
Support Vector Ordinal Regression

Wei Chu chuwei@ccls.columbia.edu

Center for Computational Learning Systems, Columbia University, New York, NY 10115 USA

S. Sathiya Keerthi selvarak@yahoo-inc.com

Yahoo! Research, Media Studios North, Burbank, CA 91504 USA

Abstract

In this paper, we propose two new support vector approaches for ordinal regression,

which optimize multiple thresholds to define parallel discriminant hyperplanes for the

ordinal scales. Both approaches guarantee that the thresholds are properly ordered at

the optimal solution. The size of these optimization problems is linear in the number

of training samples. The SMO algorithm is adapted for the resulting optimization

problems; it is extremely easy to implement and scales efficiently as a quadratic

function of the number of examples. The results of numerical experiments on some

benchmark and real-world data sets, including applications of ordinal regression to

information retrieval, verify the usefulness of these approaches.

1 Introduction

We consider the supervised learning problem of predicting variables of ordinal scale, a setting

that bridges metric regression and classification, and referred to as ranking learning or ordinal

regression. Ordinal regression arises frequently in social science and information retrieval where

human preferences play a major role. The training samples are labelled by ranks, which exhibits

an ordering among the different categories. In contrast to metric regression problems, these ranks

are of finite types and the metric distances between the ranks are not defined. These ranks are

1

also different from the labels of multiple classes in classification problems due to the existence

of the ordering information.

There are several approaches to tackle ordinal regression problems in the domain of machine

learning. The naive idea is to transform the ordinal scales into numeric values, and then solve

the problem as a standard regression problem. Kramer et al. (2001) investigated the use of a

regression tree learner in this way. A problem with this approach is that there might be no prin-

cipled way of devising an appropriate mapping function since the true metric distances between

the ordinal scales are unknown in most of the tasks. Another idea is to decompose the origi-

nal ordinal regression problem into a set of binary classification tasks. Frank and Hall (2001)

converted an ordinal regression problem into nested binary classification problems that encode

the ordering of the original ranks and then organized the results of these binary classifiers in

some ad hoc way for prediction. It is also possible to formulate the original problem as a large

augmented binary classification problem. Har-Peled et al. (2002) proposed a constraint classifi-

cation approach that provides a unified framework for solving ranking and multi-classification

problems. Herbrich et al. (2000) applied the principle of Structural Risk Minimization (Vap-

nik, 1995) to ordinal regression leading to a new distribution-independent learning algorithm

based on a loss function between pairs of ranks. The main difficulty with these two algorithms

(Har-Peled et al., 2002; Herbrich et al., 2000) is that the problem size of these formulations is

a quadratic function of the training data size. As for sequential learning, Crammer and Singer

(2002) proposed a proceptron-based online algorithm for rank prediction, known as the PRank

algorithm.

Shashua and Levin (2003) generalized the support vector formulation for ordinal regression

by finding r− 1 thresholds that divide the real line into r consecutive intervals for the r ordered

categories. However there is a problem with their approach: the ordinal inequalities on the

thresholds, b1 ≤ b2 ≤ . . . ≤ br−1, are not included in their formulation. This omission may

result in disordered thresholds at the solution on some unfortunate cases (see section 4.1 for an

example). It is important to make any method free of bad situations where it will not work.

In this paper, we propose two new approaches for support vector ordinal regression. The first

one takes only the adjacent ranks into account in determining the thresholds, exactly as Shashua

2

and Levin (2003) proposed, but we introduce explicit constraints in the problem formulation

that enforce the inequalities on the thresholds. The second approach is entirely new; it considers

the training samples from all the ranks to determine each threshold. Interestingly, we show that,

in this second approach, the ordinal inequality constraints on the thresholds are automatically

satisfied at the optimal solution though there are no explicit constraints on these thresholds.

For both approaches the size of the optimization problems is linear in the number of training

samples. We show that the popular SMO algorithm (Platt, 1999; Keerthi et al., 2001) for SVMs

can be easily adapted for the two approaches. The resulting algorithms scale efficiently; empirical

analysis shows that the cost is roughly a quadratic function of the problem size. Using several

benchmark datasets we demonstrate that the generalization capabilities of the two approaches

are much better than that of the naive approach of doing standard regression on the ordinal

labels.

The paper is organized as follows. In section 2 we present the first approach with explicit

inequality constraints on the thresholds, derive the optimality conditions for the dual problem,

and adapt the SMO algorithm for the solution. In section 3 we present the second approach

with implicit constraints. In section 4 we do an empirically study to show the scaling properties

of the two algorithms and their generalization performance. We conclude in section 5.

Notations Throughout this paper we will use x to denote the input vector of the ordinal

regression problem and φ(x) to denote the feature vector in a high dimensional reproducing

kernel Hilbert space (RKHS) related to x by transformation. All computations will be done

using the reproducing kernel function only, which is defined as

K(x, x′) = 〈φ(x) · φ(x′)〉 (1)

where 〈·〉 denotes inner product in the RKHS. Without loss of generality, we consider an ordinal

regression problem with r ordered categories and denote these categories as consecutive integers

Y = {1, 2, . . . , r} to keep the known ordering information. In the j-th category, where j ∈ Y ,

the number of training samples is denoted as nj, and the i-th training sample is denoted as xj
i

where xj
i ∈ R

d. The total number of training samples
∑r

j=1 nj is denoted as n. bj, j = 1, . . . , r−1

3

b2b1

y=1 y=2 y=3

b2-1 b2+1b1-1 b1+1

ξi
∗ 1+1

ξi
2

ξi
∗ 2+1

ξi
1

f(x) = w φ(x).

Figure 1: An illustration of the definition of slack variables ξ and ξ∗ for the thresholds. The
samples from different ranks, represented as circles filled with different patterns, are mapped by
〈w ·φ(x)〉 onto the axis of function value. Note that a sample from rank j + 1 could be counted
twice for errors if it is sandwiched by bj+1−1 and bj +1 where bj+1−1 < bj +1, and the samples
from rank j + 2, j − 1 etc. never give contributions to the threshold bj.

denote the (r − 1) thresholds.

2 Approach 1: Explicit Constraints on Thresholds

As a powerful computational tool for supervised learning, support vector machines (SVMs) map

the input vectors into feature vectors in a high dimensional RKHS (Vapnik, 1995; Schölkopf

and Smola, 2002), where a linear machine is constructed by minimizing a regularized functional.

