
1 Newton Methods for Fast Solution of Semi-

supervised Linear SVMs

Vikas Sindhwani vikass@cs.uchicago.edu

Department of Computer Science, University of Chicago

Chicago, IL 60637,USA

Sathiya Keerthi keerthi@yahoo-inc.com

Yahoo! Research

3333 Empire Avenue, Burbank, CA 91504, USA

Large scale learning is often realistic only in a semi-supervised setting where

a small set of labeled examples is available together with a large collection of

unlabeled data. In many information retrieval and data mining applications,

linear classifiers are strongly preferred because of their ease of implementa-

tion, interpretability and empirical performance. In this chapter, we present

a family of semi-supervised linear support vector classifiers that are designed

to handle partially-labeled sparse datasets with possibly very large number of

examples and features. At their core, our algorithms employ recently devel-

oped Modified Finite Newton techniques. Our contributions are as follows:

(a) We provide an implementation of Transductive SVM (TSVM) that is

significantly more efficient and scalable than currently used dual techniques,

for linear classification problems involving large, sparse datasets. (b) We

propose a variant of TSVM that involves multiple switching of labels. Ex-

perimental results show that this variant provides an order of magnitude

further improvement in training efficiency. (c) We present a new algorithm

for semi-supervised learning based on a Deterministic Annealing (DA) ap-

proach. This algorithm alleviates the problem of local minimum in the TSVM

optimization procedure while also being computationally attractive. We con-

duct an empirical study on several classification tasks which confirms the

value of our methods in large scale semi-supervised settings. Our algorithms

are implemented in SVMlin, a public domain software package.

2 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

1.1 Introduction

Consider the following situation: In a single web-crawl, search engines like

Yahoo! and Google index billions of documents. Only a very small fraction of

these documents can possibly be hand-labeled by human editorial teams and

assembled into topic directories. In information retrieval relevance feedback,

a user labels a small number of documents returned by an initial query as

being relevant or not. The remaining documents form a massive collection

of unlabeled data. Despite its natural and pervasive need, solutions to the

problem of utilizing unlabeled data with labeled examples have only recently

emerged in machine learning literature. Whereas the abundance of unlabeled

data is frequently acknowledged as a motivation in most papers, the true

potential of semi-supervised learning in large scale settings is yet to be

systematically explored. This appears to be partly due to the lack of scalable

tools to handle large volumes of data.

In this chapter, we propose extensions of linear Support Vector Machines

(SVMs) for semi-supervised classification. Linear techniques are often the

method of choice in many applications due to their simplicity and inter-

pretability. When data appears in a rich high-dimensional representation,

linear functions often provide a sufficiently complex hypothesis space for

learning high-quality classifiers. This has been established, for example, for

document classification with Linear SVMs in numerous studies.

Our methods are motivated by the intuition of margin maximization for

semi-supervised SVMs (Vapnik, 1998; Joachims, 1998; Bennett and Demirez,

1998; Fung and Mangasarian, 2001; Chapelle and Zien, 2005; Collobert et al.,

2006). The key idea is to bias the classification hyperplane to pass through a

low data density region keeping points in each data cluster on the same side

of the hyperplane while respecting labels. This algorithm uses an extended

SVM objective function with a non-convex loss term over the unlabeled

examples to implement the cluster assumption in semi-supervised learning1.

This idea is of historical importance as one of the first concrete proposals

for learning from unlabeled data; its popular implementation in (Joachims,

1998) is considered state-of-the-art in text categorization, even in the face

of increasing recent competition.

We highlight the main contributions of our work.

1. We outline an implementation for a variant of Transductive SVM (Joachims,

1998) designed for linear semi-supervised classification on large, sparse datasets.

1. The assumption that points in a cluster should have similar labels. The role of unlabeled
data is to identify clusters and high density regions in the input space.

1.2 Modified Finite Newton Linear l2-SVM 3

As compared to currently used dual techniques (e.g in the SVMlight imple-

mentation of TSVM), our method effectively exploits data sparsity and lin-

earity of the problem to provide superior scalability. Additionally, we propose

a multiple switching heuristic that further improves TSVM training by an

order of magnitude. These speed enhancements turn TSVM into a feasible

tool for large scale applications.

2. We propose a novel algorithm for semi-supervised SVMs inspired from

Deterministic Annealing (DA) techniques. This approach generates a family

of objective functions whose non-convexity is controlled by an annealing pa-

rameter. The global minimizer is parametrically tracked in this family. This

approach alleviates the problem of local minima in the TSVM optimization

procedure which results in better solutions on some problems. A computa-

tionally attractive training algorithm is presented that involves a sequence

of alternating convex optimizations.

3. We conduct an experimental study on many document classification

tasks. This study clearly shows the utility of our tools for large scale

problems. This scale that has not been explored in semi-supervised learning

literature till now.

The modified finite Newton algorithm of Keerthi and DeCoste (2005)

for fast training of linear SVMs is a key subroutine for our algorithms.

In section 1.2 we describe this algorithm. Its semi-supervised extensions are

presented in section 1.3 and 1.4. Experimental results are reported in section

1.5. Section 1.6 contains some concluding comments.

All the algorithms described in this chapter are implemented in a public

domain software, SVMlin (see section 1.5) which can be used for fast training

of linear SVMs for supervised and semi-supervised classification problems.

1.2 Modified Finite Newton Linear l2-SVM

The modified finite Newton l2-SVM method (Keerthi and DeCoste, 2005)

(abbreviated l2-SVM-MFN) is a recently developed training algorithm for

Linear SVMs that is ideally suited to sparse datasets with large number of

examples and possibly large number of features.

