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Abstract

In this paper we study the somersaulling maneu-
ver of a platform diver and give an effective numeri-
cal approach for obtaining an optimal solution for it.
Modelling the diver as a planar system of intercon-
nected multibodies, we prove controllability in a sense
dictated by the problem. We set up a time optimal
control problem with state and control constraints and
solve it using our numerical approach. The numerical
solution agrees well with motions ezecuted by profes-
sional divers.

1. Introduction

In this paper we study various issues associated
with the somersaulting maneuver, without twist, of a
platform diver, with the aim of deriving a robust and
efficient numerical approach to determine optimal div-
ing motions. The numerical approach that we suggest
is quite general and can be easily extended to other
planar interconnected systems with angular momen-
tum conservation constraints. Such systems are use-
ful in a number of applications, for example, motion
planning of manipulators mounted on space vechicles,
astronauts’ reorientation maneuvers in space, deploy-
ment maneuvers for multibody antennas connected to
spacecraft, monoped in flight etc. See [3-6] and the
other references given there for details on these and
other applications.

The dynamic equations that model a somersault-
ing diver are derived in section 2. A number of special
issues make platform diving quite different from re-
orientation maneuvers of other applications. These
issues are discussed in section 3. We have taken use-
ful guidelines from the excellent qualitative study of
Frohlich on platform diving [2]. These issues lead to
various constraints on the dive trajectories.

In section 4 we prove controllability in a sense which
is appropriate for the diver’s problem. Our ideas on
this issue are very different and less sophisticated than
the controllability results proved by Reyhanoglu and
McClamroch [5] for systems with zero angular momen-
tum.

Since a diver wishes to maximize the number of
somersaults that can be made in a given time, it is ap-
propriate to formulate and slove a time optimal control
problem. In section 5 we suggest two numerical ap-
proaches for solving the problem. The first approach
uses a discretization of the control vector consisting of
the internal torques. This is similar to the approach
taken by Fernandez, Gurvits and Li [1] to solve the
falling cat problem. We faced a lot of difficulties in
solving the diver’s problem using this approach. The
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second approach is based on discretizing the state tra-
jectory. This approach had an excellent control over
the motion, and led to the quick obtainment of opti-
mal motions.

In section 6 we consider two diving maneuvers to
illustrate our approach: a forward somersault and a
backward somersault. The second numerical approach
gave nice solutions that corresponded well with mo-
tions actually performed by professional divers. Con-
cluding remarks and possible future extensions of our
work are indicated in section 7.

2. Modelling

A diver doing somersaults, without twist, is mod-
elled as a planar system made up of n rigid rectangular
links connected together by revolute joints to form an
open kinematic chain. The choice of n depends on
the particular maneuver executed and the preciseness
with which the bending of the body is to be modelled.
For a backward somersault a two link model will suf-
fice. Divers doing this somersault seem to bend only
the hip joint. For a forward somersault at least a four
link model is needed to include bending at the knee,
hip and shoulder joints. A more accurate model can
include the elbow joint and two more joints between
the hip and the shoulder to account for the flexibility
of the body.

Consider the schematic in fig.1. Let O represent
the center of mass of the system, O; denote the center
of mass of the i-th link, and A; denote the j-th pin
joint. It is not difficult to see that gravity does not
contribute in any way to the somersaulting operation.
It only decides the total time period available to do
the somersault. (A diver diving from a height of 10
meters has about 1.5 seconds to work with.) Hence
for our purpose O can be assumed to be fixed.

We now derive the dynamic equations associated
with the above model. The derivation uses standard
ideas. Yet we do give some details which are impor-
tant from the viewpoint of computational efficiency.
The numerical solution that we give later requires nu-
merous evaluations of the dynamic equations and, the
difference between a casually written set of equations
and a carefully written set can be as large as a factor
of ten in cpu time.