For binary classification (a special case of ordinal regression with r = 2), SVMs find an optimal

direction that maps the feature vectors into function values on the real line, and a single opti-

mized threshold is used to divide the real line into two regions for the two classes respectively.

In the setting of ordinal regression, the support vector formulation could attempt to find an

optimal mapping direction w, and r − 1 thresholds, which define r − 1 parallel discriminant

hyperplanes for the r ranks accordingly. For each threshold bj, Shashua and Levin (2003) sug-

gested considering the samples from the two adjacent categories, j and j+1, for empirical errors

(see Figure 1 for an illustration). More exactly, each sample in the j-th category should have a

function value that is less than the lower margin bj − 1, otherwise 〈w · φ(xj
i)〉 − (bj − 1) is the

error (denoted as ξj
i); similarly, each sample from the (j +1)-th category should have a function

4

value that is greater than the upper margin bj + 1, otherwise (bj + 1) − 〈w · φ(xj+1
i)〉 is the

error (denoted as ξ∗j+1
i).1 Shashua and Levin (2003) generalized the primal problem of SVMs

to ordinal regression as follows:

min
w,b,ξ,ξ∗

1

2
〈w · w〉 + C

r−1∑
j=1

(nj∑
i=1

ξj
i +

nj+1∑
i=1

ξ∗j+1
i

)
(2)

subject to

〈w · φ(xj
i)〉 − bj ≤ −1 + ξj

i ,

ξj
i ≥ 0, for i = 1, . . . , nj;

〈w · φ(xj+1
i)〉 − bj ≥ +1 − ξ∗j+1

i ,

ξ∗j+1
i ≥ 0, for i = 1, . . . , nj+1;

(3)

where j runs over 1, . . . , r − 1 and C > 0.

A problem with the above formulation is that the natural ordinal inequalities on the thresh-

olds, i.e., b1 ≤ b2 ≤ . . . ≤ br−1 cannot be guaranteed to hold at the solution. To tackle this

problem, we explicitly include the following constraints in (3):

bj−1 ≤ bj, for j = 2, . . . , r − 1. (4)

2.1 Primal and Dual Problems

By introducing two auxiliary variables b0 = −∞ and br = +∞, the modified primal problem in

(2)–(4) can be equivalently written as follows:

min
w,b,ξ,ξ∗

1

2
〈w · w〉 + C

r∑
j=1

nj∑
i=1

(
ξj
i + ξ∗ji

)
(5)

1The superscript ∗ in ξ∗j+1
i denotes that the error is associated with a sample in the adjacent upper category

of the j-th threshold.

5

subject to

〈w · φ(xj
i)〉 − bj ≤ −1 + ξj

i , ξj
i ≥ 0, ∀i, j;

〈w · φ(xj
i)〉 − bj−1 ≥ +1 − ξ∗ji , ξ∗ji ≥ 0, ∀i, j;

bj−1 ≤ bj, ∀j.

(6)

The dual problem can be derived by standard Lagrangian techniques. Let αj
i ≥ 0, γj

i ≥ 0,

α∗j
i ≥ 0, γ∗j

i ≥ 0 and µj ≥ 0 be the Lagrangian multipliers for the inequalities in (6). The

Lagrangian for the primal problem is:

Le = 1
2
〈w · w〉 + C

∑r
j=1

∑nj

i=1

(
ξj
i + ξ∗ji

)
−∑r

j=1

∑nj

i=1 αj
i (−1 + ξj

i − 〈w · φ(xj
i)〉 + bj)

−∑r
j=1

∑nj

i=1 α∗j
i (−1 + ξ∗ji + 〈w · φ(x∗j

i)〉 − bj−1)

−∑r
j=1

∑nj

i=1 γj
i ξ

j
i −

∑r
j=1

∑nj

i=1 γ∗j
i ξ∗ji − ∑r

j=1 µj(bj − bj−1).

(7)

The KKT conditions for the primal problem require the following to hold:

∂Le

∂w
= w − ∑r

j=1

∑nj

i=1

(
α∗j

i − αj
i

)
φ(xj

i) = 0; (8)

∂Le

∂ξj
i

= C − αj
i − γj

i = 0, ∀i, ∀j; (9)

∂Le

∂ξ∗j
i

= C − α∗j
i − γ∗j

i = 0, ∀i, ∀j; (10)

∂Le

∂bj
= −∑nj

i=1 αj
i − µj +

∑nj+1

i=1 α∗j+1
i + µj+1 = 0, ∀j.

Note that the dummy variables associated with b0 and br, i.e. µ1, µr, α∗1
i ’s and αr

i ’s, are always

zero. The conditions (9) and (10) give rise to the constraints 0 ≤ αj
i ≤ C and 0 ≤ α∗j

i ≤ C

respectively. Let us now apply Wolfe duality theory to the primal problem. By introducing the

KKT conditions (8)–(10) into the Lagrangian (7) and applying the kernel trick (1), the dual

problem becomes a maximization problem involving the Lagrangian multipliers α, α∗ and µ:

max
α,α∗,µ

∑
j,i

(αj
i + α∗j

i) − 1

2

∑
j,i

∑
j′,i′

(α∗j
i − αj

i)(α
∗j′
i′ − αj′

i′)K(xj
i , x

j′
i′) (11)

6

subject to

0 ≤ αj
i ≤ C, ∀i, ∀j,

0 ≤ α∗j+1
i ≤ C, ∀i, ∀j,∑nj

i=1 αj
i + µj =

∑nj+1

i=1 α∗j+1
i + µj+1, ∀j,

µj ≥ 0, ∀j,

(12)

where j runs over 1, . . . , r − 1. Leaving the dummy variables out of account, the size of the

optimization problem is 2n − n1 − nr (α and α∗) plus r − 2 (for µ).

The dual problem (11)–(12) is a convex quadratic programming problem. Once the α, α∗

and µ are obtained by solving this problem, w is obtained from (8). The determination of the

bj’s will be addressed in the next section. The discriminant function value for a new input vector

x is

f(x) = 〈w · φ(x)〉 =
∑
j,i

(α∗j
i − αj

i)K(xj
i , x). (13)

The predictive ordinal decision function is given by arg min
i
{i : f(x) < bi}.