Given a binary classification problem with l labeled examples {xi, yi}
l
i=1

where the input patterns xi ∈ R
d (e.g documents) and the labels yi ∈

{+1,−1}, l2-SVM-MFN provides an efficient primal solution to the following

4 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

SVM optimization problem:

w? = argmin
w∈Rd

1

2

l∑

i=1

l2(yiw
T xi) +

λ

2
‖w‖2 (1.1)

where l2 is the l2-SVM loss given by l2(z) = max(0, 1−z)2, λ is a real-valued

regularization parameter2 and the final classifier is given by sign(w?T x).

This objective function differs from the standard SVM problem in some

respects. First, instead of using the hinge loss as the data fitting term, the

square of the hinge loss (or the so-called quadratic soft margin loss function)

is used. This makes the objective function continuously differentiable, allow-

ing easier applicability of gradient techniques. Secondly, the bias term (“b”)

is also regularized. In the problem formulation of Eqn. 1.1, it is implicitly

assumed that an additional component in the weight vector and a constant

feature in the example vectors have been added to indirectly incorporate

the bias. This formulation combines the simplicity of a least squares aspect

with algorithmic advantages associated with SVMs.

We consider a version of l2-SVM-MFN where a weighted quadratic soft

margin loss function is used.

min
w

f(w) =
1

2

∑

i∈(w)

cil2(yiw
T xi) +

λ

2
‖w‖2 (1.2)

Here we have rewritten Eqn. 1.1 in terms of the support vector set (w) = {i :

yi (wT xi) < 1}. Additionally, the loss associated with the ith example has a

cost ci. f(w) refers to the objective function being minimized, evaluated at

a candidate solution w. Note that if the index set (w) were independent of

w and ran over all data points, this would simply be the objective function

for weighted linear regularized least squares (RLS).

Following Keerthi and DeCoste (2005), we observe that f is a strictly

convex, piecewise quadratic, continuously differentiable function having a

unique minimizer. The gradient of f at w is given by:

∇ f(w) = λ w + XT
(w)C(w)

[
X(w)w − Y(w)

]

where X(w) is a matrix whose rows are the feature vectors of training points

corresponding to the index set (w), Y(w) is a column vector containing

labels for these points, and C(w) is a diagonal matrix that contains the

costs ci for these points along its diagonal.

l2-SVM-MFN is a primal algorithm that uses the Newton’s Method for

2. λ = 1/C where C is the standard SVM parameter.

1.2 Modified Finite Newton Linear l2-SVM 5

unconstrained minimization of a convex function. The classical Newton’s

method is based on a second order approximation of the objective function,

and involves updates of the following kind:

wk+1 = wk + δk nk (1.3)

where the step size δk ∈ R, and the Newton direction nk ∈ R
d is given by:

nk = −[∇2 f(wk)]−1∇ f(wk). Here, ∇ f(wk) is the gradient vector and

∇2 f(wk) is the Hessian matrix of f at wk. However, the Hessian does not

exist everywhere, since f is not twice differentiable at those weight vectors

w where wT xi = yi for some index i.3 Thus a generalized definition of the

Hessian matrix is used. The modified finite Newton procedure proceeds as

follows. The step w̄k = wk + nk in the Newton direction can be seen to

be given by solving the following linear system associated with a weighted

linear regularized least squares problem over the data subset defined by the

indices (wk):
[

λI + XT
(wk)C(wk)X(wk)

]

w̄k = XT
(wk)C(wk)Y(wk) (1.4)

where I is the identity matrix. Once w̄k is obtained, wk+1 is obtained from

Eqn. 1.3 by setting wk+1 = wk + δk(w̄k −wk) after performing an exact line

search for δk, i.e by exactly solving a one-dimensional minimization problem:

δk = argmin
δ≥0

φ(δ) = f
(

wk + δ(w̄k − wk)
)

(1.5)

The modified finite Newton procedure has the property of finite conver-

gence to the optimal solution. The key features that bring scalability and

numerical robustness to l2-SVM-MFN are: (a) Solving the regularized least

squares system of Eqn. 1.4 by a numerically well-behaved Conjugate Gra-

dient scheme referred to as CGLS, which is designed for large, sparse data

matrices X. The benefit of the least squares aspect of the loss function comes

in here to provide access to a powerful set of tools in numerical computa-

tion. (b) Due to the one-sided nature of margin loss functions, these systems

are required to be solved over only restricted index sets (w) which can be

much smaller than the whole dataset. This also allows additional heuristics

to be developed such as terminating CGLS early when working with a crude

starting guess like 0, and allowing the following line search step to yield a

point where the index set (w) is small. Subsequent optimization steps then

work on smaller subsets of the data. Below, we briefly discuss the CGLS and

3. In the neighborhood of such a w, the index i leaves or enters (w). However, at w,
yiw

T xi = 1. So f is continuously differentiable inspite of these index jumps.

6 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

Line search procedures. We refer the reader to Keerthi and DeCoste (2005)

for full details.

1.2.1 CGLS

CGLS is a special conjugate-gradient solver that is designed to solve, in

a numerically robust way, large, sparse, weighted regularized least squares

problems such as the one in Eqn. 1.4. Starting with a guess solution, several

specialized conjugate-gradient iterations are applied to get w̄k that solves

Eqn. 1.4. The major expense in each iteration consists of two operations of

the form Xj(wk)p and XT
j(wk)q. If there are n0 non-zero elements in the data

matrix, these involve O(n0) cost. It is worth noting that, as a subroutine of

l2-SVM-MFN, CGLS is typically called on a small subset, Xj(wk) of the full

data set. To compute the exact solution of Eqn. 1.4, r iterations are needed,

where r is the rank of Xj(wk). But, in practice, such an exact solution is

unnecessary. CGLS uses an effective stopping criterion based on gradient

norm for early termination (involving a tolerance parameter ε). The total

cost of CGLS is O(tcglsn0) where tcgls is the number of iterations, which

depends on ε and the condition number of Xj(wk), and is typically found to

be very small relative to the dimensions of Xj(wk) (number of examples and

features). Apart from the storage of Xj(wk), the memory requirements of

CGLS are also minimal: only five vectors need to be maintained, including

the outputs over the currently active set of data points.

