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Abstract

In this paper, we propose two new sup-
port vector approaches for ordinal regression,
which optimize multiple thresholds to define
parallel discriminant hyperplanes for the or-
dinal scales. Both approaches guarantee that
the thresholds are properly ordered at the op-
timal solution. The size of these optimiza-
tion problems is linear in the number of train-
ing samples. The SMO algorithm is adapted
for the resulting optimization problems; it is
extremely easy to implement and scales effi-
ciently as a quadratic function of the number
of examples. The results of numerical experi-
ments on benchmark datasets verify the use-
fulness of these approaches.

1. Introduction

We consider the supervised learning problem of pre-
dicting variables of ordinal scale, a setting that bridges
metric regression and classification, and referred to as
ranking learning or ordinal regression. Ordinal regres-
sion arises frequently in social science and information
retrieval where human preferences play a major role.
The training samples are labelled by a set of ranks,
which exhibits an ordering among the different cate-
gories. In contrast to metric regression problems, these
ranks are of finite types and the metric distances be-
tween the ranks are not defined. These ranks are also
different from the labels of multiple classes in classi-
fication problems due to the existence of the ordering
information.

There are several approaches to tackle ordinal regres-
sion problems in the domain of machine learning. The
naive idea is to transform the ordinal scales into nu-
meric values, and then solve the problem as a stan-

Appearing in Proceedings of the 22 st International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

dard regression problem. Kramer et al. (2001) inves-
tigated the use of a regression tree learner in this way.
A problem with this approach is that there might be
no principled way of devising an appropriate mapping
function since the true metric distances between the
ordinal scales are unknown in most of the tasks. An-
other idea is to decompose the original ordinal regres-
sion problem into a set of binary classification tasks.
Frank and Hall (2001) converted an ordinal regres-
sion problem into nested binary classification prob-
lems that encode the ordering of the original ranks
and then organized the results of these binary classi-
fiers in some ad hoc way for prediction. It is also pos-
sible to formulate the original problem as a large aug-
mented binary classification problem. Har-Peled et al.
(2002) proposed a constraint classification approach
that provides a unified framework for solving rank-
ing and multi-classification problems. Herbrich et al.
(2000) applied the principle of Structural Risk Mini-
mization (Vapnik, 1995) to ordinal regression leading
to a new distribution-independent learning algorithm
based on a loss function between pairs of ranks. The
main difficulty with these two algorithms (Har-Peled
et al., 2002; Herbrich et al., 2000) is that the prob-
lem size of these formulations is a quadratic function
of the training data size. As for sequential learning,
Crammer and Singer (2002) proposed a proceptron-
based online algorithm for rank prediction, known as
the PRank algorithm.

Shashua and Levin (2003) generalized the support vec-
tor formulation for ordinal regression by finding r − 1
thresholds that divide the real line into r consecutive
intervals for the r ordered categories. However there
is a problem with their approach: the ordinal inequal-
ities on the thresholds, b1 ≤ b2 ≤ . . . ≤ br−1, are not
included in their formulation. This omission may re-
sult in disordered thresholds at the solution on some
unfortunate cases (see section 4.1 for an example).

In this paper, we propose two new approaches for sup-
port vector ordinal regression. The first one takes
only the adjacent ranks into account in determining
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the thresholds, exactly as Shashua and Levin (2003)
proposed, but we introduce explicit constraints in the
problem formulation that enforce the inequalities on
the thresholds. The second approach is entirely new;
it considers the training samples from all the ranks
to determine each threshold. Interestingly, we show
that, in this second approach, the ordinal inequality
constraints on the thresholds are automatically satis-
fied at the optimal solution though there are no ex-
plicit constraints on these thresholds. For both ap-
proaches the size of the optimization problems is linear
in the number of training samples. We show that the
popular SMO algorithm (Platt, 1999; Keerthi et al.,
2001) for SVMs can be easily adapted for the two ap-
proaches. The resulting algorithms scale efficiently;
empirical analysis shows that the cost is roughly a
quadratic function of the problem size. Using several
benchmark datasets we demonstrate that the gener-
alization capabilities of the two approaches are much
better than that of the naive approach of doing stan-
dard regression on the ordinal labels.

The paper is organized as follows. In section 2 we
present the first approach with explicit inequality con-
straints on the thresholds, derive the optimality con-
ditions for the dual problem, and adapt the SMO al-
gorithm for the solution. In section 3 we present the
second approach with implicit constraints. In section
4 we do an empirically study to show the scaling prop-
erties of the two algorithms and their generalization
performance. We conclude in section 5.