2.2 Optimality Conditions for the Dual

To derive proper stopping conditions for algorithms that solve the dual problem and also de-

termine the thresholds bj’s, it is important to write down the optimality conditions for the

dual. Though the resulting conditions that are derived below look a bit clumsy because of the

notations, the ideas behind them are very much similar to those for the binary SVM classifier

case, as the optimization problem is actually composed of r − 1 binary classifiers with a shared

mapping direction w and the additional constraint (4). The Lagrangian for the dual can be

written down as follows:

Ld = 1
2

∑
j,i

∑
j′,i′(α

∗j
i − αj

i)(α
∗j′
i′ − αj′

i′)K(xj
i , x

j′
i′)

+
∑r−1

j=1 βj(
∑nj

i=1 αj
i −

∑nj+1

i=1 α∗j+1
i + µj − µj+1)

−∑
j,i(η

j
i α

j
i + η∗j

i α∗j
i) − ∑

j,i(π
j
i (C − αj

i)

+π∗j
i (C − α∗j

i)) − ∑r−1
j=2 λjµj − ∑

j,i(α
j
i + α∗j

i)

7

where the Lagrangian multipliers ηj
i , η∗j

i , πj
i , π∗j

i and λj are non-negative, while βj can take any

value.

The KKT conditions associated with α and α∗ can be given as follows:

∂Ld

∂αj
i

= −f(xj
i) − 1 − ηj

i + πj
i + βj = 0, πj

i ≥ 0,

ηj
i ≥ 0, πj

i (C − αj
i) = 0, ηj

i α
j
i = 0, for i = 1, . . . , nj;

∂Ld

∂α∗j+1
i

= f(xj+1
i) − 1 − η∗j+1

i + π∗j+1
i − βj = 0,

π∗j+1
i ≥ 0, η∗j+1

i ≥ 0, π∗j+1
i (C − α∗j+1

i) = 0,

η∗j+1
i α∗j+1

i = 0, for i = 1, . . . , nj+1;

(14)

where f(x) is defined as in (13) and j runs over 1, . . . , r−1, while the KKT conditions associated

with the µj are

βj − βj−1 − λj = 0, λjµj = 0, λj ≥ 0, (15)

where j = 2, . . . , r − 1. The conditions in (14) can be re-grouped into the following six cases:

case 1 : αj
i = 0 f(xj

i) + 1 ≤ βj

case 2 : 0 < αj
i < C f(xj

i) + 1 = βj

case 3 : αj
i = C f(xj

i) + 1 ≥ βj

case 4 : α∗j+1
i = 0 f(xj+1

i) − 1 ≥ βj

case 5 : 0 < α∗j+1
i < C f(xj+1

i) − 1 = βj

case 6 : α∗j+1
i = C f(xj+1

i) − 1 ≤ βj

We can classify any variable into one of the following six sets:

Ij
0a

def
= {i ∈ {1, . . . , nj} : 0 < αj

i < C}
Ij
0b

def
= {i ∈ {1, . . . , nj+1} : 0 < α∗j+1

i < C}
Ij
1

def
= {i ∈ {1, . . . , nj+1} : α∗j+1

i = 0}
Ij
2

def
= {i ∈ {1, . . . , nj} : αj

i = 0}
Ij
3

def
= {i ∈ {1, . . . , nj} : αj

i = C}
Ij
4

def
= {i ∈ {1, . . . , nj+1} : α∗j+1

i = C}

8

Let us define Ij
0

def
= Ij

0a ∪ Ij
0b, Ij

up
def
= Ij

0 ∪ Ij
1 ∪ Ij

3 and Ij
low

def
= Ij

0 ∪ Ij
2 ∪ Ij

4 . We further define F i
up(βj)

on the set Ij
up as

F i
up(βj) =

f(xj
i) + 1 if i ∈ Ij

0a ∪ Ij
3

f(xj+1
i) − 1 if i ∈ Ij

0b ∪ Ij
1

and F i
low(βj) on the set Ij

low as

F i
low(βj) =

f(xj
i) + 1 if i ∈ Ij

0a ∪ Ij
2

f(xj+1
i) − 1 if i ∈ Ij

0b ∪ Ij
4

Then the conditions can be simplified as

βj ≤ F i
up(βj)∀i ∈ Ij

up and βj ≥ F i
low(βj)∀i ∈ Ij

low,

which can be compactly written as:

bj
low ≤ bj

up for j = 1, . . . , r − 1 (16)

where bj
up = min{F i

up(βj) : i ∈ Ij
up} and bj

low = max{F i
low(βj) : i ∈ Ij

low}.

The KKT conditions in (15) indicate that the condition, βj−1 ≤ βj always holds, and that

βj−1 = βj if µj > 0. To merge the conditions (15) and (16), let us define

B̃j
low = max{bk

low : k = 1, . . . , j} and B̃j
up = min{bk

up : k = j, . . . , r − 1},

where j = 1, . . . , r − 1. The overall optimality conditions can be simply written as

Bj
low ≤ Bj

up ∀j (17)

where

Bj
low =

B̃j+1
low if µj+1 > 0

B̃j
low otherwise

and Bj
up =

B̃j−1
up if µj > 0

B̃j
up otherwise.

(18)

It should be easy to see from the above sequence of steps that, {βj} and {µj} are optimal for

9

the problem in (11)–(12) iff (17) is satisfied.

We introduce a tolerance parameter τ > 0, usually 0.001, to define approximate optimality

conditions. The overall stopping condition becomes

max{Bj
low − Bj

up : j = 1, . . . , r − 1} ≤ τ. (19)

From the conditions in (14) and (3), it is easy to see the close relationship between the bj’s in

the primal problem and the multipliers βj’s. In particular, at the optimal solution, βj and bj are

identical. Thus bj can be taken to be any value from the interval, [Bj
low, Bj

up]. We can resolve

any non-uniqueness by simply taking bj = 1
2
(Bj

low +Bj
up). Note that the KKT conditions in (15),

coming from the additive constraints in (4) we introduced in Shashua and Levin’s formulation,

enforce Bj−1
low ≤ Bj

low and Bj−1
up ≤ Bj

up at the solution, which guarantee that the thresholds

specified in these feasible regions will satisfy the inequality constraints bj−1 ≤ bj; without the

constraints in (4), the thresholds might be disordered at the solution!