Let : m; = mass of the i-th link; /; = distance from
O, to A ; for i~2 2, I; = length of the i-th link; )
= 0; for ¢ > 2, l; = distance from A;_; to O; ; and
I; be the inertia of the i-th link. Also let: p € R" be

the vector of (absolute% angles made by the links with
the positive horizontal axis; and ¢ € R"™ consist of



q1, the angle made by the first link with the positive
horizontal axis and gq2,---,¢n, the relative angles at
the (n — 1) joints. Let T be the n x n lower triangular
matrix with all elements on and below the diagonal
equal to one. Then p and ¢ are related by

(2.1)

Both p and ¢ are independent choices for the gener-
alized coordinates. The choice of p is good from the
view point of computational efficiency, whereas choos-
ing ¢ exposes the specialities of the dynamics in a clear
way.

The kinetic energy of the system can be written as

r=Tq.

1, .
K = 2¢'D(p)p (2:2)
where: p = dp/dt; prime denotes transpose;
D;;(p) = eij cos(pi — pj) + Libij ; (2.3)

8ij = 1if i = j, 0 otherwise; e;; = ) p_, micrickj;
e = (b =b)ifl1 <r < k-1, (lk—bi) if r =
E, =b if k+1 < r < n; b = (m. /M), + l,a,;
ar = (Myp1 + - +my)if r < n; and a, = 0. Let
u € R*~! denote the vector of torques applied at the
(n—1) joints. Using (2.2) and (2.3) the Euler-Lagrange
equations can be written as

D(p)p+ f(p,p) = Bu (2.4)

where: B is an n x (n— 1) matrix defined by B;; = —1
ifi=j,1if i =7+ 1, 0 otherwise;

n n
fe(e.B) =Y Y ol k)Bis
=1 j=1

p(8,5,k) = A4, k,8) + A(3, k, §) — A(4, 7, k); and, the A
flgnctiozx is dgeﬁned)by A, j,k)) = E—e.-,- si)n(p,- —p;)if

k =1, e;j sin(p; — p;) if k = j, 0 otherwise.
Let us now analyze the dynamics using g as the vec-
tor of generalized coordinates. Classify q as ¢ = (8, %)

where € R and ¢ € R*~1. Using (2'1)—.@'2) the ki-
netic energy can be written as K = 9:54’ D(q)q where
D(q) = T'D(Tq)T. Since, by (2.3), D is independent
of 9, hereafter we will refer to D(q) as D(¥). Let
By = [ «(¥) B (¥)
Bw=( 58 T
where a(¢) € R, B(¥) € R"! and I'(y) €

R(=1)x(n-1)  When we write the Euler-Lagrange
equations for g, the equation corresponding to q; = 4

leads to . .
a($)0+ B (W)Y =c (2.5)

where c is constant during motion. Equation (2{)} ex-
presses conservation of angular momentum (c). Using
(2.4) and (2.5) the equations for ¥ can be written as

J(%, ) + F($,,0) = u. (2.6)
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We will not say much about J and F since they are
never used by the computational algorithm to be given
later. We will only point out the following useful prop-
erty: F(¢,6¢,6¢) = 62F(¢¥,9,¢) .

3. Issues in Platform Divin

Frohlich [2] gives an excellent qualitative study of
various issues associated with platform diving. We
have taken several useful hints from this study. These
issues make platform diving quite different from other
types of reorientation maneuvers. Let us now go into
these issues in detail.

While just leaving the platform, the diver has the
ability to generate a good starting velocity, v° that
aids the somersault. Frohlich points out various ways
that divers employ to generate these velocities, e.g., by
the throwing of the arms. In our formulation, tiere-
fore, we take v° as a variable vector subject to limits
on its magnitudes:

i0)=2"; <V Vi. (3.1)

While just leaving the platform the diver is usually
in a slightly curled up position that deviates from the
verticafstretched up position, § = 7/2, ¢ = 0. This
helps the diver to reach quickly the fully coiled config-
uration during the initial phase of the somersault. we
express this factor as

q(0) =¢°.