Finally, an important feature of CGLS is worth emphasizing. Suppose the

solution w of a regularized least squares problem is available, i.e the linear

system in Eqn. 1.4 has been solved using CGLS. If there is a need to solve

a perturbed linear system, it is greatly advantageous in many settings to

start the CG iterations for the new system with w as the initial guess. This

is called seeding. If the starting residual is small, CGLS can converge much

faster than with a guess of 0 vector. The utility of this feature depends

on the nature and degree of perturbation. In l2-SVM-MFN, the candidate

solution wk obtained after line search in iteration k is seeded for the CGLS

computation of w̄k. Also, in tuning λ over a range of values, it is valuable

to seed the solution for a particular λ onto the next value. For the semi-

supervised SVM implementations with l2-SVM-MFN, we will seed solutions

across linear systems with slightly perturbed label vectors, data matrices

and costs.

1.2 Modified Finite Newton Linear l2-SVM 7

1.2.2 Line Search

Given the vectors wk,w̄k in some iteration of l2-SVM-MFN, the line search

step requires us to solve Eqn. 1.5. The one-dimensional function φ(δ) is the

restriction of the objective function f on the ray from wk onto w̄k. Hence,

like f , φ(δ) is also a continuously differentiable, strictly convex, piecewise

quadratic function with a unique minimizer. φ′ is a continuous piecewise

linear function whose root, δk, can be easily found by sorting the break

points where its slope changes and then performing a sequential search on

that sorted list. The cost of this operation is negligible compared to the cost

of the CGLS iterations.

1.2.3 Complexity

l2-SVM-MFN alternates between calls to CGLS and line searches until

the support vector set (wk) stabilizes upto a tolerance parameter τ . Its

computational complexity is O(tmfnt̄cglsn0) where tmfn is the number of

outer iterations of CGLS calls and line search, and t̄cgls is the average

number of CGLS iterations. The number of CGLS iterations to reach a

relative error of ε can be bounded in terms of ε and the condition number

of the left-hand-side matrix in Eqn 1.4 (Bjork, 1996). Thus, the CGLS calls

have linear complexity in the number of non-zeros in the data matrix.

In practice, tmfn, t̄cgls depends on the data set and the tolerances desired

in the stopping criterion, but are typically very small. As an example of

typical behavior: on a Reuters (Lewis et al., 2004) text classification problem

(top level category CCAT versus rest) involving 804414 examples and 47236

features, tmfn = 7 with a maximum of tcgls = 28 CGLS iterations; on this

dataset l2-SVM-MFN converges in about 100 seconds on an Intel 3GHz,

2GB RAM machine4. The practical scaling of l2-SVM-MFN is found to be

linear in the number of non-zero entries in the data matrix (Keerthi and

DeCoste, 2005).

1.2.4 Other Loss functions

All the discussion in this paper can be applied to other loss functions such

as Huber’s Loss and rounded Hinge loss using the modifications outlined

in Keerthi and DeCoste (2005).

We also note a recently proposed linear time training algorithm for hinge

loss (Joachims, 2006). While detailed comparative studies are yet to be

4. For this experiment, λ is chosen as in (Joachims, 2006); ε, τ = 10−6.

8 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

conducted, preliminary experiments have shown that l2-SVM-MFN and the

methods of (Joachims, 2006) are competitive with each other (at their

default tolerance parameters).

In the following section, we develop semi-supervised algorithms that pro-

vide l2-SVM-MFN the capability of dealing with unlabeled data. We now

assume we have l labeled examples {xi, yi}
l
i=1 and u unlabeled examples

{x′
j}

u
j=1 with xi, x

′
j ∈ R

d and yi ∈ {−1, +1}. Our goal is to construct a lin-

ear classifier sign(wT x) that utilizes unlabeled data, typically in situations

where l � u.

1.3 Fast Multi-switch Transductive SVMs

Transductive SVM appends an additional term in the SVM objective func-

tion whose role is to drive the classification hyperplane towards low data den-

sity regions. Variations of this idea have appeared in the literature (Joachims,

1998; Bennett and Demirez, 1998; Fung and Mangasarian, 2001). Since

(Joachims, 1998) describes what appears to be the most natural extension

of standard SVMs among these methods, and is popularly used in text clas-

sification applications, we will focus on developing its large scale implemen-

tation.

The following optimization problem is setup for standard TSVM5:

min
w,{y′

j}
u
j=1

λ

2
‖w‖2 +

1

2l

l∑

i=1

l(yi wT xi) +
λ′

2u

u∑

j=1

l(y′j wT x′
j)

subject to:
1

u

u∑

j=1

max[0, sign(wT x′
j)] = r

where the hinge loss function, l(z) = l1(z) = max(0, 1− z) is normally used.

The labels on the unlabeled data, y′1 . . . y′u, are {+1,−1}-valued variables in

the optimization problem. In other words, TSVM seeks a hyperplane w and

a labeling of the unlabeled examples, so that the SVM objective function is

minimized, subject to the constraint that a fraction r of the unlabeled data

be classified positive. SVM margin maximization in the presence of unlabeled

examples can be interpreted as an implementation of the cluster assumption.