Notations Throughout this paper we will use x to de-

note the input vector of the ordinal regression problem and

φ(x) to denote the feature vector in a high dimensional re-

producing kernel Hilbert space (RKHS) related to x by

transformation. All computations will be done using the

reproducing kernel function only, which is defined as

K(x, x′) = 〈φ(x) · φ(x′)〉 (1)

where 〈·〉 denotes inner product in the RKHS. Without loss

of generality, we consider an ordinal regression problem

with r ordered categories and denote these categories as

consecutive integers Y = {1, 2, . . . , r} to keep the known

ordering information. In the j-th category, where j ∈ Y ,

the number of training samples is denoted as nj , and the

i-th training sample is denoted as xj
i where xj

i ∈ R
d. The

total number of training samples
∑r

j=1 nj is denoted as n.

bj , j = 1, . . . , r − 1 denote the (r − 1) thresholds.

2. Explicit Constraints on Thresholds

As a powerful computational tool for supervised learn-
ing, support vector machines (SVMs) map the in-
put vectors into feature vectors in a high dimensional

b2b1

y=1 y=2 y=3

b2-1 b2+1b1-1 b1+1

ξi
∗ 1+1

ξi
2

ξi
∗ 2+1

ξi
1

f(x) =  w φ(x).

Figure 1. An illustration of the definition of slack variables
ξ and ξ∗ for the thresholds. The samples from different
ranks, represented as circles filled with different patterns,
are mapped by 〈w · φ(x)〉 onto the axis of function value.
Note that a sample from rank j +1 could be counted twice
for errors if it is sandwiched by bj+1 − 1 and bj + 1 where
bj+1 − 1 < bj + 1, and the samples from rank j + 2, j − 1
etc. never give contributions to the threshold bj .

RKHS (Vapnik, 1995; Schölkopf & Smola, 2002),
where a linear machine is constructed by minimizing
a regularized functional. For binary classification (a
special case of ordinal regression with r = 2), SVMs
find an optimal direction that maps the feature vec-
tors into function values on the real line, and a single
optimized threshold is used to divide the real line into
two regions for the two classes respectively. In the
setting of ordinal regression, the support vector for-
mulation could attempt to find an optimal mapping
direction w, and r − 1 thresholds, which define r − 1
parallel discriminant hyperplanes for the r ranks ac-
cordingly. For each threshold bj , Shashua and Levin
(2003) suggested considering the samples from the two
adjacent categories, j and j + 1, for empirical errors
(see Figure 1 for an illustration). More exactly, each
sample in the j-th category should have a function
value that is less than the lower margin bj − 1, oth-
erwise 〈w · φ(xj

i )〉 − (bj − 1) is the error (denoted as
ξj
i ); similarly, each sample from the (j+1)-th category

should have a function value that is greater than the
upper margin bj +1, otherwise (bj +1)−〈w ·φ(xj+1

i )〉
is the error (denoted as ξ∗j+1

i ).1 Shashua and Levin
(2003) generalized the primal problem of SVMs to or-
dinal regression as follows:

min
w,b,ξ,ξ∗

1
2
〈w · w〉 + C

r−1∑
j=1

( nj∑
i=1

ξj
i +

nj+1∑
i=1

ξ∗j+1
i

)
(2)

subject to

〈w · φ(xj
i )〉 − bj ≤ −1 + ξj

i ,

ξj
i ≥ 0, for i = 1, . . . , nj ;
〈w · φ(xj+1

i )〉 − bj ≥ +1 − ξ∗j+1
i ,

ξ∗j+1
i ≥ 0, for i = 1, . . . , nj+1;

(3)

where j runs over 1, . . . , r − 1 and C > 0.

1The superscript ∗ in ξ∗j+1
i denotes that the error is

associated with a sample in the adjacent upper category of
the j-th threshold.
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A problem with the above formulation is that the
natural ordinal inequalities on the thresholds, i.e.,
b1 ≤ b2 ≤ . . . ≤ br−1 cannot be guaranteed to hold
at the solution. To tackle this problem, we explicitly
include the following constraints in (3):

bj−1 ≤ bj , for j = 2, . . . , r − 1. (4)

2.1. Primal and Dual Problems

By introducing two auxiliary variables b0 = −∞ and
br = +∞, the modified primal problem in (2)–(4) can
be equivalently written as follows:

min
w,b,ξ,ξ∗

1
2 〈w · w〉 + C

∑r
j=1

∑nj

i=1

(
ξj
i + ξ∗j

i

)
(5)

subject to

〈w · φ(xj
i )〉 − bj ≤ −1 + ξj

i , ξj
i ≥ 0, ∀i, j;

〈w · φ(xj
i )〉 − bj−1 ≥ +1 − ξ∗j

i , ξ∗j
i ≥ 0, ∀i, j;

bj−1 ≤ bj , ∀j.

