVM with L1 soft-margin formulation. The simple 
performance measures we tested in this experiment are: 5-fold cross-validation error, 
Xi-Alpha bound, VC bound, approximate span bound and 22 wD . 

 
    As we mentioned in section 2, the SVM problem with L2 soft-margin formulation 
can be converted to the hard-margin SVM problem with a slightly modified kernel 
function. For SVM hard-margin formulation, the radius-margin bound can be applied. 
So, we set up an experiment to see how good the radius-margin bound ( 22 wD ) is for 

the L2 soft-margin formulation, particularly with Gaussian kernel. 
 
    In the above two experiments, first we fix the regularization parameter C  at some 
value and vary the width of Gaussian kernel 2σ  in a large range, and then we fix the 
value of 2σ  and vary the value of C . The fixed values of C and 2σ are chosen so that 
the combination achieves a test error close to the smallest test error rate. 
 
    Tables 2-5 describe the performance of the various estimates. Both test error rates 
and the hyperparameter values at the minima of different estimates are shown there. 
However, we must point out that we only searched in a finite range of the 
hyperparameter space and hence the minima are confined to this finite range. Due to 
lack of space, we give detailed plots of the estimates as functions of C and 2σ , only 
for the Image dataset (Figures 1 – 4).  The plots for the other datasets show similar 
variations with respect to the two hyperparameters. We make the plots of other 
datasets available at: http://guppy.mpe.nus.edu/~mpessk/ncfigures.pdf. In order to 
show the variations of different estimates in one figure, normalization was done on 
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the estimates when necessary. Since what we really concern is how the variation of 
the estimate relates to the variation of the test error rather than how their values are 
related, this normalization does no harm. 
 
    Another experiment was set up to see how the size of the training set affects the 
performance of different estimates. The Waveform dataset was used in this 
experiment. We vary the number of training examples from 200 to 1000. For 
comparison purpose, for each training set of different size, we use the same test set 
that has 4000 examples. As in the other experiments, the performance of each 
estimate is evaluated by comparing the test error rates at the optimal hyperparameter 
set found by minimizing the estimate. Figure 5 shows the performance of the various 
measures as a function of training size. 
 
 
4 Analysis and Discussion 
 
    Let us analyze the performance of the various estimates, one by one. 
 
K-fold Cross-Validation: 
    
 On each dataset, 5-fold cross-validation produced a curve that not only has a 
minimum very close to that of the test error curve, but it also has a shape very similar 
to the curve of the test error. Of all the estimates, 5-fold cross-validation yielded the 
best performance. Even for a small training set with 200 examples, 5-fold cross-
validation gave a quite good estimate of generalization error (see Figure 5). 
 
    Recently, a lot of research work has been devoted to speeding up the LOO 
procedure so that it can be used to tune the hyperparameters of SVMs. Some of those 
speed-up strategies, such as alpha seeding [6] and loose tolerance [8], can be easily 
carried from LOO to k-fold cross-validation. Thus, k-fold cross-validation is also an 
efficient technique for tuning SVM hyperparameters. 
 
Xi-Alpha Bound: 
 
    Xi-Alpha bound is a very simple bound, which can be computed without any extra 
work after the SVM is trained on the whole training data. Although it produced a 
curve that has a shape slightly different from that of the test error, in most of the 
cases, the predicted hyperparameters gave performance reasonably close to the best 
one in terms of test error. 
 
    We also notice that, at low C  values, Xi-Alpha bound gives an estimate that is very 
close to the test error. This is because, at low C  values, the iα  are small and hence, 

the Xi-Alpha estimate in (1) is very close to the LOO estimate. 
 
    Another nice property of Xi-Alpha bound is that, irrespective of the size of training 
set, it always gives an estimate reasonably close to the true minimum in terms of test 
error (see Figure 5). 
 
