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Abstract ⎯ Sequential minimal optimization (SMO) is one popular algorithm for 

training support vector machine (SVM), but it still requires a large amount of 

computation time for solving large size problems. This paper proposes one parallel 

implementation of SMO for training SVM. The parallel SMO is developed using 

message passing interface (MPI). Specifically, the parallel SMO first partitions the 

entire training data set into smaller subsets and then simultaneously runs multiple 

CPU processors to deal with each of the partitioned data sets. Experiments show that 

there is great speedup on the adult data set and the MNIST data set when many 

processors are used. There are also satisfactory results on the Web data set.  

 

Index Terms ⎯ Support vector machine (SVM), sequential minimal optimization 

(SMO), message passing interface (MPI), parallel algorithm 
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I.   INTRODUCTION  

Recently, a lot of research work has been done on support vector machines 

(SVMs), mainly due to their impressive generalization performance in solving various 

machine learning problems [1,2,3,4,5]. Given a set of data points  { }  ( 

 is the input vector of  th training data pattern; 

l
iii yX ),(

d
i RX ∈ i }1,1{−∈iy  is its class label; 

 is the total number of training data patterns), training an SVM in classification is 

equivalent to solving the following linearly constrained convex quadratic 

programming (QP) problem. 
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where  is the kernel function. The mostly widely used kernel function is the 

Gaussian function 
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, where  is the width of the Gaussian kernel. 2σ iα  is the 

Lagrange multiplier to be optimized. For each of training data patterns, one iα  is 

associated. c  is the regularization constant pre-determined by users. After solving the 

QP problem (1), the following decision function is used to determine the class label 

for a new data pattern. 
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where b  is obtained from the solution of (1).  

So the main problem in SVM is reduced to solving the QP problem (1), where the 

number of variables iα  to be optimized is equal to the number of training data 
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patterns l . For small size problems, standard QP techniques such as the projected 

conjugate gradient can be directly applied. But for large size problems, standard QP 

techniques are not useful as they require a large amount of computer memory to store 

the kernel matrix    as the  number of elements of K  is equal to the square of the 

number of training data patterns. 

K

For making SVM more practical, special algorithms are developed, such as 

Vapnik’s chunking [6], Osuna’s decomposition [7] and Joachims’s SVMlight[8]. They 

make the training of SVM possible by breaking the large QP problem (1) into a series 

of smaller QP problems and optimizing only a subset of training data patterns at each 

step. The subset of training data patterns optimized at each step is called the working 

set. Thus, these approaches are categorized as the working set methods. 

Based on the idea of the working set methods, Platt [9] proposed the sequential 

minimal optimization (SMO) algorithm which selects the size of the working set as 

two and uses a simple analytical approach to solve the reduced smaller QP problems. 

There are some heuristics used for choosing two iα  to optimize at each step. As 

pointed out by Platt, SMO scales only quadratically in the number of training data 

patterns, while other algorithms scales cubically or more in the number of training 

data patterns. Later, Keerthi et. al. [10,11] ascertained inefficiency associated with 

Platt’s SMO and suggested two modified versions of SMO that are much more 

efficient than Platt’s original SMO. The second modification is particular good and 

used in popular SVM packages such as LIBSVM [12]. We will refer to this 

modification as the modified SMO algorithm.  

Recently, there are few works on developing parallel implementation of training 

SVMs [13,14,15,16]. In [13], a mixture of SVMs are trained in parallel using the 

subsets of a training data set. The results of each SVM are then combined by training 
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another multi-layer perceptron. The experiment shows that the proposed parallel 

algorithm can provide much efficiency than using a single SVM. In the algorithm 

proposed by Dong et. al. [14], multiple SVMs are also developed using subsets of a 

training data set. The support vectors in each SVM are then collected to train another 

new SVM. The experiment demonstrates much efficiency of the algorithm. Zanghirati 

and Zanni [15] also proposed a parallel implementation of SVMlight where the whole 

quadratic programming problem is split into smaller subproblems. The subproblems 

are then solved by a variable projection method. The results show that the approach is 

comparable on scalar machines with a widely used technique and can achieve good 

efficiency and scalability on a multiprocessor system. Huang et. Al. [16] proposed a 

modular network implementation for SVM. The result found out that the modular 

network could significantly reduce the learning time of SVM algorithms without 

sacrificing much generalization performance.  