Here we essentially consider an optimization problem of multiple learning tasks where in-

dividual optimality conditions are coupled together by a joint constraint. We believe this is a

non-trivial extension and useful in other applications. The SMO algorithm (Platt, 1999; Keerthi

et al., 2001) can be adapted for the solution of (11)–(12). The details are given in Appendix A.

3 Approach 2: Implicit Constraints on Thresholds

In this section we present a new approach to support vector ordinal regression. Instead of

considering only the empirical errors from the samples of adjacent categories to determine a

threshold, we allow the samples in all the categories to contribute errors for each threshold.

This kind of loss functions was also suggested by Srebro et al. (2005) for collaborative filtering.

A very nice property of this approach is that the ordinal inequalities on the thresholds are

satisfied automatically at the optimal solution in spite of the fact that such constraints on the

thresholds are not explicitly included in the new formulation. We give a proof on this property

in the following section.

10

Figure 2 explains the new definition of slack variables ξ and ξ∗. For a threshold bj, the

function values of all the samples from all the lower categories, should be less than the lower

margin bj − 1; if that does not hold, then ξj
ki = 〈w · φ(xk

i)〉 − (bj − 1) is taken as the error

associated with the sample xk
i for bj, where k ≤ j. Similarly, the function values of all the

samples from the upper categories should be greater than the upper margin bj + 1; otherwise

ξ∗jki = (bj + 1) − 〈w · φ(xk
i)〉 is the error associated with the sample xk

i for bj, where k > j.

Here, the subscript ki denotes that the slack variable is associated with the i-th input sample in

the k-th category; the superscript j denotes that the slack variable is associated with the lower

categories of bj; and the superscript ∗j denotes that the slack variable is associated with the

upper categories of bj.

3.1 Primal Problem

By taking all the errors associated with all r − 1 thresholds into account, the primal problem

can be defined as follows:

min
w,b,ξ,ξ∗

1

2
〈w · w〉 + C

r−1∑
j=1

(j∑
k=1

nk∑
i=1

ξj
ki +

r∑
k=j+1

nk∑
i=1

ξ∗jki

)
(20)

subject to

〈w · φ(xk
i)〉 − bj ≤ −1 + ξj

ki, ξj
ki ≥ 0,

for k = 1, . . . , j and i = 1, . . . , nk;

〈w · φ(xk
i)〉 − bj ≥ +1 − ξ∗jki , ξ∗jki ≥ 0,

for k = j + 1, . . . , r and i = 1, . . . , nk;

(21)

where j runs over 1, . . . , r − 1. Note that there are r − 1 inequality constraints for each sample

xk
i (one for each threshold).

To prove the inequalities on the thresholds at the optimal solution, let us consider the

situation where w is fixed and only the bj’s are optimized. Note that the ξj
ki and ξ∗jki are

automatically determined once the bj are given. To eliminate these variables, let us define, for

11

b2b1

y=1 y=2 y=3

b2-1 b2+1b1-1 b1+1

ξ2i
∗ 1

f(x) = w φ(x).

ξ2i
2

ξ3i
∗ 2

ξ3i
∗ 1

ξ1i
1

Figure 2: An illustration on the new definition of slack variables ξ and ξ∗ that imposes implicit
constraints on the thresholds. All the samples are mapped by 〈w ·φ(x)〉 onto the axis of function
values. Note the term ξ∗13i in this graph.

1 ≤ k ≤ r,

I low
k (b)

def
= {i ∈ {1, . . . , nk} : 〈w · φ(xk

i)〉 − b ≥ −1},
Iup
k (b)

def
= {i ∈ {1, . . . , nk} : 〈w · φ(xk

i)〉 − b ≤ 1}.

It is easy to see that bj is optimal iff it minimizes the function

ej(b) =

j∑
k=1

∑
i∈Ilow

k (b)

(〈w · φ(xk
i)〉 − b + 1

)
+

r∑
k=j+1

∑
i∈Iup

k (b)

(−〈w · φ(xk
i)〉 + b + 1

)
(22)

Let B�
j denote the set of all minimizers of ej(b). By convexity, B�

j is a closed interval. Given

two intervals B1 = [c1, d1] and B2 = [c2, d2], we say B1 ≤ B2 if c1 ≤ c2 and d1 ≤ d2.

Lemma 1. B�
1 ≤ B�

2 ≤ · · · ≤ B�
r−1

Proof. The “right side derivative” of ej with respect to b is

gj(b) = −∑j
k=1 |I low

k (b)| + ∑r
k=j+1 |Iup

k (b)| (23)

Take any one j and consider B�
j = [cj, dj] and B�

j+1 = [cj+1, dj+1]. Suppose cj > cj+1. Define

b�
j = cj and b�

j+1 = cj+1. Since b�
j+1 is strictly to the left of the interval B�

j that minimizes ej, we

have gj(b
�
j+1) < 0. Since b�

j+1 is a minimizer of ej+1 we also have gj+1(b
�
j+1) ≥ 0. Thus we have

12

gj+1(b
�
j+1) − gj(b

�
j+1) > 0; also, by (23) we get

0 < gj+1(b
�
j+1) − gj(b

�
j+1) = −|I low

j+1(b
�
j+1)| − |Iup

j+1(b
�
j+1)|

which is impossible. In a similar way, dj > dj+1 is also not possible. This proves the lemma.

If the optimal bj are all unique,2 then Lemma 1 implies that the bj satisfy the natural ordinal

ordering. Even when one or more bj’s are non-unique, Lemma 1 says that there exist choices

for the bj that obey the natural ordering. The fact that the order preservation comes about

automatically is interesting and non-trivial, which differs from the PRank algorithm (Crammer

and Singer, 2002) where the order preservation on the thresholds is easily brought in via their

update rule.

It is also worth noting that Lemma 1 holds even for an extended problem formulation that

allows the use of different costs (different C values) for different misclassifications (class k mis-

classified as class j can have a Cj
k). In applications such as collaborative filtering such a problem

formulation can be very appropriate; for example, an A rated movie that is misrated as D may

need to be penalized much more than if a B rated movie is misrated as D. Shashua and Levin’s

formulation and its extension given in section 2 of this paper do not precisely support such

a differential cost structure. This is another good reason in support of the implicit problem

formulation of the current section.

