
Parallel Sequential Minimal Optimization for the Training

of Support Vector Machines

1L.J. Caoa, S.S. Keerthib, C.J. Ongb, P. Uvarajc, X.J. Fuc and H.P. Leec , J.Q. Zhanga

a Financial Studies of Fudan University, HanDan Road, ShangHai, P.R. China, 200433
bDept. Of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent,

Singapore 119260
cInstitute of High Performance Computing, 1 Science Park Road, #01-01 the Capricorn, Science Park

II, 117528 Singapore

Abstract ⎯ Sequential minimal optimization (SMO) is one popular algorithm for

training support vector machine (SVM), but it still requires a large amount of

computation time for solving large size problems. This paper proposes one parallel

implementation of SMO for training SVM. The parallel SMO is developed using

message passing interface (MPI). Specifically, the parallel SMO first partitions the

entire training data set into smaller subsets and then simultaneously runs multiple

CPU processors to deal with each of the partitioned data sets. Experiments show that

there is great speedup on the adult data set and the MNIST data set when many

processors are used. There are also satisfactory results on the Web data set.

Index Terms ⎯ Support vector machine (SVM), sequential minimal optimization

(SMO), message passing interface (MPI), parallel algorithm

1 Corresponding author. Email: ljcao@fudan.edu.cn. The research work is funded by National Natural

Science Research Fund No. 70501008 and sponsored by Shanghai Pujiang program.

 1

mailto:ljcao@fudan.edu.cn

I. INTRODUCTION

Recently, a lot of research work has been done on support vector machines

(SVMs), mainly due to their impressive generalization performance in solving various

machine learning problems [1,2,3,4,5]. Given a set of data points { } (

 is the input vector of th training data pattern;

l
iii yX),(

d
i RX ∈ i }1,1{−∈iy is its class label;

 is the total number of training data patterns), training an SVM in classification is

equivalent to solving the following linearly constrained convex quadratic

programming (QP) problem.

l

 maximize: ∑∑∑
= ==

−=
l

i
jijij

l

j
i

l

i
ii XXkyyR

1 11

),(
2
1)(αααα (1)

 subject to: (2) 0
1

=∑
=

i

l

i
i yα

 ci ≤≤ α0 li ,,1, L=

where is the kernel function. The mostly widely used kernel function is the

Gaussian function

),(ji XXk

2

2

σ
ji XX

e
−−

, where is the width of the Gaussian kernel. 2σ iα is the

Lagrange multiplier to be optimized. For each of training data patterns, one iα is

associated. c is the regularization constant pre-determined by users. After solving the

QP problem (1), the following decision function is used to determine the class label

for a new data pattern.

bXXkyXfunction
l

i
iii += ∑

=1
),()(α (3)

where b is obtained from the solution of (1).

So the main problem in SVM is reduced to solving the QP problem (1), where the

number of variables iα to be optimized is equal to the number of training data

 2

patterns l . For small size problems, standard QP techniques such as the projected

conjugate gradient can be directly applied. But for large size problems, standard QP

techniques are not useful as they require a large amount of computer memory to store

the kernel matrix as the number of elements of K is equal to the square of the

number of training data patterns.

K

For making SVM more practical, special algorithms are developed, such as

Vapnik’s chunking [6], Osuna’s decomposition [7] and Joachims’s SVMlight[8]. They

make the training of SVM possible by breaking the large QP problem (1) into a series

of smaller QP problems and optimizing only a subset of training data patterns at each

step. The subset of training data patterns optimized at each step is called the working

set. Thus, these approaches are categorized as the working set methods.

Based on the idea of the working set methods, Platt [9] proposed the sequential

minimal optimization (SMO) algorithm which selects the size of the working set as

two and uses a simple analytical approach to solve the reduced smaller QP problems.

There are some heuristics used for choosing two iα to optimize at each step. As

pointed out by Platt, SMO scales only quadratically in the number of training data

patterns, while other algorithms scales cubically or more in the number of training

data patterns. Later, Keerthi et. al. [10,11] ascertained inefficiency associated with

Platt’s SMO and suggested two modified versions of SMO that are much more

efficient than Platt’s original SMO. The second modification is particular good and

used in popular SVM packages such as LIBSVM [12]. We will refer to this

modification as the modified SMO algorithm.

Recently, there are few works on developing parallel implementation of training

SVMs [13,14,15,16]. In [13], a mixture of SVMs are trained in parallel using the

subsets of a training data set. The results of each SVM are then combined by training

 3

another multi-layer perceptron. The experiment shows that the proposed parallel

algorithm can provide much efficiency than using a single SVM. In the algorithm

proposed by Dong et. al. [14], multiple SVMs are also developed using subsets of a

training data set. The support vectors in each SVM are then collected to train another

new SVM. The experiment demonstrates much efficiency of the algorithm. Zanghirati

and Zanni [15] also proposed a parallel implementation of SVMlight where the whole

quadratic programming problem is split into smaller subproblems. The subproblems

are then solved by a variable projection method. The results show that the approach is

comparable on scalar machines with a widely used technique and can achieve good

efficiency and scalability on a multiprocessor system. Huang et. Al. [16] proposed a

modular network implementation for SVM. The result found out that the modular

network could significantly reduce the learning time of SVM algorithms without

sacrificing much generalization performance.