In the optimization problem above, λ′ is a user-provided parameter that

provides control over the influence of unlabeled data. For example, if the

5. The bias term is typically excluded from the regularizer, but this factor is not expected
to make any significant difference.

1.3 Fast Multi-switch Transductive SVMs 9

data has distinct clusters with a large margin, but the cluster assumption

does not hold, then λ′ can be set to 0 and the standard SVM is retrieved.

If there is enough labeled data, λ, λ′ can be tuned by cross-validation. An

initial estimate of r can be made from the fraction of labeled examples that

belong to the positive class and subsequent fine tuning can be done based

on validation performance.

This optimization is implemented in (Joachims, 1998) by first using an

inductive SVM to label the unlabeled data and then iteratively switching

labels and retraining SVMs to improve the objective function. The TSVM

algorithm wraps around an SVM training procedure. The original (and

widely popular) implementation of TSVM uses the SVMlight software. There,

the training of SVMs in the inner loops of TSVM uses dual decomposition

techniques. As shown by experiments in (Keerthi and DeCoste, 2005), in

sparse, linear settings one can obtain significant speed improvements with

l2-SVM-MFN over SVMlight. Thus, by implementing TSVM with l2-SVM-

MFN, we expect similar improvements for semi-supervised learning on large,

sparse datasets. Note that l2-SVM-MFN can also be used to speedup other

TSVM formulations e.g. that of Collobert et al. (2006) in such cases. The l2-

SVM-MFN retraining steps in the inner loop of TSVM are typically executed

extremely fast by using seeding techniques. Additionally, we also propose a

version of TSVM where more than one pair of labels may be switched in each

iteration. These speed-enhancement details are discussed in the following

subsections.

1.3.1 Implementing TSVM Using l2-SVM-MFN

To develop the TSVM implementation with l2-SVM-MFN, we consider the

TSVM objective function but with the L2-SVM loss function, l = l2.

Figure 1.1: l2 loss function for TSVM

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

output

lo
ss

10 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

Note that this objective function above can also be equivalently written

in terms of the following loss over each unlabeled example x:

min[l2(w
T x), l2(−wT x)] = max[0, 1 − |wT x|]2

Here, we pick the value of the label variable y that minimizes the loss on

the unlabeled example x, and rewrite in terms of the absolute value of the

output of the classifier on x. This loss function is shown in Fig. 1.1. We note

in passing that, l1 and l2 loss terms over unlabeled examples are very similar

on the interval [−1, +1]. The non-convexity of this loss function implies that

the TSVM training procedure is susceptible to local optima issues. In the

next subsection, we will outline a deterministic annealing procedure that

can help overcome this problem.

The TSVM algorithm with l2-SVM-MFN closely follows the presentation

in (Joachims, 1998). A classifier is obtained by first running l2-SVM-MFN

on just the labeled examples. Temporary labels are assigned to the unlabeled

data by thresholding the soft outputs of this classifier so that the fraction of

the total number of unlabeled examples that are temporarily labeled positive

equals the parameter r. Then starting from a small value of λ′, the unlabeled

data is gradually brought in by increasing λ′ by a certain factor in the outer

loop. This gradual increase of the influence of the unlabeled data is a way

to protect TSVM from being immediately trapped in a local minimum.

An inner loop identifies pairs of unlabeled examples with positive and

negative temporary labels such that switching these labels would decrease

the objective function. l2-SVM-MFN is then retrained with the switched

labels, starting the CGLS/line-search iterations with the current classifier.

1.3.2 Multiple Switching

The TSVM algorithm presented in Joachims (1998) involves switching a

single pair of labels at a time. We propose a variant where upto S pairs

are switched such that the objective function improves. Here, S is a user

controlled parameter. Setting S = 1 recovers the original TSVM algorithm,

whereas setting S = u/2 switches as many pairs as possible in the inner loop

of TSVM. The implementation is conveniently done as follows:

1. Identify unlabeled examples with active indices and currently positive

labels. Sort corresponding outputs in ascending order. Let the sorted list be

L+.

2. Identify unlabeled examples with active indices and currently negative

labels. Sort corresponding outputs in descending order. Let the sorted list

be L−.

1.4 Semi-supervised SVMs based on Deterministic Annealing 11

3. Pick pairs of elements, one from each list, from the top of these lists

until either a pair is found such that the output from L+ is greater than the

output from L−, or if S pairs have been picked.

4. Switch the current labels of these pairs.

Using arguments similar to Theorem 2 in Joachims (1998) we can show

that Transductive l2-SVM-MFN with multiple-pair switching converges in a

finite number of steps.

We are unaware of any prior work that suggests and evaluates this simple

multiple-pair switching heuristic. Our experimental results in section 1.5

establish that this heuristic is remarkably effective in speeding up TSVM

training while maintaining generalization performance.

1.3.3 Seeding

The effectiveness of l2-SVM-MFN on large sparse datasets combined with

the efficiency gained from seeding w in the re-training steps (after switching

labels or after increasing λ′) make this algorithm quite attractive. The com-

plexity of Transductive L2-TSVM-MFN is O(nswitchest̄mfnt̄cglsn0), where

nswitches is the number of label switches. Typically, nswitches is expected to

strongly depend on the data set and also on the number of labeled examples.

Since it is difficult to apriori estimate the number of switches, this is an issue

that is best understood from empirical observations.