(6)

The dual problem can be derived by standard La-
grangian techniques. Let αj

i ≥ 0, γj
i ≥ 0, α∗j

i ≥ 0,
γ∗j

i ≥ 0 and µj ≥ 0 be the Lagrangian multipliers for
the inequalities in (6). The Lagrangian for the primal
problem is:

Le = 1
2 〈w · w〉 + C

∑r
j=1

∑nj

i=1

(
ξj
i + ξ∗j

i

)
−∑r

j=1

∑nj

i=1 αj
i (−1 + ξj

i − 〈w · φ(xj
i )〉 + bj)

−∑r
j=1

∑nj

i=1 α∗j
i (−1 + ξ∗j

i + 〈w · φ(x∗j
i )〉 − bj−1)

−∑r
j=1 γj

i ξj
i − ∑r

j=1 γ∗j
i ξ∗j

i − ∑r
j=1 µj(bj − bj−1).

(7)
The KKT conditions for the primal problem require
the following to hold:

∂Le

∂w = w − ∑r
j=1

∑nj

i=1

(
α∗j

i − αj
i

)
φ(xj

i ) = 0; (8)

∂Le

∂ξj
i

= C − αj
i − γj

i = 0, ∀i, ∀j; (9)

∂Le

∂ξ∗j
i

= C − α∗j
i − γ∗j

i = 0, ∀i, ∀j; (10)

∂Le

∂bj
=

∑nj

i=1

(
αj

i + µj
)
− ∑nj+1

i=1

(
α∗j+1

i + µj+1
)

= 0,∀j.

Note that the dummy variables associated with b0 and
br, i.e. µ1, µr, α∗1

i ’s and αr
i ’s, are always zero. The

conditions (9) and (10) give rise to the constraints
0 ≤ αj

i ≤ C and 0 ≤ α∗j
i ≤ C respectively. Let us

now apply Wolfe duality theory to the primal prob-
lem. By introducing the KKT conditions (8)–(10) into
the Lagrangian (7) and applying the kernel trick (1),
the dual problem becomes a maximization problem in-
volving the Lagrangian multipliers α, α∗ and µ:

max
∑
j,i

(αj
i +α∗j

i )−1
2

∑
j,i

∑
j′,i′

(α∗j
i −αj

i )(α
∗j′
i′ −αj′

i′ )K(xj
i , x

j′
i′ )

(11)

subject to

0 ≤ αj
i ≤ C, ∀i, ∀j,

0 ≤ α∗j+1
i ≤ C, ∀i, ∀j,∑nj

i=1 αj
i + µj =

∑nj+1

i=1 α∗j+1
i + µj+1, ∀j,

µj ≥ 0, ∀j,

(12)

where j runs over 1, . . . , r − 1. Leaving the dummy
variables out of account, the size of the optimization
problem is 2n−n1 −nr (α and α∗) plus r− 2 (for µ).

The dual problem (11)–(12) is a convex quadratic pro-
gramming problem. Once the α, α∗ and µ are ob-
tained by solving this problem, w is obtained from
(8). The determination of the bj ’s will be addressed in
the next section. The discriminant function value for
a new input vector x is

f(x) = 〈w · x〉 =
∑
j,i

(α∗j
i − αj

i )K(xj
i , x). (13)

The predictive ordinal decision function is given by
arg min

i
{i : f(x) < bi}.

2.2. Optimality Conditions for the Dual

To derive proper stopping conditions for algorithms
that solve the dual problem and also determine the
thresholds bj ’s, it is important to write down the op-
timality conditions for the dual. Though the resulting
conditions that are derived below look a bit clumsy
because of the notations, the ideas behind them are
very much similar to those for the binary SVM classi-
fier case. The Lagrangian for the dual can be written
down as follows:

Ld = 1
2

∑
j,i

∑
j′,i′(α

∗j
i − αj

i )(α
∗j′
i′ − αj′

i′ )K(xj
i , x

j′
i′ )

+
∑r−1

j=1 βj(
∑nj

i=1 αj
i −

∑nj+1

i=1 α∗j+1
i + µj − µj+1)

−∑
j,i(η

j
i α

j
i + η∗j

i α∗j
i ) − ∑

j,i(π
j
i (C − αj

i )+
π∗j

i (C − α∗j
i )) − ∑r−1

j=2 λjµj − ∑
j,i(α

j
i + α∗j

i )

where the Lagrangian multipliers ηj
i , η∗j

i , πj
i , π∗j

i and
λj are non-negative, while βj can take any value.