This paper proposes a parallel implementation of the modified SMO based on the

multiprocessor system for speeding up the training of SVM, especially with the aim of

solving large size problems. In this paper, the parallel SMO is developed using

message passing interface (MPI) [17]. Unlike the sequential SMO which handles the

entire training data set using a single CPU processor, the parallel SMO first partitions

the entire training data set into smaller subsets and then simultaneously runs multiple

CPU processors to deal with each of the partitioned data sets. On the adult data set the

parallell SMO using 32 CPU processors is more than 21 times faster than the

sequential SMO. On the web data set,the parallel SMO using 30 CPU processors is

more than 10 times faster than the sequential SMO. On the MNIST data set the

parallel SMO using 30 CPU processors on the averaged time of “one-against-all”

SVM classifiers is more than 21 times faster than the sequential SMO.

 4

This paper is organized as follows. Section II gives an overview of the modified

SMO. Section III describes the parallel SMO developed using MPI. Section IV

presents the experiment indicating the efficiency of the parallel SMO. A short

conclusion then follows.

II. A BRIEF OVERVIEW OF THE MODIFIED SMO

We begin the description of the modified SMO by giving the notation used. Let

}0,1:{}0,1:{0 cyicyiI iiii <<−=∪<<== αα , }0,1:{1 === iiyiI α ,

},1:{2 cyiI ii =−== α , },1:{3 cyiI ii === α , and }0,1:{4 =−== iiyiI α .

 denotes the index of training data patterns.

.

4,,0, LU == iII i

i

l

j
ijjji yXXkyf −= ∑

=1

),(α :min{ 0Iifb iup }2I1I ∪∪∈= , .

,

iiup fI minarg=

}:max{ 430 IIIifb ilow ∪∪∈= iilow fI maxarg= . . 610−=τ

The idea of the modified SMO is to optimize the two iα associated with and

 according to (4) and (5) at each step. Their associated index are and I .

upb

lowlowb upI

η
αα

)(
212

22

oldold
oldnew ffy −

−= (4)

)(2211
newoldoldnew s αααα −+= (5)

where the variables associated with the two iα are represented using the subscripts

“1” and “2”. 21 yys = .),(),),(2 221121 XXkXXXk (Xk −−=η . and

need to be clipped to . That is, and .

new
1α

new
2α

] new≤ 10 α cnew ≤≤ 20 α,0[C c≤

After optimizing 1α and 2α , , denoting the error on the i th training data

pattern, is updated according to the following:

if

),()(),()(22221111 i
oldnew

i
oldnewold

i
new

i XXkyXXkyff αααα −+−+= (6)

 5

Based on the updated values of , and and the associated index and

 are updated again according to their definitions. The updated values are then used

to choose another two new i

if upb lowb upI

lowI

α to optimize at the next step.

In addition, the value of Eq. (1), represented by , is updated at each step Dual

2

1

11
21

1

11)(
2
1)(

y
ff

y
DualDual

oldnew
oldold

oldnew
oldnew αα

η
αα −

+−
−

−= (7)

And , representing the difference between the primal and the dual

objective function in SVM, is calculated by (8).

DualityGap

∑∑
==

+=
l

oi
i

l

i
iii fyDualityGap εα

0
 (8)

where
⎩
⎨
⎧

−=+=
==

1)fb- max(0,
1)f-b max(0,

i

i

ii

ii

yifC
yifC

ε
ε

A more detailed description of and can be referred to the paper [8].

 and are used for checking the convergence of the program. A

simple description of the modified SMO in the sequential form can be summarized as:

Dual DualityGap

Dual DualityGap

Sequential SMO Algorithm:

Initialize 0=iα , , ii yf −= 0=Dual , li ,,1 L=

Calculate , , , , DualityGap upb upI lowb lowI

Until DualDualityGap τ≤

(1) Optimize
upIα ,

lowIα

(2) Update , if li ,,1 L=

(3) Calculate , , , , DualityGap and update Dual upb upI lowb lowI

Repeat

 6

III. THE PARALLEL SMO

MPI is not a new programming language, but a library of functions that can be

used in C, C++ and FORTRAN [17]. MPI allows one to easily implement an

algorithm in parallel by running multiple CPU processors for improving efficiency.

The “Single Program Multiple Data (SPMD)” mode where different processors

execute the same program but different data is generally used in MPI for developing

parallel programs.

In the sequential SMO algorithm, most of computation time is dominated by

updating array at the iteration (2), as it includes the kernel evaluations and is also

required for every training data pattern. As shown in our experiment, over 90% of the

total computation time of the sequential SMO is used for updating array. So the

first idea for us to improve the efficiency of SMO is to develop the parallel program

for updating array. According to (6), updating array is independently evaluated

one training data pattern at a time, so the “SPMD” mode can be used to execute this

program in parallel. That is, the entire training data set is firstly equally partitioned

into smaller subsets according to the number of processors used. Then each of the

partitioned subsets is distributed into one CPU processor. By executing the program

of updating array using all the processors, each processor will update a different

subset of array based on its assigned training data patterns. In such a way, much

computation time could be saved. Let

if

if

if

if

if

if

p denotes the total number of processors used,

 is the amount of computation time used for updating array in the sequential

SMO. By using the parallel program of updating array, the amount of computation

time used to update array is almost reduced to

ft if

if

if ft
p
1 .