1.4 Semi-supervised SVMs based on Deterministic Annealing

The transductive SVM loss function over the unlabeled examples can be

seen from Fig. 1.1 to be non-convex. This makes the TSVM optimization

procedure susceptible to local minimum issues causing a loss in its perfor-

mance in many situations, e.g as recorded by Chapelle and Zien (2005).

We now present a new algorithm based on Deterministic Annealing (DA)

that can potentially overcome this problem while also being computationally

very attractive for large scale applications. Deterministic Annealing (Bilbro

et al., 1989; Soderberg, 1989) is an established tool for combinatorial opti-

mization that approaches the problem from information theoretic principles.

The discrete variables in the optimization problem are relaxed to continuous

probability variables and a non-negative temperature parameter T is used

to track the global optimum.

12 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

We begin by re-writing the TSVM objective function as follows:

w? = argmin
w,{µj}u

j=1

λ

2
‖w‖2 +

1

2l

l∑

i=1

l2(w
T xi)

+
λ′

2u

u∑

j=1

(
µjl2(w

T x′
j) + (1 − µj)l2(−wT x′

j)
)

Here, we introduce binary valued variables µj = (1 + yj)/2. Let pj ∈ [0, 1]

denote the belief probability that the unlabeled example x′
j belongs to the

positive class. The Ising model 6 motivates the following objective function,

where we relax the binary variables µj to probability-like variables pj , and

include entropy terms for the distributions defined by pj :

w?
T = argmin

w,{pj}u
j=1

λ

2
‖w‖2 +

1

2l

l∑

i=1

l2(yiw
T xi)

+
λ′

2u

u∑

j=1

(
pjl2(w

T x′
j) + (1 − pj)l2(−wT x′

j)
)

+
T

2u

u∑

j=1

[pj log pj + (1 − pj) log (1 − pj)] (1.6)

Here, the “temperature” T parameterizes a family of objective functions.

The objective function for a fixed T is minimized under the following class

balancing constraint:

1

u

u∑

j=1

pj = r (1.7)

where r is the fraction of the number of unlabeled examples belonging to

the positive class. As in TSVM, r is treated as a user-provided parameter.

It may also be estimated from the labeled examples.

The solution to the optimization problem above is tracked as the temper-

ature parameter T is lowered to 0.

We monitor the value of the objective function in the optimization path

and return the solution corresponding to the minimum value achieved.

To develop an intuition for the working on this method, we consider the

loss term in the objective function associated with an unlabeled example

6. A multiclass extension would use the Potts glass model. There, one would have to
append the entropy of the distribution over multiple classes to a multi-class objective
function.

1.4 Semi-supervised SVMs based on Deterministic Annealing 13

as a function of the output of the classifier. Figure 1.2 plots this loss term

for various values of T . As the temperature is decreased, the loss function

deforms from a squared-loss shape where a global optimum is easier to

achieve, to the TSVM loss function in Fig. 1.1. The minimizer is slowly

tracked as the temperature is lowered towards zero.

Figure 1.2: DA loss function parameterized by T.

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

output

lo
ss

Decreasing T

We note a recently proposed method (Chapelle et al., 2006) with similar

motivation.

The optimization is done in stages, starting with high values of T and then

gradually decreasing T towards 0. For each T , the problem in Eqns. 1.6,1.7

is optimized by alternating the minimization over w and p = [p1 . . . pu]

respectively. Fixing p, the optimization over w is done by l2-SVM-MFN

with seeding. Fixing w, the optimization over p can also be done easily as

described below. Both these problems involve convex optimization and can

be done exactly and efficiently. We now provide some details.

1.4.1 Optimizing w

We describe the steps to efficiently implement the l2-SVM-MFN loop for

optimizing w keeping p fixed. The call to l2-SVM-MFN is made on the data

X̂ =
[
XT X ′T X ′T

]T
whose first l rows are formed by the labeled examples,

and the next 2u rows are formed by the unlabeled examples appearing as

two repeated blocks. The associated label vector and cost matrix are given

14 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

by

Ŷ = [y1, y2...yl,

u
︷ ︸︸ ︷

1, 1, ...1,

u
︷ ︸︸ ︷

−1,−1... − 1]

C = diag







l
︷ ︸︸ ︷

1

l
...

1

l
,

u
︷ ︸︸ ︷

λ′ p1

u
...

λ′ pu

u

u
︷ ︸︸ ︷

λ′(1 − p1)

u
...

λ′(1 − pu)

u







(1.8)

Even though each unlabeled data contributes two terms to the objective

function, effectively only one term contributes to the complexity. This is

because matrix-vector products, which form the dominant expense in l2-

SVM-MFN, are performed only on unique rows of a matrix. The output

may be duplicated for duplicate rows. Infact, we can re-write the CGLS

calls in l2-SVM-MFN so that the unlabeled examples appear only once in

the data matrix.

1.4.2 Optimizing p

For the latter problem of optimizing p for a fixed w, we construct the

Lagrangian:

L =
λ′

2u

u∑

j=1

(
pjl2(w

T x′
j) + (1 − pj)l2(−wT x′

j)
)

+

T

2u

u∑

j=1

(pj log pj + (1 − pj) log (1 − pj)) − ν




1

u

u∑

j=1

pj − r





Solving ∂L/∂pj = 0, we get:

pj =
1

1 + e
gj−2ν

T

(1.9)

where gj = λ′[l2(w
T x′

j) − l2(−wT x′
j)]. Substituting this expression in the

balance constraint in Eqn. 1.7, we get a one-dimensional non-linear equation

in 2ν:

1

u

u∑

j=1

1

1 + e
gi−2ν

T

= r

The root is computed by using a hybrid combination of Newton-Raphson

iterations and the bisection method together with a carefully set initial value.