    To see the correlation of the above two estimate (k-fold cross-validation estimate 
and Xi-Alpha bound) with test error, we tried the combination of C  and 2σ  in a very 
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large range and generated a plot that takes the test error as one coordinate and the 
estimate as another coordinate. Each point on the plot corresponds to one combination 
of C  and 2σ . The plot is shown in Figure 6. Since we are especially interested in 
points at which the estimate and the test error take small values, the figure is 
magnified to focus only on this particular area. This plot shows that 5-fold cross-
validation estimate has much better correlation with the test error. 
 
Approximate Span Bound: 
 
    In [13], Vapnik et al effectively used span-based idea for tuning SVM 
hyperparameters. In approximate span bound, S  is replaced by SVD . The poor 

behavior of this bound is probably due to the fact that SVD  is a poor approximate of 

S . 
 
VC Bound: 
 
    The experiments show that VC bound is not good for tuning SVM 
hyperparameters, at least for the datasets used by us. However, for another dataset, 
Burges [2] found this bound to be useful for determining a good value for 2σ . 
Therefore, it is not clear how useful this bound is. It is quite possible that the 

goodness of the VC bound depends on how well 1
22 +wD  approximates the VC 

dimension h . 
 

22 wD for L1 Soft-Margin Formulation: 

 
    Let us now consider 22 wD  for L1 soft-margin formulation. Figure 1 and 2 clearly 

show the inadequacy of this measure for tuning hyperparameters. The plots for the 
other datasets are also very similar. The inadequacy can be easily explained. We can 
prove that, for an SVM with Gaussian kernel, 22 wD  goes to zero as C  goes to zero 

or as 2σ  goes to infinity. 
 
    First, let us fix 2σ  and consider the variation of 22 wD  as C  goes to zero. We 

have 
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Since 2D  is independent of C  and upper-bounded by 4, it easily follows that, as C  

goes to zero, 
2

w  goes to zero and so does 22 wD . 

 

    Now let us fix C  at a finite value and consider the variation of 
22 wD as 2σ  goes 

to infinity. We have 
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As 2σ  goes to infinity, ),( xxk  goes to 1 and, since the alpha variables are bounded 
by C , we have, in the limit, 
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Thus, as 2σ  goes to infinity, 22 wD  goes to zero. 

 
    Cristianini et al in [5] showed that 22 wD  is good for tuning the width of the 

Gaussian kernel for hard-margin SVM. The asymptotic movement of 22 wD  to   zero 

as 2σ  goes   to infinity   that   we established above holds only when C  is fixed at a 
finite value. When C  is infinity (the hard margin case), the alpha variables are 
unbounded and hence our proof will not hold. Thus, what we have shown is not in any 
way inconsistent with the results of Cristianini et al. 
 
   Schölkopf et al [11] showed that 22 wD  is good for tuning the degree of polynomial 

kernel for SVMs with L1 soft-margin formulation. Our experiments and analysis on 
22 wD  are only limited to SVM with Gaussian kernel. Although 22 wD  is inadequate 

for tuning hyperparameters for SVM with Gaussian kernel, possibly it still can be 
used to tune the degree of polynomial kernel, as Schölkopf et al did. 
  

22 wD for L2 Soft-Margin Formulation: 

 
    Earlier, we pointed out that 22 wD  is inadequate for tuning hyperparameters for the 

SVM L1 soft-margin formulation with Gaussian kernel. However, For SVMs with L2 
soft-margin formulation, which can be converted to an SVM hard-margin problem, 
our experiments show that radius-margin bound gives a very good estimate of the 
optimal hyperparameters. This agrees with the results of Chapelle et al [3], where the 
radius-margin bound is chosen as the functional that is minimized using gradient 
descent. 
 