 7

Besides updating array, calculating , , and can also be

performed in parallel as the calculation involves examining all the training data points.

By executing the program of calculating , , and using all the

processors, each processor could obtain one b and one b as well as the associated

 and based on its assigned training data patterns. The , , and

of each processor are not global in the sense they are obtained only based on a subset

of all the training data patterns. The global and global b are respectively the

minimum value of b of each processor and the maximum value of of each

processor, as described in Section 2. By determining the global and the global

, the associated I and I can thus be found out. The corresponding two i

if

up

upb

upb

up

upb

lowb

lowb

upI

upI

low

lowI

lowI

upI

upb

upI

lowb

lowI upb

low

lowb

lowb

lowI

up low α are

then optimized by using any one CPU processor.

According to (8), calculating DualityGap is also independently evaluated one

training data pattern at a time. So this program can also be executed in parallel using

the “SPMD” mode. By running the program of Eq. (8) using multiple CPU processors,

each processor will calculate a different subset of DualityGap based on its assigned

training data patterns. The value of DualityGap on the entire training data patterns is

the sum of the of all the processors. DualityGap

In summary, based on the “SPMD” parallel mode, the parallel SMO update

array and calculate , , , , and DualityGap at each step in parallel using

multiple CPU processor. The calculation of other parts of SMO which take little time

is done using one CPU processor, which is the same as used in the sequential SMO.

Due to the use of multiple processors, communication among processors is also

required in the parallel SMO, such as getting global , , and from ,

iF

upb

upb lowb upI lowI

upb upI lowb lowI

 8

upI

k
if

k
lowb

upb

, and of each processor. For making the parallel SMO efficient, the

communication time should be kept small. A brief description of executing the

parallel SMO can be summarized as follows.

lowb

DualityGap

l

j
= ∑

=1
α

max{=

DualityGap

max{=

DualityGap

lowI

k
iα

jXk(

:k i∈

}k

∑
=

p

k 1

0 f

Parallel SMO Algorithm:

Notation: is the total number of processors used. , is a subset of

all the training data patterns and assigned to processor . , , , , ,

, , denote the variables associated with processor k .

. , .

, . , , , , and

 still denote the variables on the entire training data patterns.

, , , ,

.

p

k

j y

f

b

p
k

kl 1}{ =

k

1 II ∪∪

k
ii

fmax

}max{ k
lowb

ll k

pk
=

→=1
U

k
if k

upb I

}kl∪ k
upI =

upb upI lowb

I
lowI

k
low

= arg

k
up

b

k
lowb

i
minarg

lowI

low b=

k
lowI

k
if

k
low

kli∈

ii y−)

3I ∪∪

I
up

k
up

= arg

DualityGap

j

i

up

=

X

0

I

,

I

:min{ 20
k

i
k Iifb
up

∈=

}4
klI ∪ k

lowI arg=

k
upup bb = lowb =

k

Initialize , , =k
iα i

k
i y−= 0=Dual , , kli∈ pk ,,1 L=

Calculate , , , , k
upb k

lowb k
lowI kDualityGapk

upI

up bObtain , , , , and DualityGap upb I low lowI

Until DualDualityGap τ ≤

(1) Optimize
upI ,

lowIα α

(2) Update , k
if

b

kli∈

(3) Calculate , , , , k
up

k
upI k

lowb k
lowI kDualityGap

 9

(4) Obtain , , , DualityGap and update Dual upb upI lowb lowI ,

Repeat

A more detailed description of the parallel SMO can be referred to the pseudo-

code in appendix A.

IV. EXPERIMENT

The parallel SMO is tested against the sequential SMO using three benchmarks:

the adult data set, the web data set and the MNIST data set. Both algorithms are

written in C. Both algorithms are run on IBM p690 Regata SuperComputer which has

a total of 7 nodes, with each node having 32 power PC_POWER4 1.3GHz processors.

For ensuring the same accuracy in the sequential SMO and the parallel SMO, the stop

criteria used in both algorithms such as the value of τ are all the same.

A. Adult Data Set

The first data set used to test the parallel SMO’s speed is the UCI adult data set

[10]. The task is to predict whether the household has an income larger than $50,000

based on a total of 123 binary attributes. For each input vector, only an average of 14

binary attributes are true, represented by the value of “1”. Other attributes are all

false, represented by the value of “0”. There are a total of 28,956 data patterns in the

training data set.

The Gaussian kernel is used for both the sequential SMO and the parallel SMO.