The choice of ¢° depends on the type of dive per-
formed. Typical values of ¢° will be mentioned in
section 6.

The aim of the diver is to perform the prescribed
number of somersaults and come to an inverted
stretched position at the end of the dive when he just
enters the water. The final configuration constraint
can be expressed as

32)

o)) =¢, (3.3)
where t; denotes the final time and ¢/ depends on
the type of dive and the number of somersaults to
be made. For example, for k forward somersaults we
require ¢/ = (2k7 + 7 + 7/2,0).

Because initial velocities are present the angular
momentum, ¢ during the motion is typically non-zero.
(There is a reason for requiring ¢ to be well away from
zero; see the discussion o‘} ‘phase 2’ given below.) Thus
putting a hard constraint on ¢(t;) such as §(t;) = 0,
in our formulation is not a good idea. It should be
mentioned that only the best divers can control the
final residual velocities well; the velocities get damped
out soon after entering the water.

During the motion u and ¢ have to obey bound
constraints. The constraints on u come from limits
on the torque magnitudes that can be generated. The
constraints on y arise because of the physical organi-
zation of the limbs. For example, there can be only
backward bending at the knee joint and, even that
bending is allowed only up to a value of 7 radians (at



touches the thigh). The above

which point, the le
’ g % are point-wise in time:

constraints on u an:

(@) < U; Vit (3.4)

PR < P(t) < WP Vit

Let & and X be, respectively, the rectangloids (with
non empty interior) in the u and ¢ space defined by
the above inequalities. Note that I/ also contains the
origin in the interior.

tudying actual somersaults executed by profes-
sional divers reveals three distinct phases of a som-
ersault. The first phase results in the diver achieving
a coiled up configuration. If [0,?,] denotes the period
for phase 1 then the aim of phase 1 is to achieve

B(t:) = 6', 6(t1) =6, P(t1) =", ¥(t) = %3- 6
Of course, if ¢ is decided by the initial velocity v* and
(2.5) then 8" is fixed.

In the second phase the diver remains in the coiled
up configuration and somersaults. Hence, in this
phase only 8 is varying. If [t;,%2] denotes the phase 2
period then

P(E) =9, ¥@)=0 Vte(t,tg].

The following result gives an analytical solution of
phase 2. Its proof follows directly from (2.5), (2.6)
and (3.6).

Proposition 1 The phase 2 constraint, (3.7) can
be achesved if and only if

(3.7)

u(t) = F(¢*,0,¢) Vte([ty,ts], (3.8)
a constant function of time whkere F is as in (2.6).
Further, in phase 2 we have

0(t) =6 +0'(t—t1) Vi€ [t1,t2). (3.9)

The actual determination of the phase 2 torque,
F(4',0,c¢) can be done easily without resorting to F.
We can simply set: ¢ = (6*,%!), ¢ = (6,0), p = Tq,
p=61,---, 13’, p = 0 and solve the overdetermined
%but consistent) system of linear equations, (2.4) for u.

Because of the nice structure of B, this linear system
can be easily solved in closed form.)

Another remark concerning phase 2 is worth men-
tioning here. Suppose ¢ is a fixed level of angular mo-
mentum. If somersaulting is to be fast then 8 should
be as large as possible. Since, by (2.5) and (3.6), 6! =
¢/a(y?), the vector 1! should be chosen in such a way
that (') is as small as possible. The coiled up posi-
tion of the diver corresponds to this optimal choice in
which all the links come together as close as possible.

In the third phase the diver starts from the config-
uration, § = 0' 4 0'(t; — t1), ¥ = ¢! and uncurls to
reach the final configuration set by (3.3). In the exam-
ples to be presented later we will take full advantage

(35)
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of the above three phase ideas to generate good som-
ersault trajectories,
4. Controllability

Recently Reyhanoglu and McClamroch 5{ have
given several useful results on the controllability of
planar multibody systems with angular momentum
preserving controls. They consider systems of the type
considered in this paper, but take the angular mo-
mentum, ¢ to be zero. Reyhanoglu and McClamroch
show (by actually constructing u(-)) that if the num-
ber of links is three or more then any (6°, 4°,¢°) can
be transferred to any equilibrium, (8/,4/,0) in arbi-
trarily small time. (Using the property, F(¢,—%,0) =
F(¢,%,0), this result can be easily extended to .include
transfer from any (8%, ¥°,¥°) to any (6/,9/,4/).)