1.5 Empirical Study 15

1.4.3 Stopping Criteria

For a fixed T , the alternate minimization of w and p proceeds until some

stopping criterion is satisfied. A natural criterion is the mean Kullback-

Liebler divergence (relative entropy) KL(p, q) between current values of pi

and the values, say qi, at the end of last iteration. Thus the stopping criterion

for fixed T is:

KL(p, q) =

u∑

j=1

pj log
pj

qj
+ (1 − pj) log

1 − pj

1 − qj
< uε

A good value for ε is 10−6. The temperature may be decreased in the outer

loop until the total entropy falls below a threshold, which we take to be

ε = 10−6 as above, i.e.,

H(p) = −
u∑

j=l

(pj log pj + (1 − pj) log (1 − pj)) < uε

The TSVM objective function,

λ

2
‖w‖2 +

1

2l

l∑

i=1

l2(yi (wT xi) +
λ′

2u

u∑

j=1

max
[
0, 1 − |wT x′

j |
]2

is monitored as the optimization proceeds. The weight vector corresponding

to the minimum transductive cost in the optimization path is returned as

the solution.

1.5 Empirical Study

Semi-supervised learning experiments were conducted to test these algo-

rithms on four medium-scale datasets (aut-avn, real-sim, ccat and gcat) and

three large scale (full-ccat,full-gcat,kdd99) datasets. These are listed in Ta-

ble 1.1. All experiments were performed on Intel Xeon CPU 3GHz, 2GB

RAM machines.

Software

For software implementation used for benchmarking in this section, we point

the reader to the SVMlin package available at

http://www.cs.uchicago.edu/~vikass/svmlin.html

16 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

Datasets

The aut-avn and real-sim binary classification datasets come from a

collection of UseNet articles7 from four discussion groups, for simulated

auto racing, simulated aviation, real autos, and real aviation. The ccat and

gcat datasets pose the problem of separating corporate and government re-

lated articles respectively; these are the top-level categories in the RCV1

training data set Lewis et al. (2004). full-ccat and full-gcat are the corre-

sponding datasets containing all the 804414 training and test documents

in the RCV1 corpus. These data sets create an interesting situation where

semi-supervised learning is required to learn different low density separa-

tors respecting different classification tasks in the same input space. The

kdd99 dataset is from the KDD 1999 competition task to build a network in-

trusion detector, a predictive model capable of distinguishing between “bad”

connections, called intrusions or attacks, and “good” normal connections.

This is a relatively low-dimensional dataset containing about 5 million ex-

amples.

Table 1.1: Two-class datasets. d : data dimensionality, n̄0 : average sparsity,
l+u : number of labeled and unlabeled examples, t : number of test examples,
r : positive class ratio.

Dataset d n̄0 l + u t r

aut-avn 20707 51.32 35588 35587 0.65

real-sim 20958 51.32 36155 36154 0.31

ccat 47236 75.93 17332 5787 0.46

gcat 47236 75.93 17332 5787 0.30

full-ccat 47236 76.7 804414 - 0.47

full-gcat 47236 76.7 804414 - 0.30

kdd99 128 17.3 4898431 - 0.80

For the medium-scale datasets, the results below are averaged over 10

random stratified splits of training (labeled and unlabeled) and test sets and

the detailed performance of SVM, DA and TSVM (single and maximum

switching) is studied as a function of the amount of labeled data in the

training set. For the large scale datasets full-ccat, full-gcat and kdd99 we are

mainly interested in computation times; a transductive setting is used to

study performance in predicting the labels of unlabeled data on single splits.

7. Available at: http://www.cs.umass.edu/∼mccallum/data/sraa.tar.gz

1.5 Empirical Study 17

On full-ccat and full-gcat , we train SVM, DA and TSVM with l = 100, 1000

labels; for kdd99 we experiment with l = 1000 labels.

Since the two classes are fairly well represented in these datasets, we report

error rates, but expect our conclusions to also hold for other performance

measures such as F-measure. We use a default values of λ = 0.001, and

λ′ = 1 for all datasets except8 for aut-avn and ccat where λ′ = 10.

Minimization of Objective Function

We first examine the effectiveness of DA, TSVM with single switching

(S=1) and TSVM with maximum switching (S=u/2) in optimizing the

objective function. These three procedures are labeled DA,TSVM(S=1) and

TSVM(S=max) in Figure 1.3, where we report the minimum value of the

objective function with respect to varying number of labels on aut-avn, real-

sim, ccat and gcat.

Figure 1.3: DA versus TSVM(S=1) versus TSVM(S=max): Minimum value
of objective function achieved.

45 89 178 356 712 1424
0.65

0.7

0.75
aut−avn

m
in

 o
bj

. v
al

ue

labels
46 91 181 362 724 1447

0.1

0.15

0.2

0.25

0.3
real−sim

m
in

 o
bj

. v
al

ue

labels

44 87 174 348 695 1389
0.4

0.5

0.6

0.7

0.8
ccat

m
in

 o
bj

. v
al

ue

labels
44 87 174 348 695 1389

0.1

0.15

0.2
gcat

m
in

 o
bj

. v
al

ue

labels

DA

TSVM(S=1)

TSVM(S=max)

The following observations can be made.

1. Strikingly, multiple switching leads to no loss of optimization as compared

to single switching. Indeed, the minimum objective value plots attained by

single and multiple switching are virtually indistinguishable in Figure 1.3.