    However, we notice that the radius-margin bound may have more than one 
minimum (see Figure 3). Typically, there is one local minimum whose value of 
radius-margin bound is higher than the least radius-margin bound value. This local 
minimum is usually located at a very large 2σ  value. Thus, minimizing the radius-
margin bound using gradient descent technique, as Chapelle et al did, can get stuck at 
a local minimum of the radius-margin bound. So, choosing a proper starting point for 
gradient descent search is important. 
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Figure 1: Variation of Xi-Alpha Bound, 5-fold CV Err, Test Err, VC Bound, Approximate 

Span Bound, and 22 wD  with respect to 2σ  for fixed C value, for SVM L1 soft-margin 

formulation. In (b), the vertical axis is normalized differently for Xi-Alpha Bound, 

Approximate Span Bound and 22 wD . For each curve, ∇ denotes the minimum point. 
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(b) 
 

Figure 2: Variation of Xi-Alpha Bound, 5-fold CV Err, Test Err, VC Bound, Approximate 

Span Bound, and 22 wD  with respect to C for fixed 2σ  value, for SVM L1 soft-margin 

formulation. In (b), the vertical axis is normalized differently for Xi-Alpha Bound, 

Approximate Span Bound and 22 wD . For each curve, ∇ denotes the minimum point. 
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Figure 3: Variation of 22 wD  and Test Err with respect to 2σ  for fixed C value, for SVM L2 

soft-margin formulation. The vertical axis for 22 wD  is normalized. For each curve, ∇ 

denotes the minimum point. 
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Figure 4: Variation of 22 wD and Test Err with respect to C for fixed 2σ  value, for SVM L2 

soft-margin formulation. The vertical axis for 22 wD  is normalized. For each curve, ∇ 

denotes the minimum point. 
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Table 2: The value of Test Err at the minima of different criteria for fixed C values, for SVM L1 soft-
margin formulation. The values in parentheses are the corresponding logarithms of 2σ  at the minima. 

Criterion 
Banana 

log C = 5.20 
Image 

log C = 4.0 
Splice 

log C = 0.40 
Waveform 

log C = 1.40 
Tree 

log C = 8.60 

Test Err 
0.1043 
(0.60) 

0.0188 
(1.00) 

0.0947 
(3.40) 

0.1022 
(3.20) 

0.1089 
(3.80) 

5-fold CV Err 
0.1276 
(1.30) 

0.0198 
(1.20) 

0.0975 
(3.20) 

0.1159 
(4.40) 

0.1144 
(5.0) 

Xi-Alpha Bound 
0.1453 
(-2.10) 

0.0257 
(2.00) 

0.0979 
(3.80) 

0.1035 
(3.0) 

0.1551 
(1.0) 

VC Bound 
0.4094 
(8.90) 

0.2564 
(10.0) 

0.1766 
(8.40) 

0.3293 
(10.0) 

0.2609 
(-10.0) 

Approxi Span Bound 
0.3943 
(6.60) 

0.1436 
(6.50) 

0.1407 
(5.60) 

0.1243 
(5.20) 

0.1356 
(9.80) 

22 wD  
0.5594 
(10.0) 

0.2564 
(10.0) 

0.4800 
(10.0) 

0.3293 
(10.0) 

0.1627 
(-2.40) 

 
 
 

Table 3: The value of Test Err at the minima of different criteria for fixed 2σ  values, for SVM L1 soft-
margin formulation. The values in parentheses are the corresponding logarithms of C at the minima. 

Criterion 
Banana 

log 2σ =0.60 
Image 

log 2σ =1.0 
Splice 

log 2σ =3.40 
Waveform 

log 2σ =3.20 
Tree 

log 2σ =3.80 

Test Err 
0.1045 
(5.20) 

0.0178 
(4.30) 

0.0947 
(0.40) 

0.1022 
(1.40) 

0.1089 
(8.60) 

5-fold CV Err 
0.1278 
(9.00) 

0.0198 
(6.10) 

0.0947 
(0.50) 

0.1102 
(0.0) 

0.1218 
(4.80) 

Xi-Alpha Bound 
0.1286 
(9.30) 

0.0198 
(6.70) 

0.3398 
(-2.70) 

0.1487 
(-2.80) 