The problem considered in this paper is such that
‘full controllability’ is not necessary. Because there
is a lot of freedom in choosing v°, and v/ = ¢(t;)
is free, finding u(-) that transfers ¢ from any ¢° to
any ¢/ is easy. In fact, as the following result and
its proof show, the partial controllability requirement
also makes the achievement of the control and state
constraints in (3.4) and (3.5) easy.

Proposition 2 There ezists u(-) which trans-
fers the system (2.5)-(2.6) from any ¢° to any ¢/ (of
course, ¢° and ¢/ should satisfy the bounds indicated
zg 21;5)) in finite time, while satisfying (3.1) and (3.4)-

Proof Let ¢ = (6% ¢°) and ¢/ = (8/,¢/).
Choose any t; > 0, and then choose any twice differ-
entiable function, ¥ : [0,#;] — X such that ¥(0) = y°
and ¥(t;) = ¢/. From (2.5) we have

6(t;) = 0+c /0 Y ayat - /0 Y Bjaydt . @41)

Note here that the diver model is such that a(vy) is
always sufficiently positive (this follows from the pos-

itive definiteness of D(p) and D(v)) and so division
by it is well defined. By choosing the right value for ¢
(this can be done by choosing #(0) correctly) we can
achieve 0(t;) = 6/. This also determines 6(-). Hav-
ing chosen ¢(-) this way, determine u(-) from (2.6).
Finally, if the (u(-),q(-)) violates (3.1) and/or (3.4),
then expand the time scale appropriately so as to sat-
isfy (3.1) and (3.4). Note here that this operation will
not disturb (3.5) and the end constraints defined by
¢® and ¢/.
5. Numerical Optimal Control

A diver is interested in completing the somersault
in a limited time. Thus, setting up and solving a time

optimal control problem is appropriate. The problem
1s:

minimize  t;
subject to: (3.1) —(3.5) and,
§2.5; - E2.6; (or, (2.1),(24))
(5.1)



Because of the complexity of the nonlinearities and
constraints involved, the problem is non-trivial to
solve, even numerically. Our aim is to give an efficient
numeri)ca.l approach to find an approximate solution
of (5.1).

(Using the special nature of the dynamics and con-
straints, problem (5.1) can be equivalently written as
a fixed time problem as follows. Fix any positive value
for ty, say 1 and solve:

minimize f = max{fi, f2}
subject to: (3.2) - (3.3),(3.5) and,
2.5)—(2.6) (or, (2.1),(24))
(5.2)
where
0 .
fi = max (")/—")2 and f; = max (ess.sup lL'(Ql)
' i * tef0,ty] i
(5.3)

Thus the minimum time problem is equivalent to
minimizing, in a particular sense, the magnitudes of
torques and velocities in a fixed time framework.

To numerically solve any one of the above problems
we have to make an approximation to convert it into a
finite dimensional optimization problem. We tried two
approaches. In the first approach we discretized the
control trajectory, u(-) and used problem formulation

5.1). Various ways of discretization are: (i) divide
0,t fLinto a fixed number of equal intervals and take
u to be a different polynomial function in each inter-
val; (ii) approximate u as a truncated Fourier series;
and, (i) divide [0,%;] into a fixed number of unequal
intervals and assume u to be constant in each of these
intervals. Because all linear systems and a class of
nonlinear systems exhibit a bang-bang time optimal
control trajectory, we preferred to use the third way
of discretization. Here the optimization variables are:
the initial velocity vector v°, the control switch times,
and the piecewise constant control magnitudes.