The values of Gaussian variance and are arbitrarily used as 100 and 1. These

values are not necessarily ones that give the best generalization performance of SVM,

as the purpose of this experiment is only for evaluating the computation time of two

2σ c

 10

algorithms. Moreover, the LIBSVMversion2.8 proposed by Chang and Lin [12] is also

investigated using a single processor on the experiment. The aim is to see whether the

kernel cache used in LIBSVM can provide efficiency in comparison with the

sequential SMO without kernel cache.

The elapsed time (measured in seconds) with different number of processors in the

sequential SMO, the parallel SMO and LIBSVM is given in Table 1, as well as the

number of converged support vectors (denoted as SVs) and bounded support vectors

with ci =α (denoted as BSVs) . From the table, it can be observed that the elapsed

time of the parallel SMO gradually reduces with an increase in the number of

processors. It can be reduced by almost half with the use of two processors and almost

three-quarters with the use of four processors, etc.. This result demonstrates that the

parallel SMO is efficient in reducing the training time of SVM. Moreover, the parallel

SMO using one CPU processor takes slightly more time than the sequential SMO, due

to the use of MPI programs. The table also shows that LIBSVM running on the single

processor requires less time than that of the sequential SMO. This demonstrates that

the kernel caching is effective in reducing the computation time of the kernel

evaluation.

For evaluating the performance of the parallel SMO, the following two criteria are

used: speedup and efficiency. They are respectively defined by

SMO parallel theof timeelapsed the
SMO sequential theof timeelapsed the speedup = (9)

processors ofnumber
speedupefficieny = (10)

The speedup of the parallel SMO with respect to different number of processors is

illustrated in Fig. 1. The figure shows that up to 16 processors the parallel SMO scales

almost linearly with the number of processors. After that, the scalability of the parallel

 11

SMO is slightly reduced. The maximum value of the speedup is more than 21,

corresponding to the use of 32 processors. The result means that the training time of

the parallel SMO by running 32 processors is only about
21
1 of that of the sequential

SMO, which is very good.

The efficiency of the parallel SMO with different number of processors is

illustrated in Fig. 2. As shown in the figure, the value of the efficiency of the parallel

SMO is 0.9788 when two processors are used. It gradually reduces as the number of

processor increases. The reason may lie in that the use of more processors will lead to

more communication time, thus reducing the efficiency of the parallel SMO.

For a better understanding of the cost of various subparts in the parallel SMO, the

computation time in different components (I/O; initialization; optimizing
upIα and

lowIα ; updating and calculating , , , , ; and obtaining

, , , DualityGap) is reported in Table 2. The time for updating

and calculating , , , , is called as the parallel time as the

involved calculations are done in parallel. And the time for obtaining , , ,

, is called as the communication time as there are many processors

included in the calculation. The table shows that the time for I/O, initialization, and

optimizing

k
if

lowI ,

k
upb

k
upb k

upI

DualityGap

k
lowb

k

k
lowI kDualityGap

upb

lowI

upI lowb

DualityGap

I

k
if

low

k
upI k

lowb k
lowI

upb upI b

up
α and

lowIα is little and irrelevant to the number of processor, while a

large amount of time is used in the parallel time, which means that the updating of k
if

 the calculating of k
upb , k

p
k

w
k
ow better be performed in

parallel using multiple processors. As expected, the parallel time decreases with the

increase of the number of processors. In contrast, the communication time slightly

and uI , lob , lI , k hadDualityGap

 12

increases with the increase of the number of processors. This exactly explains why the

efficiency of the parallel SMO decreases as the number of processors increases.

B. Web Data Set

The web data set is examined in the second experiment [10]. This problem is to

classify whether a web page belongs to a certain category or not. There are a total of

24,692 data patterns in the training data set, with each data pattern composed of 300

spare binary keyword attributes extracted from each web page.

For this data set, the Gaussian function is still used as the kernel function of the

sequential SMO and the parallel SMO. The values of Gaussian variance and

are respectively used as 0.064 and 64.

2σ c

The elapsed time with different number of processors used in the sequential SMO,

the parallel SMO and LIBSVM is given in Table 3, as well as the total number of

support vectors and bounded support vectors. Same as in the adult data set, the

elapsed time of the parallel SMO gradually reduces with the increase of the number of

processors, by almost half using two processors and almost three-quarters using four

processors, so on and so for. The parallel SMO using one CPU processor also takes

slightly more time than the sequential SMO, due to the use of MPI program. The

LIBSVM requires less time than that of the sequential SMO, due to the use of the

kernel cache.

Based on the obtained results, the speedup and the efficiency of the parallel SMO

are calculated and respectively illustrated in Fig. 3 and Fig. 4. Fig. 3 shows that the

speedup of the parallel SMO increases with the increase of the number of processors

(up to 30 processors), demonstrating the efficiency of the parallel SMO. For this data

set, the maximum value of the speedup is more than 10, corresponding to the use of

 13

30 processors. As illustrated in Fig. 4, the efficiency of the parallel SMO decreases

with the increase of the number of processors, due to the increase of the

communication time.

The computation time in different components of the parallel SMO is reported in

Table 4. The same conclusions are reached as in the adult data set. The time for I/O,

initialization, and optimizing
upIα and

lowIα is little and almost irrelevant to the

number of processors. With the increase of the number of processors, the parallel time

decreases, while the communication time slightly increases.