0.1160 
(9.60) 

VC Bound 
0.3987 
(-3.0) 

0.1584 
(-3.6) 

0.4800 
(-10.0) 

0.3293 
(-10.0) 

0.2609 
(-10.0) 

Approxi Span Bound 
0.1251 
(1.80) 

0.0535 
(-0.60) 

0.1136 
(-0.90) 

0.1102 
(0.0) 

0.1363 
(1.20) 

22 wD  
0.5594 
(-10.0) 

0.2564 
(-10.0) 

0.4800 
(-10.0) 

0.3293 
(-10.0) 

0.2609 
(-10.0) 

 
 

 
Table 4: The value of Test Err at the minima of different criteria for fixed C values, for SVM L2 soft-
margin formulation. The values in parentheses are the corresponding logarithms of 2σ  at the minima. 

Criterion 
Banana 

log C = -0.90 
Image 

log C = 0.44 
Splice 

log C = 6.91 
Waveform 
log C = 0 

Tree 
log C = 9.80 

Test Err 
0.1118 
(-1.40) 

0.0238 
(0.50) 

0.0947 
(3.30) 

0.0991 
(2.80) 

0.1049 
(4.60) 

22 wD  
0.1141 
(-1.60) 

0.0297 
(-0.30) 

0.1002 
(3.10) 

0.1011 
(2.20) 

0.1627 
(-2.40) 

 
 
 
Table 5: The value of Test Err at the minima of different criteria for fixed 2σ  values, for SVM L2 soft-
margin formulation. The values in parentheses are the corresponding logarithms of C at the minima. 

Criterion 
Banana 

log 2σ =-1.39 
Image 

log 2σ =-0.29 
Splice 

log 2σ =3.07 
Waveform 

log 2σ = 2.80 
Tree 

log 2σ =4.60 

Test Err 
0.1118 
(0.0) 

0.0218 
(2.40) 

0.1007 
(2.20) 

0.0991 
(0.0) 

0.1049 
(9.80) 

22 wD  
0.1127 
(-0.90) 

0.0297 
(0.40) 

0.1016 
(9.20) 

0.1007 
(-0.60) 

0.1413 
(-1.40) 
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Figure 5: Performance of various measures for different training set sizes. The waveform 
dataset has been used in this experiment. The following values were tried for the number of 
training examples: 200, 400, 600, 800, and 1000. The number of the test examples is 4000. 
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Figure 6: Correlation of 5-fold cross-validation and Xi-Alpha bound with test error. Each 

point corresponds to one combination of C and 2σ . Each figure has been magnified to show 
only points where test error and the estimate take small values. The points with least value of 
the estimate are marked by +. 
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5 Conclusions 
 
    We have tested several easy-to-compute performance measures for SVMs with L1 
soft-margin formulation and SVMs with L2 soft-margin formulation. The conclusions 
are: 
 

• 5-fold cross-validation gives an excellent estimate of the generalization error. 
For the L1 soft margin SVM formulation, none of the other measures yields a 
performance as good as 5-fold cross validation. It even gives a good estimate on 
small training set. The 5-fold cross-validation estimate also has a very good 
correlation with the test error. 

 
• Xi-Alpha bound can find a reasonably good hyperparameter set for SVM, at 

which the test error is close to the true minimum of the test error. But the 
hyperparameters sometimes may not be close to the optimal ones. A nice 
property of this estimate is that it performs well over a range of training set sizes. 

 
• The approximate span bound and VC bound cannot give a useful prediction of 

the optimal hyperparameters. This is probably because the approximations 
introduced into these bounds are too loose. 

 
• For the SVM L1 soft-margin formulation, 22 wD  is inadequate for tuning the 

hyperparameters. 
 

• The radius-margin bound gives a very good prediction of the optimal 
hyperparameters for SVM L2 soft-margin formulation. However, the possibility 
of local minima should be taken into consideration when this bound is 
minimized using gradient descent method. 
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