3.2 Dual Problem

Let αj
ki ≥ 0, γj

ki ≥ 0, α∗j
ki ≥ 0 and γ∗j

ki ≥ 0 be the Lagrangian multipliers for the inequalities in

(21). Using ideas parallel to those in section 2.1 we can show that the dual of (20)–(21) is the

following maximization problem that involves only the multipliers α and α∗:

max
α,α∗ −

1

2

∑
k,i

∑
k′,i′

(k−1∑
j=1

α∗j
ki −

r−1∑
j=k

αj
ki

)(k′−1∑
j=1

α∗j
k′i′ −

r−1∑
j=k′

αj
k′i′

)
K(xk

i , x
k′
i′) +

∑
k,i

(k−1∑
j=1

α∗j
ki +

r−1∑
j=k

αj
ki

)

(24)

2If, in the primal problem, we regularize the bj ’s as well (i.e., include the extra cost term
∑

j b2
j/2) then the

bj ’s are guaranteed to be unique. Lemma 1 still holds in this case.

13

subject to
j∑

k=1

nk∑
i=1

αj
ki =

r∑
k=j+1

nk∑
i=1

α∗j
ki ∀j

0 ≤ αj
ki ≤ C ∀j and k ≤ j

0 ≤ α∗j
ki ≤ C ∀j and k > j.

(25)

The dual problem (24)–(25) is a convex quadratic programming problem. The size of the

optimization problem is (r − 1)n where n =
∑r

k=1 nk is the total number of training samples.

The discriminant function value for a new input vector x is

f(x) = 〈w · φ(x)〉 =
∑
k,i

(k−1∑
j=1

α∗j
ki −

r−1∑
j=k

αj
ki

)
K(xk

i , x). (26)

The predictive ordinal decision function is given by arg min
i
{i : f(x) < bi}.

The ideas of adapting the SMO algorithm to (24)–(25) are similar to those in Appendix A.

The resulting suboptimization problem is analogous to the case of standard update in Appendix

A where only one of the equality constraints from (25) is involved. Full details of the SMO

algorithm are given in our technical report (Chu and Keerthi, 2005).

4 Numerical Experiments

We have implemented the two SMO algorithms for the ordinal regression formulations with

explicit constraints (EXC) and implicit constraints (IMC),3 along with the algorithm of Shashua

and Levin (2003) for comparison purpose. The function caching technique and the double-loop

scheme proposed by Keerthi et al. (2001) have been incorporated in the implementation for

efficiency. We begin this section with a simple dataset to illustrate the typical behavior of the

three algorithms, and then empirically study the scaling properties of our algorithms. Then

we compare the generalization performance of our algorithms against standard support vector

regression on eight benchmark datasets for ordinal regression. The following Gaussian kernel

3The source code of the two algorithms written in ANSI C can be found at
http://www.gatsby.ucl.ac.uk/∼chuwei/svor.htm.

14

was used in these experiments:

K(x, x′) = exp
(
−κ

2

∑d
ς=1(xς − x′

ς)
2
)

(27)

where κ > 0 and xς denotes the ς-th element of the input vector x. The tolerance parameter τ

was set to 0.001 for all the algorithms. We have utilized two evaluation metrics which quantify

the accuracy of predicted ordinal scales {ŷ1, . . . , ŷt} with respect to true targets {y1, . . . , yt}:

a) Mean absolute error is the average deviation of the prediction from the true target, i.e.

1
t

∑t
i=1 |ŷi − yi|, in which we treat the ordinal scales as consecutive integers;

b) Mean zero-one error is simply the fraction of incorrect predictions on individual samples.

4.1 Grading Dataset

The grading dataset was used in chapter 4 of Johnson and Albert (1999) as an example of the

ordinal regression problem.4 There are 30 samples of students’ score. The “sat-math score” and

“grade in prerequisite probability course” of these students are used as input features, and their

final grades are taken as the targets. In our experiments, the six students with final grade A or

E were not used, and the feature associated with the “grade in prerequisite probability course”

was treated as a continuous variable though it had an ordinal scale. In Figure 3 we present the

solution obtained by the three algorithms using the Gaussian kernel (27) with κ = 0.5 and the

regularization factor value of C = 1. In this particular setting, the solution to Shashua and

Levin (2003)’s formulation has disordered thresholds b2 < b1 as shown in Figure 3 (left plot);

the formulation with explicit constraints corrects this disorder and yields equal values for the

two thresholds as shown in Figure 3 (middle plot).

4The grading dataset is available at http://www.mathworks.com/support/books/book1593.jsp.

15

450 500 550 600

1

2

3

4

5
G

ra
de

 in
 p

ro
ba

bi
lit

y
co

ur
se

Sat−math score

Shashua and Levin’s formulation

b
1
=0.01

b
2
=−0.15

450 500 550 600

1

2

3

4

5

G
ra

de
 in

 p
ro

ba
bi

lit
y

co
ur

se

Sat−math score

with implicit constraints

b
1
=−0.51 b

2
=0.74

450 500 550 600

1

2

3

4

5

G
ra

de
 in

 p
ro

ba
bi

lit
y

co
ur

se

Sat−math score

with explicit constraints

b
1
=b

2
=−0.07

(a) (b) (c)

Figure 3: The training results of the three algorithms using a Gaussian kernel on the grading
dataset. The discriminant function values are presented as contour graphs indexed by the two
thresholds. The circles denote the students with grade D, the dots denote grade C, and the
squares denote grade B.

4.2 Scaling

In this experiment, we empirically studied how the two SMO algorithms scale with respect to

training data size and the number of ordinal scales in the target. The California Housing dataset

was used in the scaling experiments.5 Twenty-eight training datasets with sizes ranging from

100 to 5,000 were generated by random selection from the original dataset. The continuous

target variable of the California Housing data was discretized to ordinal scale by using 5 or 10

equal-frequency bins. The standard support vector regression (SVR) was used as a baseline,

in which the ordinal targets were treated as continuous values and ε=0.1. These datasets were

trained by the three algorithms using a Gaussian kernel with κ=1 and a regularization factor

value of C=100. Figure 4 gives plots of the computational costs of the three algorithms as

functions of the problem size, for the two cases of 5 and 10 target bins. Our algorithms scale

well with scaling exponents between 2.13 and 2.33, while the scaling exponent of SVR is about

2.40 in this case. This near-quadratic property in scaling comes from the sparseness property of

SVMs, i.e., non-support vectors affect the computational cost only mildly. The EXC and IMC

algorithms cost more than the SVR approach due to the larger problem size. For large sizes, the

cost of EXC is only about 2 times that of SVR in this case. As expected, we also noticed that

the computational cost of IMC is dependent on r, the number of ordinal scales in the target.