The KKT conditions associated with βj can be given
as follows:

∂Ld

∂αj
i

= −f(xj
i ) − 1 − ηj

i + πj
i + βj = 0, πj

i ≥ 0,

ηj
i ≥ 0, πj

i (C − αj
i ) = 0, ηj

i α
j
i = 0, for i = 1, . . . , nj ;

∂Ld

∂α∗j+1
i

= f(xj+1
i ) − 1 − η∗j+1

i + π∗j+1
i − βj = 0,

π∗j+1
i ≥ 0, η∗j+1

i ≥ 0, π∗j+1
i (C − α∗j+1

i ) = 0,
η∗j+1

i α∗j+1
i = 0, for i = 1, . . . , nj+1;

(14)
where f(x) is defined as in (13), while the KKT con-
ditions associated with the µj are

βj − βj−1 − λj = 0, λjµj = 0, λj ≥ 0, (15)
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where j = 2, . . . , r − 1. The conditions in (14) can be
re-grouped into the following six cases:

case 1 : αj
i = 0 f(xj

i ) + 1 ≤ βj

case 2 : 0 < αj
i < C f(xj

i ) + 1 = βj

case 3 : αj
i = C f(xj

i ) + 1 ≥ βj

case 4 : α∗j+1
i = 0 f(xj+1

i ) − 1 ≥ βj

case 5 : 0 < α∗j+1
i < C f(xj+1

i ) − 1 = βj

case 6 : α∗j+1
i = C f(xj+1

i ) − 1 ≤ βj

We can classify any variable into one of the following
six sets:

Ij
0a = {i ∈ {1, . . . , nj} : 0 < αj

i < C}
Ij
0b = {i ∈ {1, . . . , nj+1} : 0 < α∗j+1

i < C}
Ij
1 = {i ∈ {1, . . . , nj+1} : α∗j+1

i = 0}
Ij
2 = {i ∈ {1, . . . , nj} : αj

i = 0}
Ij
3 = {i ∈ {1, . . . , nj} : αj

i = C}
Ij
4 = {i ∈ {1, . . . , nj+1} : α∗j+1

i = C}
Let us denote Ij

0 = Ij
0a ∪ Ij

0b, Ij
up = Ij

0 ∪ Ij
1 ∪ Ij

3 and
Ij
low = Ij

0 ∪ Ij
2 ∪ Ij

4 . We further define F i
up(βj) on the

set Ij
up as

F i
up(βj) =

{
f(xj

i ) + 1 if i ∈ Ij
0a ∪ Ij

3

f(xj+1
i ) − 1 if i ∈ Ij

0b ∪ Ij
1

and F i
low(βj) on the set Ij

low as

F i
low(βj) =

{
f(xj

i ) + 1 if i ∈ Ij
0a ∪ Ij

2

f(xj+1
i ) − 1 if i ∈ Ij

0b ∪ Ij
4

Then the conditions can be simplified as

βj ≤ F i
up(βj)∀i ∈ Ij

up and βj ≥ F i
low(βj)∀i ∈ Ij

low,

which can be compactly written as:

bj
low ≤ βj ≤ bj

up (16)

where bj
up = min{F i

up(βj) : i ∈ Ij
up} and bj

low =
max{F i

low(βj) : i ∈ Ij
low}.

The KKT conditions in (15) indicate that the condi-
tion, βj−1 ≤ βj always holds, and that βj−1 = βj if
µj > 0. To merge the conditions (15) and (16), let us
define

B̃j
low = max{bk

low : k = 1, . . . , j}
and

B̃j
up = min{bk

up : k = j, . . . , r − 1},
where j = 1, . . . , r − 1. The overall optimality condi-
tions can be simply written as

Bj
low ≤ βj ≤ Bj

up ∀j

where
Bj

low =
{

B̃j+1
low if µj+1 > 0

B̃j
low otherwise

and

Bj
up =

{
B̃j−1

up if µj > 0
B̃j

up otherwise.

Table 1. The basic framework of the SMO algorithm for
support vector ordinal regression using explicit threshold
constraints.

SMO start at a valid point, α, α∗ and µ, that satisfy (12),

find the current Bj
up and Bj

low ∀j

Loop do
1. determine the active threshold J
2. optimize the pair of active variables and the set µa

3. compute Bj
up and Bj

low ∀j at the new point
while the optimality condition (17) has not been satisfied

Exit return α, α∗ and b

We introduce a tolerance parameter τ > 0, usually
0.001, to define approximate optimality conditions.
The overall stopping condition becomes

max{Bj
low − Bj

up : j = 1, . . . , r − 1} ≤ τ. (17)

From the conditions in (14) and (3), it is easy to see
the close relationship between the bj ’s in the primal
problem and the multipliers βj ’s. In particular, at the
optimal solution, βj and bj are identical. Thus bj can
be taken to be any value from the interval, [Bj

low, Bj
up].

We can resolve any non-uniqueness by simply taking
bj = 1

2 (Bj
low + Bj

up). Note that the KKT conditions
in (15), coming from the additive constraints in (4) we
introduced in Shashua and Levin’s formulation, en-
force Bj−1

low ≤ Bj
low and Bj−1

up ≤ Bj
up at the solution,

which guarantee that the thresholds specified in these
feasible regions will satisfy the inequality constraints
bj−1 ≤ bj ; without the constraints in (4), the thresh-
olds might be disordered at the solution!