In terms of speedup and efficiency the result on the web data set is not as good as

that in the adult data set. This can be analyzed as the ratio of the parallel time to the

communication time in the web data set is much smaller than that of the adult data set,

as illustrated in Table 2 and Table 4. This also means that the advantage of using the

parallel SMO is more obvious for large size problems.

C. MNIST Data Set

The MNIST handwritten digit data set is also examined in the experiment. This

data set consists of 60,000 training samples and 10,000 testing samples. Each sample

is composed of 576 features. This data set is available at

http://www.cenparmi.concordia.ca/~people/jdong/HeroSvm/ and has also been used

in Dong et al.’s work on speeding up the sequential SMO [18].

The MNIST data set is actually a ten-class classification problem. According to

the “one against the rest” method, ten SVM classifiers are constructed by separating

one class from the rest. In our experiment, the Gaussian kernel is used in the

sequential SMO and the parallel SMO for each of ten SVM classifiers. The values of

 and are respectively used as 0.6 and 10, same as those used in [14]. 2σ c

 14

http://www.cenparmi.concordia.ca/%7Epeople/jdong/HeroSvm/

The elapsed time with different number of processors in the sequential SMO and

the parallel SMO and LIBSVM for each of ten SVM classifiers is given in Table 5.

The number of converged support vectors and bounded support vectors is described in

Table 6. The averaged value of the elapsed time in the ten SVM classifiers is also

listed in this table. The table shows that there is still benefit in the using of the kernel

cache in LIBSVM in comparison with the sequential SMO. Fig. 5 and Fig. 6

respectively illustrate the speedup and the efficiency of the parallel SMO. Fig. 5

shows that the speedup of the parallel SMO increases with the increase of the number

of processors. The maximum values of the speedup in the ten SVM classifiers range

from 17.12 to 22.82. The averaged maximum value of speedup is equal to 21.27,

corresponding to the use of 30 processors. Fig. 6 shows that the efficiency of the

parallel SMO decreases with the increase of the number of processors, due to the use

of more communication time.

V. CONCLUSIONS

This paper proposes the parallel implementation of SMO using MPI. The parallel

SMO uses multiple CPU processors to deal with the computation of SMO. By

partitioning the entire training data set into smaller subsets and distributing each of

the partitioned subsets into one CPU processor, the parallel SMO updates array

and calculates , , and DualityGap at each step in parallel using multiple CPU

processors. This parallel mode is called the “SPMD” model in MPI. Experiment on

three large data sets demonstrates the efficiency of the parallel SMO.

iF

upb lowb

The experiment also shows that the efficiency of the parallel SMO decreases with

the increase of the number of processors, as there is more communication time with

 15

the use of more processors. For this reason, the parallel SMO is more useful for large

size problems.

The experiment also shows that LIBSVM with the using of the working set size as

2 is more efficient than the sequential SMO. This can be explained that the LIBSVM

use the kernel cache, while the sequential and parallel SMO do not take it into account.

Future work will exploit the kernel cache for further improving the current version of

the parallel SMO.

In the current version of the parallel SMO, the multi-class classification problem

is performed by considering one class by one class. In the future work, it is worthy to

perform the multi-class classification problem in parallel by considering all the

classes simultaneously for further improving the efficiency of the parallel SMO. In

such an approach, it needs to develop a structural approach to consider the

communication between processors

This work is very useful for the research where multiple CPU processors machine

is available. Future work also needs to extend the parallel SMO from classification for

regression estimation by implementing the same methodology for SVM regressor.

 16

References:

[1] V.N. Vapnik, The Nature of Statistical Learning Theory, New York, Springer-

Verlag, 1995.

[2] C.J.C. Burges, “A tutorial on support vector machines for pattern recognition,”

Knowledge Discovery and Data Mining, Vol. 2, No. 2, pp. 955-974, 1998.

[3] L.J. Cao and F. E.H. Tay, “Support vector machines with adaptive parameters in

financial time series forecasting,” IEEE Transactions on Neural Networks, 14(6),

1506-1518,2003.

[4] S. Gutta, R.J. Jeffrey, P. Jonathon and H. Wechsler, “ Mixture of Experts for

Classification of Gender, Ethnic Origin, and Pose of Human Faces”, IEEE

Transactions on Neural Networks, 11 (4), July 2000, 948-960.

[5] K. Ikeda, “Effects of Kernel Function on Nu Support Vector Machines in

Extreme Cases”, IEEE Transactions on Neural Networks, 17 (1), Jan.2006, 1-9.

[6] V.N. Vapnik, Estimation of Dependence Based on Empirical Data, New York:

Springer Verlag, 1982.

[7] E. Osuna, R. Freund and F. Girosi, “An improved algorithm for support vector

machines,” NNSP’97: Proc. of the IEEE Signal Processing Society Workshop,

Amelia Island, USA, pp. 276-285, 1997.