The numerical solution was obtained as follows.
First, simple bounds on variables (e.g., those defined
by (3.1) and (3.4)) were treated by introducing uncon-
strained variables using a transformation. For exam-
ple: £ > a was taken care of by setting r = a + y?
where y is unconstrained; a < z < b was treated by
setting

z=(b+a)/2 + ((b—a)/2y/\/1+y2  (5.4)
where y is unconstrained, etc. The equality con-
straints, (3.2), (2.1) and (2.4) were eliminated by nu-
merically integrating (2.4) from the starting point de-
fined by (2.1) and (3.2) every time the objective func-
tion was to be evaluated. A penalty function approach
was used to deal with the remaining constraints, i.e.,
(3.3) and (3.5). The resulting unconstrained nonlin-
ear optimization problems were solved using an effi-
cient implementation of conjugate-gradient and quasi-
Newton methods.

In spite of spending a lot of time and effort, we
could not achieve much using the above approach. The
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final state constraint, (3.3) was difficult to achieve.
Because there was little direct control over the state
trajectory, satisfying (3.5) was also hard. Further-
more, the numerical integration of (2.4) was very sen-
sitive to changes in the control magnitudes and switch-
ing times, thus leading to severe errors in the objective
function evaluation. The computing times involved
were also high, say in the order of hours on an Intel
80486 based mmachine. Because of these reasons we
discarded the above approach.

Recently, Fernandez, Gurvits and Li [1] have given
a similar approach to solve the falling cat problem.
Their discretization of u uses truncated Fourier series.
We have briefly experimented with truncated Fourier
series for our problem. The performance remained as
bad as before.

In the second approach, which turned out to be very
successful, we discretized q and used problem formu-
lation (5.2). We divided [0, ;] into a finite number of
equal intervals and took, as variables, the values of ¢
at the interior time grid points together with v° and
v/, Given a set of values of these variables, there is
a unique cubic spline fit, qg-) which is twice differen-
tiable and satisfies (3.2)-(3.3). As in the first approach
the resulting optimization problem was solved using a
penalty function method. To ensure the satisfaction of
the dynamic equations we included, in the penalized
objective function, an appropriately weighted integral
of the square of the error in satisfying (2.5). To evalu-
ate f as defined by (5.2) and (5.3) we required u, which
we obtained via (2.1) and (2.4). The state constraints
in (3.5) were also integrated into the objective function
using penalties. Because (3.5) corresponds to simple
bounds, the trick in (5.4) was used on the ¢ values at
the time grid points. This gave an effective control
over the satisfaction of (3.5) at other times too. The
bound constraint in (3.1) was also handled in a simi-
lar way. A combination of conjugate gradient method
and trust region method for nonlinear least squares,
was used with this approach.

Both approaches handle the initial conditions eas-
ily. The first approach also directly takes care of the
satisfaction of the dynamic equations and the control
constraints. However, it has a lot of difficulty in han-
dling the state constraints (both the point-wise and
the final ones). On the other hand, the second ap-
proach has excellent control over the state constraints.
Its challenge lies in the satisfaction of the dynamic
equations. In a number of numerical experiments on
the second approach, we observed that, even if the ini-
tial choice of the variables was such that the dynamic
equations were violated badly, just a few optimization
iterations lead to an excellent satisfaction of the dy-
namic equations. Overall, this approach seems to be
the best suited for solving the diver’s problem.

6. Numerical Results

We have used the ideas outlined in the previous sec-
tions to solve two diving maneuvers: a forward som-
ersault and a backward somersault. While at least a
four link model is necessary for the former, a two link
model is sufficient for the latter. Thus, the choices
of links are as follows: leg, thigh, body and arm for



the first problem; and, leg + thigh, body + arm for
the second problem. For both problems the links are
indexed starting from the leg and moving upwards;
in particular, ¢ = 0 is always the angle made by
the leg with the positive horizontal axis. We assume
that only one somersault is made by the diver (i.e.,
@ roughly changes by 3x radians). Because an ana-
lytical solution of phase 2 is available (proposition 2)
more somersaults can be easily included.