2.3. SMO Algorithm

In this section we adapt the SMO algorithm (Platt,
1999; Keerthi et al., 2001) for the solution of (11)–
(12). The key idea of SMO consists of starting with
a valid initial point and optimizing only one pair of
variables at a time while fixing all the other variables.
The suboptimization problem of the two active vari-
ables can be solved analytically. Table 1 presents an
outline of the SMO implementation for our optimiza-
tion problem.

In order to determine the pair of active variables to op-
timize, we select the active threshold first. The index
of the active threshold is defined as J = arg maxj{j :
Bj

low − Bj
up > τ}. Let us assume that BJ

low and BJ
up

are actually defined by bjo

low and bju
up respectively, and

that the two multipliers associated with bjo

low and bju
up

are αo and αu. The pair of multipliers (αo, αu) is opti-
mized from the current point (αold

o , αold
u ) to reach the

new point, (αnew
o , αnew

u ).

It is possible that jo 	= ju. In this case, named as
cross update, more than one equality constraint in (12)
is involved in the optimization that may update the
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variable set µa = {µmin{jo,ju}+1, . . . , µmax{jo,ju}}, a
subset of µ. In the case of jo = ju, named as standard
update, only one equality constraint is involved and
the variables of µ are keep intact, i.e. µa = ∅. These
suboptimization problems can be solved analytically,
and the detailed formulas for updating can be found
in our longer technical report (Chu & Keerthi, 2005).

3. Implicit Constraints on Thresholds

In this section we present a new approach to support
vector ordinal regression. Instead of considering only
the empirical errors from the samples of adjacent cat-
egories to determine a threshold, we allow the sam-
ples in all the categories to contribute errors for each
threshold. A very nice property of this approach is
that the ordinal inequalities on the thresholds are sat-
isfied automatically at the optimal solution in spite of
the fact that such constraints on the thresholds are not
explicitly included in the new formulation.

Figure 2 explains the new definition of slack variables
ξ and ξ∗. For a threshold bj , the function values of
all the samples from all the lower categories, should be
less than the lower margin bj−1; if that does not hold,
then ξj

ki = 〈w · φ(xk
i )〉 − (bj − 1) is taken as the error

associated with the sample xk
i for bj , where k ≤ j.

Similarly, the function values of all the samples from
the upper categories should be greater than the upper
margin bj +1; otherwise ξ∗j

ki = (bj +1)−〈w ·φ(xk
i )〉 is

the error associated with the sample xk
i for bj , where

k > j. Here, the subscript ki denotes that the slack
variable is associated with the i-th input sample in the
k-th category; the superscript j denotes that the slack
variable is associated with the lower categories of bj ;
and the superscript ∗j denotes that the slack variable
is associated with the upper categories of bj .

3.1. Primal Problem

By taking all the errors associated with all r−1 thresh-
olds into account, the primal problem can be defined
as follows:

min
w,b,ξ,ξ∗

1
2
〈w ·w〉+ C

r−1∑
j=1

( j∑
k=1

nk∑
i=1

ξj
ki +

r∑
k=j+1

nk∑
i=1

ξ∗j
ki

)

(18)
subject to

〈w · φ(xk
i )〉 − bj ≤ −1 + ξj

ki, ξj
ki ≥ 0,

for k = 1, . . . , j and i = 1, . . . , nk;
〈w · φ(xk

i )〉 − bj ≥ +1 − ξ∗j
ki , ξ∗j

ki ≥ 0,
for k = j + 1, . . . , r and i = 1, . . . , nk;

(19)

where j runs over 1, . . . , r−1. Note that there are r−1
inequality constraints for each sample xk

i (one for each
threshold).

b2b1

y=1 y=2 y=3

b2-1 b2+1b1-1 b1+1

ξ2i
∗ 1

f(x) =  w φ(x).

ξ2i
2

ξ3i
∗ 2

ξ3i
∗ 1

ξ1i
1

Figure 2. An illustration on the new definition of slack vari-
ables ξ and ξ∗ that imposes implicit constraints on the
thresholds. All the samples are mapped by 〈w ·φ(x)〉 onto
the axis of function values. Note the term ξ∗13i in this graph.

To prove the inequalities on the thresholds at the op-
timal solution, let us consider the situation where w
is fixed and only the bj ’s are optimized. Note that the
ξj
ki and ξ∗j

ki are automatically determined once the bj

are given. To eliminate these variables, let us define,
for 1 ≤ k ≤ r,

I low
k (b) = {i ∈ {1, . . . , nk} : 〈w · φ(xk

i )〉 − b ≥ −1},
Iup
k (b) = {i ∈ {1, . . . , nk} : 〈w · φ(xk

i )〉 − b ≤ 1}.
It is easy to see that bj is optimal iff it minimizes the
function

ej(b) =
∑j

k=1

∑
i∈Ilow

k (b)(〈w · φ(xk
i )〉 − b + 1)

+
∑r

k=j+1

∑
i∈Iup

k (b)(−〈w · φ(xk
i )〉 + b + 1)

(20)

Let B�
j denote the set of all minimizers of ej(b). By

convexity, B�
j is a closed interval. Given two intervals

B1 = [c1, d1] and B2 = [c2, d2], we say B1 ≤ B2 if
c1 ≤ c2 and d1 ≤ d2.