[8] T. Joachims, “Making large-scale support vector machine learning practical,” in

Advances in Kernel Methods: Support Vector Machines, ed. by B. Scholkopf,

C. Burges, A. Smola. MIT Press, Cambridge, MA, December 1998.

[9] J.C. Platt, “Fast training of support vector machines using sequential minimal

optimisation,” In Advances in Kernel Methods – Support Vector Learning, ed.

by B. Scholkopf, C.J.C. Burges and A.J. Smola, pp. 185-208, MIT Press, 1999.

 17

[10] S.S. Keerthi, S.K. Shevade, C. Bhattaacharyya and K.R.K. Murthy,

“Improvements to Platt’s SMO algorithm for SVM classifier design,” Neural

Computation, Vol. 13, pp. 637-649, 2001.

[11] S.K. Shevade, S.S. Keerthi, C. Bhattacharyya and K.R.K. Murthy,

“Improvements to the SMO algorithm for SVM regression”, IEEE Transactions

on Neural Networks, 11 (5), Sept. 2000 Page(s):1188-1193.

[12] C.C. Chang and C.J. Lin. LIBSVM: a Library for Support Vector Machines,

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

[13] R. Collobert, S. Bengio and Y. Bengio, “ A parallel mixture of SVMs for very

large scale problems,” Neural Computation, Vol. 14, No. 5, pp. 1105 – 1114,

2002.

[14] J. X. Dong, A. Krzyzak , C. Y. Suen, “A fast Parallel Optimization for Training

Support Vector Machine,” Proc. of 3rd Int. Conf. Machine Learning and Data

Mining, P. Perner and A. Rosenfeld (Eds.) Springer Lecture Notes in Artificial

Intelligence (LNAI 2734), pp. 96--105, Leipzig, Germany, July 5-7, 2003

[15] G. Zanghirati, L. Zanni, “A parallel solver for large quadratic programs in

training support vector machines,” Parallel Computing, Vol. 29, No. 4, pp. 535-

551, 2003.

[16] B.H. Guang, K. Z. Mao, C.K. Siew and D.S. Huang, “Fast Modular Network

Implementation for Support Vector Machines”, IEEE Transactions on Neural

Networks, Vol. 16, No. 6, Nov. 2005, 1651-1663

[17] P.S. Pacheco, Parallel Programming with MPI, San Francisco, Calif.: Morgan

Kaufmann Publishers, 1997.

[18] J.X. Dong, A. Krzyzak and C.Y. Suen, “A fast SVM training algorithm,”

accepted in Pattern Recognition and Artificial Intelligence, 2002.

 18

http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/

Appendix A: Pseudo-code for the parallel SMO

(Note: If there is some process rank before the code, this means that only the

processor associated with the rank executes the code. Otherwise, all the processors

execute the code.)

n_sample = total number of training samples

p = total number of processors

local_nsample = n_sample/ p

Procedure takeStep ()

if (i_up==i_low&& Z1==Z2) return 0;

s=y1*y2;

if (y1==y2)

gamma=alph1+alph2;

else

gamma=alph1-alph2;

if (s==1)

{

if (y2==1)

{

L=MAX(0,gamma-C);

H=MIN(C, gamma);

} else

{

 L=MAX(0,gamma-C);

 H=MIN(C, gamma);

}

} else

{

L=MAX(0,-gamma);

 if (y2==1)

H=MIN(C, C-gamma);

else

 19

H=MIN(C, C-gamma);

}

if (H<=L) return 0;

K11 = kernel (X1, X1);

K22 = kernel (X2, X2);

K12 = kernel (X1, X2);

eta=2*K12-K11-K22;

if (eta<EPS*(K11+K22))

{

a2= alph2-(y2*(F1-F2)/eta);

if (a2<L)

a2=L;

else if (a2>H)

a2=H;

} else

{

slope=y2*(F1-F2);

change=slope *(H-L);

if(fabs(change)>0)

{

if (slope>0)

a2=H;

else

a2=L;

} else a2=alph2;

}

if (y2==1)

{ if (a2> C-EPS*C)

a2=C;

else if (a2<EPS*C)

a2=0;

else ;

} else

{ if (a2>C-EPS*C)

 20

a2=C;

else if (a2<EPS*C)

a2=0;

else ;

}

if(fabs(a2-alph2)<eps* (a2+alph2+eps) return 0;

if (s==1)

 a1=gamma-a2

else

a1=gamma+a2;

if (y1==1)

{ if (a1> C-EPS*C)

a1=C;

else if (a1<EPS*C)

a1=0;

else ;

} else

{ if (a1>C-EPS*C)

a1=C;

else if (a1<EPS*C)

a1=0;

else ;

}

update the value of Dual

return 1

Endprocedure

Procedure ComputeDualityGap()

 DualityGap=0;

 loop i over local_nsample training samples

 if (y[i]==1)

 DualityGap += C*MAX(0, (b-fcache[i]));

 else

 DualityGap +=C*MAX(0, (-b+fcache[i]));

 21

 loop i over training samples in I_0 and I_2 and I_3

 DualityGap+=alpha[i]*y[i]*fcache[i];

 return DualityGap;