The cost for 10 ranks is observed to be roughly 5 times that for 5 ranks, whereas the cost of

5The California Housing dataset can be found at http://lib.stat.cmu.edu/datasets/.

16

100 500 1000 2000 5000

10
−2

10
0

10
2

10
4

Training data size

C
P

U
 ti

m
e

in
 s

ec
on

ds

5 ordinal scales in the target

implicit constraints
explicit constraints
support vector regression

100 500 1000 2000 5000

10
−2

10
0

10
2

10
4

Training data size

C
P

U
 ti

m
e

in
 s

ec
on

ds

10 ordinal scales in the target

implicit constraints
explicit constraints
support vector regression

slope ≈ 2.13

slope ≈ 2.18

slope ≈ 2.43

slope ≈ 2.13

slope ≈ 2.33

slope ≈ 2.39

Figure 4: Plots of CPU time versus training data size on log− log scale, indexed by the estimated
slopes respectively. We used the Gaussian kernel with κ = 1 and the regularization factor value
of C = 100 in the experiment.

Table 1: Test results of the three algorithms using a Gaussian kernel. The targets of these
benchmark datasets were discretized into 5 equal-frequency bins. d denotes the input dimension
and “training/test” denotes the partition size. The results are the averages over 20 trials, along
with the standard deviation. We use bold face to indicate the cases in which the average value
is the lowest among the results of the three algorithms. The symbols are used to indicate the
cases significantly worse than the winning entry; A p-value threshold of 0.01 in Wilcoxon rank
sum test was used to decide this.

Partition Mean zero-one error Mean absolute error
Dataset d training/test SVR EXC IMC SVR EXC IMC
Pyrimidines 27 50 /24 0.552±0.102 0.525±0.095 0.517±0.086 0.673±0.160 0.623±0.120 0.615±0.127
MachineCPU 6 150/59 0.454±0.054 0.423±0.060 0.431±0.054 0.495±0.067 0.458±0.067 0.462±0.062
Boston 13 300/206 0.354±0.033 0.336±0.033 0.332±0.024 0.376±0.033 0.362±0.036 0.357±0.024
Abalone 8 1000/3177 0.555±0.016� 0.522±0.015 0.527±0.009 0.679±0.014� 0.662±0.005 0.657±0.011
Bank 32 3000/5182 0.590±0.004� 0.528±0.004 0.537±0.004� 0.712±0.006� 0.674±0.006� 0.661±0.005
Computer 21 4000/4182 0.289±0.007� 0.270±0.006 0.273±0.007 0.306±0.008� 0.288±0.007 0.289±0.007
California 8 5000/15640 0.451±0.004� 0.424±0.003 0.426±0.004 0.515±0.004� 0.494±0.004 0.491±0.005
Census 16 6000/16784 0.522±0.005� 0.473±0.003 0.478±0.004� 0.619±0.006� 0.576±0.003 0.573±0.005

EXC is nearly the same for the two cases. These observations are consistent with the size of

the optimization problems. The problem size of IMC is (r − 1)n (which is heavily influenced

by r) while the problem size of EXC is about 2n + r (which largely depends on n only since we

usually have n � r). This factor of efficiency can be a key advantage for the EXC formulation.

4.3 Benchmark datasets

Next, we compared the generalization performance of the two approaches against the naive

approach of using standard support vector regression (SVR) and the method (SLA) of Shashua

and Levin (2003). We collected eight benchmark datasets that were used for metric regression

17

Table 2: Test results of the four algorithms using a Gaussian kernel. The partition sizes of
these benchmark datasets were same as that in Table 1, but the targets were discretized by
10 equal-frequency bins. The results are the averages over 20 trials, along with the standard
deviation. We use bold face to indicate the lowest average value among the results of the four
algorithms. The symbols are used to indicate the cases significantly worse than the winning
entry; A p-value threshold of 0.01 in Wilcoxon rank sum test was used to decide this.

Mean zero-one error Mean absolute error
Dataset SVR SLA EXC IMC SVR SLA EXC IMC
Pyrimidines 0.777±0.068� 0.756±0.073 0.752±0.063 0.719±0.066 1.404±0.184 1.400±0.255 1.331±0.193 1.294±0.204
Machinecpu 0.693±0.056� 0.643±0.057 0.661±0.056 0.655±0.045 1.048±0.141 1.002±0.121 0.986±0.127 0.990±0.115
Boston 0.589±0.025� 0.561±0.023 0.569±0.025 0.561±0.026 0.785±0.052 0.765±0.057 0.773±0.049 0.747±0.049
Abalone 0.758±0.017� 0.739±0.008� 0.736±0.011 0.732±0.007 1.407±0.021� 1.389±0.027� 1.391±0.021� 1.361±0.013
Bank 0.786±0.004� 0.759±0.005� 0.744±0.005 0.751±0.005� 1.471±0.010� 1.414±0.012� 1.512±0.017� 1.393±0.011
Computer 0.494±0.006� 0.462±0.006 0.462±0.005 0.473±0.005� 0.632±0.011� 0.597±0.010 0.602±0.009 0.596±0.008
California 0.677±0.003� 0.640±0.003 0.640±0.003 0.639±0.003 1.070±0.008� 1.068±0.006� 1.068±0.005� 1.008±0.005
Census 0.735±0.004� 0.699±0.002 0.699±0.002 0.705±0.002� 1.283±0.009� 1.271±0.007� 1.270±0.007� 1.205±0.007

problems.6 The target values were discretized into ordinal quantities using equal-frequency

binning. For each dataset, we generated two versions by discretizing the target values into five

or ten ordinal scales respectively. We randomly partitioned each dataset into training/test splits

as specified in Table 1. The partitioning was repeated 20 times independently. The input vectors

were normalized to zero mean and unit variance, coordinate-wise. The Gaussian kernel (27) was

used for all the algorithms. 5-fold cross validation was used to determine the optimal values of

model parameters (the Gaussian kernel parameter κ and the regularization factor C) involved in

the problem formulations, and the test error was obtained using the optimal model parameters

for each formulation. The initial search was done on a 7 × 7 coarse grid linearly spaced in the

region {(log10 C, log10 κ)| − 3 ≤ log10 C ≤ 3,−3 ≤ log10 κ ≤ 3}, followed by a fine search on a