Lemma 1. B�
1 ≤ B�

2 ≤ · · · ≤ B�
r−1

Proof. The “right side derivative” of ej with respect
to b is

gj(b) = −∑j
k=1 |I low

k (b)| + ∑r
k=j+1 |Iup

k (b)| (21)

Take any one j and consider B�
j = [cj , dj ] and B�

j+1 =
[cj+1, dj+1]. Suppose cj > cj+1. Define b�

j = cj and
b�
j+1 = cj+1. Since b�

j+1 is strictly to the left of the
interval B�

j that minimizes ej , we have gj(b�
j+1) <

0. Since b�
j+1 is a minimizer of ej+1 we also have

gj+1(b�
j+1) ≥ 0. Thus we have gj+1(b�

j+1)−gj(b�
j+1) >

0; also, by (21) we get

0 < gj+1(b�
j+1)−gj(b�

j+1) = −|I low
j+1(b

�
j+1)|−|Iup

j+1(b
�
j+1)|

which is impossible. In a similar way, dj > dj+1 is also
not possible. This proves the lemma.

If the optimal bj are all unique,2 then Lemma 1 im-
plies that the bj satisfy the natural ordinal ordering.
Even when one or more bj ’s are non-unique, Lemma
1 says that there exist choices for the bj that obey

2If, in the primal problem, we regularize the bj also
(i.e., include the extra cost term

∑
j b2

j/2) then the bj are
guaranteed to be unique. Lemma 1 still holds in this case.
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the natural ordering. The fact that the order preser-
vation comes about automatically is interesting and
non-trivial, which differs from the PRank algorithm
(Crammer & Singer, 2002) where the order preserva-
tion on the thresholds is easily brought in via their
update rule.

It is also worth noting that Lemma 1 holds even for
an extended problem formulation that allows the use
of different costs (different C values) for different mis-
classifications (class k misclassified as class j can have
a Cj

k). In applications such as collaborative filtering
such a problem formulation can be very appropriate;
for example, an A rated movie that is misrated as C
may need to be penalized much more than if a B rated
movie is misrated as C. Shashua and Levin’s formula-
tion and its extension given in section 2 of this paper
do not precisely support such a differential cost struc-
ture. This is another good reason in support of the
implicit problem formulation of the current section.

3.2. Dual Problem

Let αj
ki ≥ 0, γj

ki ≥ 0, α∗j
ki ≥ 0 and γ∗j

ki ≥ 0 be the La-
grangian multipliers for the inequalities in (19). Using
ideas parallel to those in section 2.1 we can show that
the dual of (18)–(19) is the following maximization
problem that involves only the multipliers α and α∗:

max
α,α∗ −

1
2

∑
k,i

∑
k′,i′

( k−1∑
j=1

α∗j
ki −

r−1∑
j=k

αj
ki

)( k′−1∑
j=1

α∗j
k′i′

−
r−1∑
j=k′

αj
k′i′

)
K(xk

i , xk′
i′ ) +

∑
k,i

( k−1∑
j=1

α∗j
ki +

r−1∑
j=k

αj
ki

)

(22)subject to
j∑

k=1

nk∑
i=1

αj
ki =

r∑
k=j+1

nk∑
i=1

α∗j
ki ∀j

0 ≤ αj
ki ≤ C ∀j and k ≤ j

0 ≤ α∗j
ki ≤ C ∀j and k > j.

(23)

The dual problem (22)–(23) is a convex quadratic pro-
gramming problem. The size of the optimization prob-
lem is (r−1)n where n =

∑r
k=1 nk is the total number

of training samples. The discriminant function value
for a new input vector x is

f(x) = 〈w · x〉 =
∑
k,i

( k−1∑
j=1

α∗j
ki −

r−1∑
j=k

αj
ki

)
K(xk

i , x).

The predictive ordinal decision function is given by
arg min

i
{i : f(x) < bi}.

The ideas for adapting SMO to (22)–(23) are similar
to those in section 2.3. The resulting suboptimization
problem is analogous to the case of standard update in

section 2.3 where only one of the equality constraints
from (23) is involved. Full details of the derivation of
the dual problem as well as the SMO algorithm have
been skipped for lack of space. These details are given
in our longer technical report (Chu & Keerthi, 2005).