The second numerical approach of section 5 was
successfully used to solve (5.2). We solved (5.2) in-
stead of (5.1) not for any numerical convenience, but
simply because good estimates of the U; were not
available. Because we could replace the f in (5.2) by
8 - f, where § > 0, without affecting the solution ob-
tained, all that we needed to know were good guesses
for the relative weights between the various V;’s and
U;’s. We were able to make these guesses using ar-
guments based on maximum velocities that can be
generated by the limbs. Thus we fixed t; at values
achieved by professional divers, solved (5.2) and then

finally checked if v® and u are physically reasonable.
The guesses for the U; and the V;, together with some
other data associated with the two dive problems are
given in the following table.

Forward Backward
Somersault Somersault

q° deg. (90,-20,45,20) (90,0)

¢ deg. (630,0,0,0) (-450,0)

V | rad/sec (15,15,15,15) (5,5)

U N-m | (1000,5000,1000) (3000)
gmin deg (-180,-20,0) 5-20;
ymax deg (0,180,180) 180

ts sec 0.94 1.15

We have used the three phase idea outlined in sec-
tion 3 to simplify the numerical solution. The solu-
tion was obtained in two steps. In the first step we

uessed reasonable values for 8!, 8, ¢!, ¢; and t; (see

3.6)—(3.7?), and solved two independent optimal con-
trol problems corresponding to phase 1 and phase 3.
In the second step we solved the full diver’s problem
by keeping the three phase structure and letting 6, 6*,
9!, t; and t, free, and using the solutions obtained in
the first step to start the numerical solution. The ana-
lytical solution of phase 2, given by proposition 1 was
used. We believe that the solution obtained this way
(i.e., subject to the three phase structure constraint)
is an excellent suboptimal solution of (5.2).

The procedure outlined above was coded in Fortran
and run on an Intel 80486 based machine. Numeri-
cal solution was continued until the objective function
could not be decreased any more. The total cpu time
required to solve each of the two dive problems was
about ten minutes.

For lack of space we give details of the final solu-
tion only for the forward somersault, which is ade-
quately described by figs.2—6. The dive motions cor-
respond reasonably well with those performed by pro-
fessional divers. This was confirmed by comparing our
trajectories with the dives of Mingxia Fu of the Chi-
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nese team in the women’s 10 m platform dive event
of the recently concluded Olympics’92. While the
torque and initial velocity magnitudes appear reason-
able to us, only a biomechanics expert can comment
on their physical realizability. It should be noted that
the largest magnitudes of torque occur during phase
1, and that the torques associated with phase 2 are
uite small. The torque trajectories have a non-trivial
shape and, nicely approximating them by either piece-
wise constant time functions or truncated Fourier se-
ries is not possible unless the number of variables used
is large. This may be one of the reasons why the first
numerical approach of section 5 did not work well.
7. Conclusion
In this paper we have given an efficient and robust
numerical approach for the determination of an opti-
mal somersaulting motion of a platform diver. In the
process of doing this we have discussed various impor-
tant issues associated with platform diving. There are
three limitations of our model which are worth consid-
ering in future models. They are as follows. (% The
effect of friction at the joints is neglected. (2) The ef-
fect of configuration dependent damping has not been
included; for example, when the lower leg is brought
close to the thigh in the curled up position, there is
substantial damping. (3) A study of actual dives exe-
cuted by professional divers shows that the diver holds
his legs tightly using the arms to maintain his configu-
ration during phase 2; it is unclear whether this change
over to a closed chain model helps in improving a dive.
Our numerical approach is quite general and can be
easily extended to other multibody systems. We are
currently using our approach to solve the following
problems: reorientation maneuvers in space; falling
cat; and, three dimensional diver’s motion with twist.
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Figure |. The diver modelled as a plasar system
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Figure 5.Forward somersault: A sequence of diver
configurations during phase 3