9×9 uniform grid linearly spaced by 0.2 in the (log10 C, log10 κ) space. The ordinal targets were

treated as continuous values in standard SVR, and the predictions for test cases were rounded

to the nearest ordinal scale. The insensitive zone parameter, ε of SVR was fixed at 0.1. The test

results of these algorithms are recorded in Table 1 and 2. It is very clear that the generalization

capabilities of the three ordinal regression algorithms are better than that of the approach of

SVR. The performance of Shashua and Levin’s method is similar to our EXC approach, as

expected, since the two formulations are pretty much the same. Our ordinal algorithms are

comparable on the mean zero-one error, but the results also show the IMC algorithm yields

6These regression datasets are available at http://www.liacc.up.pt/∼ltorgo/Regression/DataSets.html.

18

much more stable results on mean absolute error than the EXC algorithm.7 From the view of

the formulations, EXC only considers the extremely worst samples between successive ranks,

whereas IMC takes all the samples into account. Thus the outliers may affect the results of EXC

significantly, while the results of IMC are relatively more stable in both validation and test.

4.4 Information Retrieval

Ranking learning arises frequently in information retrieval. Hersh et al. (1994) generated the

OHSUMED dataset,8 which consists of 348566 references and 106 queries with their respective

ranked results. The relevance level of the references with respect to the given textual query were

assessed by human experts, using a three rank scale: definitely, possibly, or not relevant. In

our experiments, we used the results of query 1 which contain 107 assessed references (19 defi-

nitely relevant, 14 possibly relevant and 74 irrelevant) taken from the whole database. In order

to apply our algorithms the bag-of-words representation was used to translate these reference

documents into vectors. We computed, for all documents the vector of “term frequencies”(TF)

components scaled by “inverse document frequencies”(IDF). The TFIDF is a weighted scheme

for the bag-of-words representation which gives higher weights to terms which occur very rarely

in all documents. We used the “rainbow” software released by McCallum (1998) to scan the

title and abstract of these references for the bag-of-words representation. In the preprocessing,

we skipped the terms in the “stoplist”,9 and restricted ourselves to terms that appear in at least

3 of the 107 documents. This results in 462 distinct terms. So each document is represented by

its TFIDF vector with 462 elements. To account for different document lengths, we normalized

the length of each document vector to unity (Joachims, 1998).

We randomly selected a subset of the 107 references (with size chosen from {20, 30, . . . , 60})
for training and then tested on the remaining references. For each size, the random selection was

repeated 100 times. The generalization performance of the two support vector algorithms for

7As a plausible argument, ξj
i + ξ∗j+1

i in (2) of EXC is an upper bound on the zero-one error of the i-th
example, while, in (18) of IMC,

∑j
k=1 ξj

ki +
∑r

k=j+1 ξ∗j
ki is an upper bound on the absolute error. Note that, in

all the examples we use consecutive integers to represent the ordinal scales.
8This dataset is publicly available at ftp://medir.ohsu.edu/pub/ohsumed/.
9The “stoplist” is the SMART systems’ list of 524 common words, like “the” and “of”.

19

20 30 40 50 60
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
M

ea
n

ze
ro

−
on

e
er

ro
r

Training data size
20 30 40 50 60

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

M
ea

n
ab

so
lu

te
 e

rr
or

Training data size

Figure 5: The test results of the three algorithms on the subset of the OHSUMED data relating
to query 1, over 100 trials. The grouped boxes represent the results of SVR (left), EXC (middle)
and IMC (right) at different training data sizes. The notched-boxes have lines at the lower
quartile, median, and upper quartile values. The whiskers are lines extending from each end of
the box to the most extreme data value within 1.5·IQR(Interquartile Range) of the box. Outliers
are data with values beyond the ends of the whiskers, which are displayed by dots. The left
graph gives mean zero-one error and the right graph gives mean absolute error.

ordinal regression were compared against the naive approach of using support vector regression.

The linear kernel K(xi, xj) = 〈xi ·xj〉 was employed for all the three algorithms. The test results

of the three algorithms are presented as boxplots in Figure 5. In this case, the zero-one error

rates are almost at same level, but the naive approach yields much worse absolute error rate

than the two ordinal SVM algorithms.

5 Conclusion

In this paper we proposed two new approaches to support vector ordinal regression that deter-

mine r − 1 parallel discriminant hyperplanes for the r ranks by using r − 1 thresholds. The

ordinal inequality constraints on the thresholds are imposed explicitly in the first approach and

implicitly in the second one. The problem size of the two approaches is linear in the number of

training samples. We also designed SMO algorithms that scale only about quadratically with the

problem size. The results of numerical experiments verified that the generalization capabilities

of these approaches are much better than the naive approach of applying standard regression.

20

Acknowledgments

A part of the work was carried out at the Institute for Pure and Applied Mathematics (IPAM),

University of California, from April to June 2004. WC was supported by a NIH Grant Number 1

P01 GM63208. The revision work was partly supported by a research contract from Consolidated

Edison. The reviewers’ thoughtful comments are gratefully appreciated.

A SMO Algorithm

In this section we adapt the SMO algorithm (Platt, 1999; Keerthi et al., 2001) for the solution

of (11)–(12). The key idea of SMO consists of starting with a valid initial point and optimizing

only one pair of variables at a time while fixing all the other variables. The suboptimization

problem of the two active variables can be solved analytically. Table 3 presents an outline of

the SMO implementation for our optimization problem.

In order to determine the pair of active variables to optimize, we select the active threshold

first. The index of the active threshold is defined as J = arg maxj{Bj
low − Bj

up}. Let us assume

that BJ
low and BJ

up are actually defined by bjo

low and bju
up respectively, and that the two multipliers

associated with bjo

low and bju
up are αo and αu. The pair of multipliers (αo, αu) is optimized from

the current point (αold
o , αold

u) to reach the new point, (αnew
o , αnew

u).