8. This produced better results for both TSVM and DA.

18 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

Table 1.2: Comparison of minimum value of objective functions attained by
TSVM(S=max) and DA on full-ccat and full-gcat.

full-ccat full-gcat

l, u TSVM DA TSVM DA

100, 402107 0.1947 0.1940 0.1491 0.1491

100, 804314 0.1945 0.1940 0.1500 0.1499

1000, 402107 0.2590 0.2588 0.1902 0.1901

1000, 804314 0.2588 0.2586 0.1907 0.1906

Table 1.3: Comparison of minimum value of objective functions attained by
TSVM(S=max) and DA on kdd99

l, u TSVM DA

1000, 4897431 0.0066 0.0063

2. As compared to TSVM(S=1 or S=max), DA performs significantly bet-

ter optimization on aut-avn and ccat; and slightly, but consistently bet-

ter optimization on real-sim and gcat. These observations continue to hold

for full-ccat and full-gcat as reported in Table 1.2 where we only performed

experiments with TSVM(S=max). Table 1.3 reports that DA gives a better

minimum on the kdd99 dataset too.

Generalization Performance

We now examine the generalization performance of DA, TSVM with single

and maximum switching. In Figure 1.4 we plot the mean error rate on

the (unseen) test set with respect to varying number of labels on aut-

avn, real-sim, ccat and gcat. In Figure 1.5, we superimpose these curves

over the performance curves of a standard SVM which ignores unlabeled

data. Tables 1.4, 1.5 report the corresponding results for full-ccat, full-

gcat and kdd99. The following observations can be made.

1. Comparing the performance of SVM against the semi-supervised algo-

rithms in Figure 1.5, the benefit of unlabeled data for boosting generaliza-

tion performance is evident on all datasets. This is true even for moderate

number of labels, though it is particularly striking towards the lower end.

On full-ccat and full-gcat too one can see significant gains with unlabeled

data. On kdd99, SVM performance with 1000 labels is already very good.

2. In Figure 1.4, we see that on aut-avn, DA outperforms TSVM signifi-

1.5 Empirical Study 19

Figure 1.4: Error rates on Test set: DA versus TSVM(S=1) versus TSVM(S=max)

45 89 178 356 712 1424
2

4

6

8
aut−avn

te
st

 e
rr

or
(%

)
labels

46 91 181 362 724 1447
5

10

15

20
real−sim

te
st

 e
rr

or
(%

)

labels

44 87 174 348 695 1389
0

10

20

30
ccat

te
st

 e
rr

or
(%

)

labels
44 87 174 348 695 1389
5

5.5

6

6.5
gcat

te
st

 e
rr

or
(%

)

labels

DA

TSVM(S=1)

TSVM(S=max)

Table 1.4: TSVM(S=max) versus DA versus SVM: Error rates over unlabeled
examples in full-ccat and full-gcat.

full-ccat full-gcat

l, u TSVM DA SVM TSVM DA SVM

100, 402107 14.81 14.88 25.60 6.02 6.11 11.16

100, 804314 15.11 13.55 25.60 5.75 5.91 11.16

1000, 402107 11.45 11.52 12.31 5.67 5.74 7.18

1000, 804314 11.30 11.36 12.31 5.52 5.58 7.18

cantly. On real-sim, TSVM and DA perform very similar optimization of

the transduction objective function (Figure 1.3), but appear to return very

different solutions. The TSVM solution returns lower error rates as compared

to DA on this dataset. On ccat, DA performed a much better optimization

(Figure 1.3) but this does not translate into major error rate improvements.

DA and TSVM are very closely matched on gcat. From Table 1.4 we see

that TSVM and DA are competitive. On kdd99 (Table 1.5), DA gives the

best results.

A lower objective value may not correlate with generalization performance

when the cluster assumption is invalid or when it holds to a lesser degree.

Also note that the prior knowledge of class balance, which we assume is

exactly known in these experiments, is utilized differently by the algorithms.

3. On all datasets we found that maximum switching returned nearly iden-

20 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

Figure 1.5: Benefit of Unlabeled data

45 89 178 356 712 1424
0

10

20

30

40
aut−avn

te
st

 e
rr

or
(%

)

labels
46 91 181 362 724 1447
0

10

20

30
real−sim

te
st

 e
rr

or
(%

)

labels

44 87 174 348 695 1389
0

10

20

30
ccat

te
st

 e
rr

or
(%

)

labels
44 87 174 348 695 1389
0

10

20

30
gcat

te
st

 e
rr

or
(%

)

labels

DA

TSVM(S=1)

TSVM(S=max)

SVM

Table 1.5: DA versus TSVM(S = max) versus SVM: Error rates over
unlabeled examples in kdd99.

l,u TSVM DA SVM

1000, 4897431 0.48 0.22 0.29

tical performance as single switching. Since it saves significant computation

time, as we report in the following section, our study establishes multiple

switching (in particular, maximum switching) as a valuable heuristic for

training TSVMs.

4. These observations are also true for in-sample transductive performance

for the medium scale datasets (detailed results not shown). Both TSVM and

DA are found to provide high quality extension to unseen test data.

Computational Timings

In Figure 1.6 and Tables 1.6, 1.7 we report the computation time for our

algorithms. The following observations can be made.

1. From Figure 1.6 we see that the single switch TSVM can be six to seven

times slower than the maximum switching variant, particularly when labels

are few. DA is significantly faster than single switch TSVM when labels are

relatively few, but slower than TSVM with maximum switching.

1.5 Empirical Study 21

Figure 1.6: Computation time with respect to number of labels for DA and
Transductive l2-SVM-MFN with single and multiple switches.