4. Numerical Experiments

We have implemented the two SMO algorithms for
the ordinal regression formulations with explicit con-
straints (EXC) and implicit constraints (IMC),3 along
with the algorithm of Shashua and Levin (2003) for
comparison purpose. The function caching technique
and the double-loop scheme proposed by Keerthi et al.
(2001) have been incorporated in the implementation
for efficiency. We begin this section with a simple
dataset to illustrate the typical behavior of the three
algorithms, and then empirically study the scaling
properties of our algorithms. Then we compare the
generalization performance of our algorithms against
standard support vector regression on eight bench-
mark datasets for ordinal regression. The following
Gaussian kernel was used in these experiments:

K(x, x′) = exp
(
−κ

2

∑d
ς=1(xς − x′

ς)
2
)

(24)

where xς denotes the ς-th element of the input vec-
tor x. The tolerance parameter τ was set to 0.001
for all the algorithms. We have utilized two evalua-
tion metrics which quantify the accuracy of predicted
ordinal scales {ŷ1, . . . , ŷt} with respect to true tar-
gets {y1, . . . , yt}: a)Mean absolute error is the aver-
age deviation of the prediction from the true target,
i.e. 1

t

∑t
i=1 |ŷi − yi|, in which we treat the ordinal

scales as consecutive integers; b)Mean zero-one error
is simply the fraction of incorrect predictions.

4.1. Grading Dataset

The grading dataset was used in chapter 4 of Johnson
and Albert (1999) as an example of the ordinal re-
gression problem.4 There are 30 samples of students’
score. The “sat-math score” and “grade in prerequisite
probability course” of these students are used as input
features, and their final grades are taken as the targets.
In our experiments, the six students with final grade A
or E were not used, and the feature associated with the
“grade in prerequisite probability course” was treated
as a continuous variable though it had an ordinal scale.
In Figure 3 we present the solution obtained by the

3The source code (written in ANSI C) of our im-
plementation of the two algorithms can be found at
http://www.gatsby.ucl.ac.uk/∼chuwei/svor.htm.

4The grading dataset is available at
http://www.mathworks.com/support/books/book1593.jsp.
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Figure 3. The training results of the three algorithms using
a Gaussian kernel on the grading dataset. The discriminant
function values are presented as contour graphs indexed by
the two thresholds. The circles denote the students with
grade D, the dots denote grade C, and the squares denote
grade B.

three algorithms using the Gaussian kernel (24) with
κ = 0.5 and the regularization factor value of C = 1.
In this particular setting, the solution to Shashua and
Levin (2003)’s formulation has disordered thresholds
b2 < b1 as shown in Figure 3 (left plot); the formula-
tion with explicit constraints corrects this disorder and
yields equal values for the two thresholds as shown in
Figure 3 (middle plot).

4.2. Scaling

In this experiment, we empirically studied how the two
SMO algorithms scale with respect to training data
size and the number of ordinal scales in the target.
The California Housing dataset was used in the scal-
ing experiments.5 Twenty-eight training datasets with
sizes ranging from 100 to 5,000 were generated by ran-
dom selection from the original dataset. The contin-
uous target variable of the California Housing data
was discretized to ordinal scale by using 5 or 10 equal-
frequency bins. The standard support vector regres-
sion (SVR) was used as a baseline, in which the ordinal
targets were treated as continuous values and ε = 0.1.
These datasets were trained by the two algorithms us-
ing a Gaussian kernel with κ = 1 and a regularization
factor value of C = 100. Figure 4 gives plots of the
computational costs of the three algorithms as func-
tions of the problem size, for the two cases of 5 and
10 target bins. Our algorithms scale well with scaling
exponents between 2.13 and 2.33, while the scaling
exponent of SVR is about 2.40 in this case. This near-
quadratic property in scaling comes from the sparse-
ness property of SVMs, i.e., non-support vectors af-
fect the computational cost only mildly. The EXC and
IMC algorithms cost more than the SVR approach due
to the larger problem size. For large sizes, the cost of
EXC is only about x times that of SVR. As expected,
we also noticed that the computational cost of IMC
is dependent on r, the number of ordinal scales in the

5The California Housing dataset can be found at
http://lib.stat.cmu.edu/datasets/.
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Figure 4. Plots of CPU time versus training data size on
log− log scale, indexed by the estimated slopes respec-
tively. We used the Gaussian kernel with κ = 1 and the
regularization factor value of C = 100 in the experiment.

target. The cost for 10 ranks is observed to be roughly
5 times that for 5 ranks, whereas the cost of EXC is
nearly the same for the two cases. These observations
are consistent with the size of the optimization prob-
lems. The problem size of IMC is (r − 1)n (which is
heavily influenced by r) while the problem size of EXC
is about 2n+ r (which largely depends on n only since
we usually have n � r). This factor of efficiency can
be a key advantage for the EXC formulation.