Endprocedure

Procedure Main()

processor 0: read the first block of local_nsample training data patterns from

the data file and save them into the matrix X

 for i=1 to p

read the ith block of local_nsample training data patterns

from the data file and send them to processor i

 end i

processors 1 to p: receive local_nsample training data patterns from

processor 0 and save them into the matrix X

(all the processors)

initialize alpha array to all zero (for local_nsample training data patterns)

initialize fcache array to the negative of y array (for local_nsample training

data patterns)

store the indices of positive class in I_1 and negative class in I_4 (for

local_nsample training data patterns)

set b to zero

initialize the value of Dual to zero

DualityGap=ComputeDualityGap() (for local_nsample training data patterns)

sum up DualityGap of each processor and broadcast it to every processor

compute (b_low, i_low) and (b_up, i_up) using i in I and fcache array (for

local_nsample training data patterns)

compute global b_low and global b_up using local b_low and local b_up of

each processor

find out processor Z1 containing global b_up

find out processor Z2 containing global b_low

processor Z1: alph1=alpha[i_up];

y1=y[i_up];

 22

F1=fcache[i_up];

X1=X[i_up];

broadcast alph1, y1, F1, and X1 to every processor

processor Z2: alph2=alpha[i_low];

y2=y[i_low];

F2=fcache[i_low];

X2=X[i_low];

broadcast alph2, y2, F2, and X2 to every processor

numChanged=1;

while (DualityGap>tol*abs(Dual) && numChanged!=0)

{

processor 0: numChanged=takeStep();

 broadcast numChanged to every processor

if (numChanged==1)

 {

 processor 0: broadcast a1, a2, and Dual to every processor

processor Z1: alph[i_up]=a1;

 if (y1==1)

{

if (a1==C)

move i1 to I_3;

else if (a1 ==0)

move i1 to I_1;

else

move i1 to I_0;

} else

{

if (a1==C)

move i1 to I_2;

else if (a1==0)

 23

move i1 to I_4;

else

move i1 to I_0;

}

processor Z2: alph[i_low]=a2;

if (y2==1)

{

if (a2==C)

 move i2 to I_3;

else if (a2==0)

move i2 to I_1;

else

move i2 to I_0;

} else

{

if (a2==C)

move i2 to I_2;

else if (a2==0)

move i2 to I_4;

else

move i2 to I_0;

}

(all the processors)

update fcache[i] for i in I using new Lagrange multipliers (for

local_nsample training data patterns)

compute (b_low, i_low) and (b_up, i_up) using i in I and

fcache array (for local_nsample training data patterns)

compute global b_low and global b_up using local b_low and

local b_up of each processor

find out processor Z1 containing global b_up

find out processor Z2 containing global b_low

 24

processor Z1: alph1=alpha[i_up];

y1=y[i_up];

F1=fcache[i_up];

X1=X[i_up];

broadcast alph1, y1, F1, and X1 to every

processor

processor Z2: alph2=alpha[i_low];

y2=y[i_low];

F2=fcache[i_low];

X2=X[i_low];

broadcast alph2, y2, F2, and X2 to every

processor

 b=(blow+bup)/2

 DualityGap=ComputeDualityGap()

sum up DualityGap of each processor and broadcast it to every

processor

} (end of while loop)

b=(blow+bup)/2

 DualityGap=ComputeDualityGap()

sum up DualityGap of each processor and broadcast it to every

processor

Primal=Dual+DualityGap

Endprocedure

 25

Fig. 1. The speedup of the parallel SMO on the adult data set.

Fig. 3. The speedup of the paralleled SMO on the web data set.

Fig. 2. The efficiency of the parallel SMO on the adult data set.

 26

Fig. 3. The speedup of the parallel SMO on the web data set.

Fig. 4. The efficiency of the parallel SMO on the web data set.

 27

Fig. 5. The speedup of the parallel SMO on the MNIST data set.

 Fig. 6. The efficiency of the parallel SMO on the MNIST data set.

 28

TABLE I

THE ELAPSED TIME (SECONDS) USED IN THE SEQUENTIAL SMO AND THE PARALLEL SMO AND

LIBSVM ON THE ADULT DATA SET.

Parallel SMO LIBSVM Sequential

SMO 1P 2P 4P 8P 16P 32P

Time(s) 1132.06 2010.1 2048.06 1026.81 521.92 275.80 145.05 93.79

SVs 8563 10591 10763 10683 10825 10853 10948 11022

BSVs 7649 8631 9023 8972 8953 9013 9038 9215

TABLE II

THE COMPUATION TIME IN DIFFERENT COMPONENTS OF THE PARALLEL SMO ON THE ADULT DATA

SET.

Number of processors Components

1P 2P 4P 8P 16P 32P

I/O 1 1 1 1 1 1

initialization 0 0 0 0 0 0

aI_up, aI_low 0 0 0 0 0 0

bup, Iup, blow, Ilow, DualityGap 0 2 6 8 8 18

Fk, bk
up, Ik

up, bk
low, Ik

low, DualityGapk 2041 1017 507 261 129 66

 29

TABLE III

THE ELAPSED TIME USED IN THE SEQUENTIAL SMO AND THE PARALLEL SMO AND LIBSVM ON

THE WEB DATA SET.