45 89 178 356 712 1424
0

500

1000

1500
aut−avn

cp
u

tim
e

(s
ec

s)

labels
46 91 181 362 724 1447
0

500

1000

1500
real−sim

cp
u

tim
e

(s
ec

s)

labels

44 87 174 348 695 1389
0

500

1000

1500
ccat

cp
u

tim
e

(s
ec

s)

labels
44 87 174 348 695 1389
0

200

400

600
gcat

cp
u

tim
e

(s
ec

s)

labels

DA

TSVM(S=1)

TSVM(S=max)

Table 1.6: Computation times (mins) for TSVM(S=max) and DA on full-

ccat and full-gcat (804414 examples, 47236 features)

full-ccat full-gcat

l, u TSVM DA TSVM DA

100, 402107 140 120 53 72

100, 804314 223 207 96 127

1000, 402107 32 57 20 42

1000, 804314 70 100 38 78

2. In Table 1.6, we see that doubling the amount of data roughly doubles

the training time, empirically confirming the linear time complexity of our

methods. The training time is also strongly dependent on the number of

labels. On kdd99 (Table 1.7), the maximum-switch TSVM took around 15

minutes to process the 5 million examples whereas DA took 2 hours and 20

minutes.

3. On medium scale datasets, we also compared against SVMlight which took

on the order of several hours to days to train TSVM. We expect the multi-

switch TSVM to also be highly effective when implemented in conjunction

with the methods of (Joachims, 2006).

22 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

Table 1.7: Computation time (mins) for TSVM(S=max) and DA on
kdd99 (4898431 examples, 127 features)

l, u TSVM DA

1000, 4897431 15 143

Importance of Annealing

To confirm the necessity of an annealing component (tracking the mini-

mizer while lowering T) in DA, we also compared it with an alternating w,p

optimization procedure where the temperature parameter is held fixed at

T = 0.1 and T = 0.001. This study showed that annealing is important;

it tends to provide higher quality solutions as compared to fixed tempera-

ture optimization. It is important to note that the gradual increase of λ′ to

the user-set value in TSVM is also a mechanism to avoid local optima. The

non-convex part of the TSVM objective function is gradually increased to a

desired value. In this sense, λ′ simultaneously plays the role of an annealing

parameter and also provides control over the strength of the cluster assump-

tion. This dual role has the advantage that a suitable λ′ can be chosen by

monitoring performance on a validation set as the algorithm proceeds. In

DA, however, we directly apply a framework for global optimization, and

decouple annealing from the implementation of the cluster assumption. As

our experiments show, this can lead to significantly better solutions on many

problems. On the other hand, on time-critical applications one may tradeoff

quality of optimization against time by varying the annealing rate.

1.6 Conclusion

In this paper we have proposed a family of primal SVM algorithms for large

scale semi-supervised learning based on the finite Newton technique. Our

methods significantly enhance the training speed of TSVM over existing

methods such as SVMlight and also include a new effective technique based

on deterministic annealing. The new TSVM method with multiple switching

is the fastest of all the algorithms considered, and also returns good general-

ization performance. The DA method is relatively slower but often gives the

best accuracy. These algorithms can be very valuable in applied scenarios

where sparse classification problems arise frequently, labeled data is scarce

and plenty of unlabeled data is easily available. Even in situations where a

good number of labeled examples are available, utilizing unlabeled data to

1.6 Conclusion 23

obtain a semi-supervised solution using these algorithms can be worthwhile.

For one thing, the semi-supervised solutions never lag behind purely super-

vised solutions in terms of performance. The presence of a mix of labeled

and unlabeled data can provide added benefits such as reducing performance

variability and stabilizing the linear classifier weights. Our algorithms can be

extended to the non-linear setting (Sindhwani et al., 2006), and may also be

developed to handle clustering and one-class classification problems. These

are subjects for future work.

References

K. Bennett and A. Demirez. Semi-supervised support vector machines. In

Neural Information Processing Systems, 1998.

G. Bilbro, R. Mann, T.K. Miller, W.E. Snyder, and D.E. Van den. Opti-

mization by mean field annealing, 1989.

Ake Bjork. Numerical Methods for Least Squares Problems. SIAM, 1996.

O. Chapelle, M. Chi, and A. Zien. A continuation method for semi-

supervised svms. In International Conference on Machine Learning, 2006.

O. Chapelle and A. Zien. Semi-supervised classification by low density

separation. In Artificial Intelligence & Statistics, 2005.

R. Collobert, F. Sinz, J. Weston, and L. Bottou. Large scale transductive

svms. Journal of Machine Learning Research, 7:1687–1712, 2006.

G. Fung and O. Mangasarian. Semi-supervised support vector machines

for unlabeled data classification. Optimization Methods and Software, 15:

29–44, 2001.

T. Joachims. Transductive inference for text classification using support

vector machines. In International Conference on Machine Learning, 1998.

T. Joachims. Training linear svms in linear time. In KDD, 2006.

S. S. Keerthi and D. DeCoste. A modified finite newton method for fast

solution of large scale linear svms. Journal of Machine Learning Research,

6:341–361, 2005.

D. Lewis, Y. Yang, T. Rose, and F. Li. Rcv1: A new benchmark collection

for text categorization research. Journal of Machine Learning Research,

5:361–397, 2004.

V. Sindhwani, S.S. Keerthi, and O. Chapelle. Deterministic annealing for

semi-supervised kernel machines. In International Conference on Machine

Learning, 2006.

24 Newton Methods for Fast Solution of Semi-supervised Linear SVMs

C. Peterson & B. Soderberg. A new method for mapping optimization

problems onto neural networks. International Journal of Neural Systems,

1:3–22, 1989.

V. Vapnik. Statistical Learning Theory. John Wiley and Sons, 1998.