4.3. Benchmark datasets

Next, we compared the generalization performance of
the two approaches against the naive approach of us-
ing standard support vector regression (SVR) and the
method (SLA) of Shashua and Levin (2003). We col-
lected eight benchmark datasets that were used for
metric regression problems.6 For each dataset, the tar-
get values were discretized into ten ordinal quantities
using equal-frequency binning. We randomly parti-
tioned each dataset into training/test splits as spec-
ified in Table 2. The partitioning was repeated 20
times independently. The input vectors were normal-
ized to zero mean and unit variance, coordinate-wise.
The Gaussian kernel (24) was used for all the algo-
rithms. 5-fold cross validation was used to determine
the optimal values of model parameters (the Gaus-
sian kernel parameter κ and the regularization factor
C) involved in the problem formulations, and the test
error was obtained using the optimal model parame-
ters for each formulation. The initial search was done
on a 7 × 7 coarse grid linearly spaced in the region
{(log10 C, log10 κ)| − 3 ≤ log10 C ≤ 3,−3 ≤ log10 κ ≤
3}, followed by a fine search on a 9 × 9 uniform grid
linearly spaced by 0.2 in the (log10 C, log10 κ) space.
The ordinal targets were treated as continuous values
in standard SVR, and the predictions for test cases
were rounded to the nearest ordinal scale. The insen-
sitive zone parameter, ε of SVR was fixed at 0.1. The
test results of the four algorithms are recorded in Table
2. It is very clear that the generalization capabilities

6These regression datasets are available at
http://www.liacc.up.pt/∼ltorgo/Regression/DataSets.html.
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Table 2. Test results of the four algorithms using a Gaussian kernel. The targets of these benchmark datasets were
discretized by 10 equal-frequency bins. The results are the averages over 20 trials, along with the standard deviation.
d denotes the input dimension and “training/test” denotes the partition size. We use bold face to indicate the lowest
average value among the results of the four algorithms. The symbols � are used to indicate the cases significantly worse
than the winning entry; A p-value threshold of 0.01 in Wilcoxon rank sum test was used to decide this.

Partition Mean zero-one error Mean absolute error
Dataset d training/test SVR SLA EXC IMC SVR SLA EXC IMC
Pyrimidines 27 50/24 0.777±0.068� 0.756±0.073 0.752±0.063 0.719±0.066 1.404±0.184 1.400±0.255 1.331±0.193 1.294±0.204
Machinecpu 6 150/59 0.693±0.056� 0.643±0.057 0.661±0.056 0.655±0.045 1.048±0.141 1.002±0.121 0.986±0.127 0.990±0.115
Boston 13 300/206 0.589±0.025� 0.561±0.023 0.569±0.025 0.561±0.026 0.785±0.052 0.765±0.057 0.773±0.049 0.747±0.049
Abalone 8 1000/3177 0.758±0.017� 0.739±0.008� 0.736±0.011 0.732±0.007 1.407±0.021� 1.389±0.027� 1.391±0.021� 1.361±0.013
Bank 32 3000/5192 0.786±0.004� 0.759±0.005� 0.744±0.005 0.751±0.005� 1.471±0.010� 1.414±0.012� 1.512±0.017� 1.393±0.011
Computer 21 4000/4192 0.494±0.006� 0.462±0.006 0.462±0.005 0.473±0.005� 0.632±0.011� 0.597±0.010 0.602±0.009 0.596±0.008
California 8 5000/15640 0.677±0.003� 0.640±0.003 0.640±0.003 0.639±0.003 1.070±0.008� 1.068±0.006� 1.068±0.005� 1.008±0.005
Census 16 6000/16784 0.735±0.004� 0.699±0.002 0.699±0.002 0.705±0.002� 1.283±0.009� 1.271±0.007� 1.270±0.007� 1.205±0.007

of the three ordinal regression algorithms are better
than that of the approach of SVR. The performance
of Shashua and Levin’s method is similar to our EXC
approach, as expected, since the two formulations are
pretty much the same. Our ordinal algorithms are
comparable on the mean zero-one error, but the re-
sults also show the IMC algorithm yields much more
stable results on mean absolute error than the EXC
algorithm.7 From the view of the formulations, EXC
only considers the extremely worst samples between
successive ranks, whereas IMC takes all the samples
into account. Thus the outliers may affect the results
of EXC significantly, while the results of IMC are rel-
atively more stable in both validation and test.

5. Conclusion

In this paper we proposed two new approaches to sup-
port vector ordinal regression that determine r−1 par-
allel discriminant hyperplanes for the r ranks by using
r−1 thresholds. The ordinal inequality constraints on
the thresholds are imposed explicitly in the first ap-
proach and implicitly in the second one. The problem
size of the two approaches is linear in the number of
training samples. We also designed SMO algorithms
that scale only about quadratically with the problem
size. The results of numerical experiments verified that
the generalization capabilities of these approaches are
much better than the naive approach of applying stan-
dard regression.
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