Parallel SMO LIBSV

M

Sequential

SMO 1P 2P 4P 8P 16P 30P

Time(s) 104.27 172.75 191.33 95.70 52.42 31.59 23.11 16.0

SVs 528 672 703 712 726 752 805 817

BSVs 493 658 685 687 694 703 718 742

TABLE IV

THE COMPUATION TIME IN DIFFERENT COMPONENTS OF THE PARALLEL SMO ON THE WEB DATA

SET.

Number of processors Components

1P 2P 4P 8P 16P 30P

I/O 2 2 2 2 2 2

initialization 0 0 0 0 0 0

aI_up, aI_low 0 0 0 0 0 0

bup, Iup, blow, Ilow, DualityGap 0 1 1 2 3 3

Fk, bk
up, Ik

up, bk
low, Ik

low, DualityGapk 183 87 43 20 9 5

 30

TABLE V

THE ELAPSED TIME USED IN THE SEQUENTIAL SMO AND THE PARALLEL SMO AND LIBSVM ON

THE MNIST DATA SET.

Parallel SMO Class LIBSVM Sequential

SMO 1P 2P 4P 8P 16P 30P

0 2931.668 3597.97 3948.83 1862.49 1006.46 483.51 283.19 210.10

1 2753.418 3717.91 3326.05 1845.33 895.45 462.50 266.70 196.09

2 5160.932 5644.19 5595.01 2781.18 1302.27 656.56 372.72 248.32

3 5737.956 6021.50 5404.18 2749.00 1330.94 703.06 399.22 271.97

4 5145.859 6044.60 6143.85 2771.65 1544.05 719.86 400.72 274.08

5 4825.642 5568.70 5529.62 2551.38 1408.74 655.09 378.62 267.57

6 3448.498 4232.65 4226.76 2099.81 973.81 491.43 294.33 194.78

7 5421.564 5788.88 5796.86 3124.36 1467.97 731.57 412.99 292.19

8 6565.783 7183.05 7243.13 3321.72 1800.28 822.35 468.53 314.70

9 7642.706 8033.80 7960.56 3645.48 1844.40 932.33 554.03 353.78

Averaged 4963.403 5583.325 5517.485 2675.24 1357.437 665.826 383.105 262.358

 31

 32

TABLE V

THE NUMBER OF CONVERGED SUPPORT VECTORS AND BOUNDED SUPPORT VECTORS IN THE

SEQUENTIAL SMO AND THE PARALLEL SMO AND LIBSVM ON THE MNIST DATA SET.

Parallel SMO Class LIBSVM
#SVs
#BSVs

Sequential

SMO

#SVs
#BSVs

1P

#SVs
#BSVs

2P

#SVs
#BSVs

4P

#SVs
#BSVs

8P

#SVs
#BSVs

16P

#SVs
#BSVs

30P

#SVs
#BSVs

0 1871
1807

2021
1865

2130
2011

2048
1929

2060
1946

2073
1947

2074
1958

2095
1996

1 1982
1862

2104
1928

2167
2072

2140
1968

2170
1981

2179
1934

2131
1988

2190
2039

2 2108
2010

2811
2084

2338
2297

2547
2209

2571
2132

2479
2163

2597
2242

2314
2409

3 2976
1989

3092
2607

2403
2046

3316
2460

3073
2594

3119
2108

303
2331

3109
2322

4 2126
1934

2374
2463

2317
2221

2384
2272

2674
2129

2565
2104

2614
2021

2863
2100

5 2106
2213

2356
2093

3022
2143

2799
2191

2628
2615

3128
2055

2997
2544

3190
2651

6 2483
2199

2551
2236

2891
2179

2650
2165

2718
2018

2716
2215

3036
2117

3179
2110

7 2265
2008

2807
2313

2985
2187

2752
2178

2805
2204

2803
2214

3027
2126

3287
2121

8 2146
2008

2813
2102

3035
2163

2741
2159

2852
2205

2879
2220

3065
2203

3242
2259

9 2317
2011

2887
2112

3003
2218

2879
2173

2896
2213

2982
2225

3201
2216

3384
2255

Averaged 2248
2004

2572
2180

2630
2154

2627
2170

2686
2204

2744
2119

2719
2175

2788
2226

	II. A BRIEF OVERVIEW OF THE MODIFIED SMO
	III. THE PARALLEL SMO
	IV. EXPERIMENT
	A. Adult Data Set

	V. CONCLUSIONS
	Appendix A: Pseudo-code for the parallel SMO
	compute global b_low and global b_up using local b_low and local b_up of each processor
	broadcast alph1, y1, F1, and X1 to every processor
	broadcast alph2, y2, F2, and X2 to every processor
	 broadcast numChanged to every processor
	update fcache[i] for i in I using new Lagrange multipliers (for local_nsample training data patterns)
	compute global b_low and global b_up using local b_low and local b_up of each processor

	broadcast alph1, y1, F1, and X1 to every processor
	broadcast alph2, y2, F2, and X2 to every processor