It is possible that jo �= ju. In this case, named as cross update, more than one equal-

ity constraint in (12) is involved in the optimization that may update the variable set µa =

{µmin{jo,ju}+1, . . . , µmax{jo,ju}}, a subset of µ. In the case of jo = ju, named as standard update,

only one equality constraint is involved and the variables of µ are kept intact, i.e. µa = ∅. These

suboptimization problems can be solved analytically, and the detailed formulas for updating are

given in the following.

The following equality constraints have to be taken into account in the consequent subopti-

21

Table 3: The basic framework of the SMO algorithm for support vector ordinal regression using
explicit threshold constraints.

SMO start at a valid point, α, α∗ and µ, that satisfy (12),

find the current Bj
up and Bj

low ∀j

Loop do
1. determine the active threshold J
2. optimize the pair of active variables and the set µa

3. compute Bj
up and Bj

low ∀j at the new point
while the optimality condition (19) has not been satisfied

Exit return α, α∗ and b

mization problem:

nj∑
i=1

αj
i + µj =

nj+1∑
i=1

α∗j+1
i + µj+1, min{jo, ju} ≤ j ≤ max{jo, ju}. (28)

Under these constraints the suboptimization problem for αo, αu and µa can be written as

min
αo,αu,µa

1

2

∑
j,i

∑
j′,i′

(α∗j
i − αj

i)(α
∗j′
i′ − αj′

i′)K(xj
i , x

j′
i′) − αo − αu (29)

subject to the bound constraints 0 ≤ αo ≤ C, 0 ≤ αu ≤ C and µa ≥ 0. The equality constraints

(28) can be summarized for αo and αu as a linear constraint αo + sosuαu = αold
o + sosuα

old
u = ρ,

where

so =

−1 if io ∈ Ijo

0a ∪ Ijo

2

+1 if io ∈ Ijo

0b ∪ Ijo

4

su =

−1 if iu ∈ Iju

0a ∪ Iju

3

+1 if iu ∈ Iju

0b ∪ Iju

1

(30)

It is quite straightforward to verify that, for the above optimization problem which is restricted

to αo, αu and µa, one can use the same derivations that led to (17) to show that the optimality

conditions for the restricted problem is nothing but bjo

low ≤ bju
up. Since we started with this

condition being violated, we are guaranteed that the solution of the restricted optimization

problem will lead to a strict improvement in the objective function.

To solve the restricted optimization problem, first consider the case of a positive definite

22

kernel matrix. For this case, the unbounded solution can be exactly determined as

αnew
o = αold

o + so∆µ

αnew
u = αold

u − su∆µ

µj
new = µj

old − dµ∆µ ∀µj ∈ µa

(31)

where

dµ =

+1 if jo ≤ ju

−1 if jo > ju

(32)

and

∆µ =
−f(xo) + f(xu) + so − su

K(xo, xo) + K(xu, xu) − 2K(xo, xu)
, (33)

Now we need to check the box bound constraint on αo and αu and the constraint µj ≥ 0. We

have to adjust ∆µ towards 0 to draw the out-of-range solution back to the nearest boundary

point of the feasible region, and update variables accordingly as in (31). Note that the cross

update allows αo and αu to be associated with the same sample. For the positive semi-definite

kernel matrix case, the denominator of (33) can vanish. Still, leaving out the denominator

defines the descent direction which needs to be traversed till the boundary is hit, in order to get

the optimal solution.

It should be noted that, working with just any violating pair of variables does not automat-

ically ensure the convergence of the SMO algorithm. However, since the most violating pair is

always chosen, the ideas of Keerthi and Gilbert (2002) can be adapted to prove the convergence

of the SMO algorithm.

References

Chu, W. and S. S. Keerthi. New approaches to support vector ordinal regression. Technical

report, Yahoo! Research Labs., 2005.

Crammer, K. and Y. Singer. Pranking with ranking. In Dietterich, T. G., S. Becker, and

23

Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 641–

647, Cambridge, MA, 2002. MIT Press.

Frank, E. and M. Hall. A simple approach to ordinal classification. In Proceedings of the

European Conference on Machine Learning, pages 145–165, 2001.

Har-Peled, S., D. Roth, and D. Zimak. Constraint classification: A new approach to multiclass

classification and ranking. In Advances in Neural Information Processing Systems 15, 2002.

Herbrich, R., T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regres-

sion. In Advances in Large Margin Classifiers, pages 115–132. MIT Press, 2000.

Hersh, W., C. Buckley, T. Leone, and D. Hickam. Ohsumed: An interactive retrieval evaluation

and new large test collection for research. In Proceedings of the 17th Annual ACM SIGIR

Conference, pages 192–201, 1994.

Joachims, T. Text categorization with support vector machines: learning with many relevant

features. In Nédellec, C. and C. Rouveirol, editors, Proceedings of ECML-98, 10th European

Conference on Machine Learning, pages 137–142. Springer Verlag, Heidelberg, DE, 1998.

Johnson, V. E. and J. H. Albert. Ordinal Data Modeling (Statistics for Social Science and Public

Policy). Springer-Verlag, 1999.

Keerthi, S. S. and E. G. Gilbert. Convergence of a generalized SMO algorithm for SVM classifier

design. Machine Learning, 46:351–360, 2002.

Keerthi, S. S., S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements to Platt’s

SMO algorithm for SVM classifier design. Neural Computation, 13:637–649, March 2001.

Kramer, S., G. Widmer, B. Pfahringer, and M. DeGroeve. Prediction of ordinal classes using

regression trees. Fundamenta Informaticae, 47:1–13, 2001.

McCallum, A. Rainbow, Sept. 1998. URL http://www.cs.umass.edu/∼mccallum/bow/rainbow/.

Platt, J. C. Fast training of support vector machines using sequential minimal optimization.

In Schölkopf, B., C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods -

Support Vector Learning, pages 185–208. MIT Press, 1999.

24

Schölkopf, B. and A. J. Smola. Learning with Kernels. The MIT Press, 2002.

Shashua, A. and A. Levin. Ranking with large margin principle: two approaches. In S. Becker,

S. T. and K. Obermayer, editors, Advances in Neural Information Processing Systems 15,

pages 937–944, 2003.

Srebro, N., J. D. M. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. In

Advances in Neural Information Processing Systems 17, 2005.

Vapnik, V. N. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.

25