This paper proposes a parallel implementation of the modified SMO based on the 

multiprocessor system for speeding up the training of SVM, especially with the aim of 

solving large size problems. In this paper, the parallel SMO is developed using 

message passing interface (MPI) [17]. Unlike the sequential SMO which handles the 

entire training data set using a single CPU processor, the parallel SMO first partitions 

the entire training data set into smaller subsets and then simultaneously runs multiple 

CPU processors to deal with each of the partitioned data sets. On the adult data set the 

parallell SMO using 32 CPU processors is more than 21 times faster than the 

sequential SMO. On the web data set,the parallel SMO using 30 CPU processors is 

more than 10 times faster than the sequential SMO. On the MNIST data set the 

parallel SMO using 30 CPU processors on the averaged time of “one-against-all” 

SVM classifiers is more than 21 times faster than the sequential SMO. 
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This paper is organized as follows. Section II gives an overview of the modified 

SMO. Section III describes the parallel SMO developed using MPI. Section IV 

presents the experiment indicating the efficiency of the parallel SMO. A short 

conclusion then follows. 

 

II.   A BRIEF OVERVIEW OF THE MODIFIED SMO 

We begin the description of the modified SMO by giving the notation used. Let  

}0,1:{}0,1:{0 cyicyiI iiii <<−=∪<<== αα , }0,1:{1 === iiyiI α , 

},1:{2 cyiI ii =−== α , },1:{3 cyiI ii === α , and }0,1:{4 =−== iiyiI α . 

 denotes the index of training data patterns. 
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The idea of the modified SMO is to optimize the two iα  associated with  and 
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where the variables associated with the two iα  are represented using the subscripts 
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After optimizing 1α  and 2α , , denoting the error on the i th training data 

pattern, is updated according to the following: 
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Based on the updated values of ,  and  and the associated index  and 

 are updated again according to their definitions. The updated values are then used 

to choose another two new i

if upb lowb upI

lowI

α  to optimize at the next step.  

In addition, the value of Eq. (1), represented by , is updated at each step  Dual
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And , representing the difference between the primal and the dual 

objective function in SVM, is calculated by (8).  
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A more detailed description of  and  can be referred to the paper [8]. 

 and  are used for checking the convergence of the program. A 

simple description of the modified SMO in the sequential form can be summarized as:  

Dual DualityGap

Dual DualityGap

 

Sequential SMO Algorithm: 

Initialize 0=iα , , ii yf −= 0=Dual , li ,,1 L=  

Calculate , , , , DualityGap  upb upI lowb lowI

Until DualDualityGap τ≤      

(1) Optimize 
upIα , 

lowIα  

(2) Update ,  if li ,,1 L=

(3) Calculate , , , , DualityGap  and update Dual  upb upI lowb lowI

Repeat 
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III.   THE PARALLEL SMO 

MPI is not a new programming language, but a library of functions that can be 

used in C, C++ and FORTRAN [17]. MPI allows one to easily implement an 

algorithm in parallel by running multiple CPU processors for improving efficiency. 

The “Single Program Multiple Data (SPMD)” mode where different processors 

execute the same program but different data is generally used in MPI for developing 

parallel programs. 

In the sequential SMO algorithm, most of computation time is dominated by 

updating  array at the iteration (2), as it includes the kernel evaluations and is also 

required for every training data pattern. As shown in our experiment, over 90% of the 

total computation time of the sequential SMO is used for updating  array. So the 

first idea for us to improve the efficiency of SMO is to develop the parallel program 

for updating  array. According to (6), updating  array is independently evaluated 

one training data pattern at a time, so the “SPMD” mode can be used to execute this 

program in parallel. That is, the entire training data set is firstly equally partitioned 

into smaller subsets according to the number of processors used. Then each of the 

partitioned subsets is distributed into one CPU processor. By executing the program 

of updating  array using all the processors, each processor will update a different 

subset of  array based on its assigned training data patterns. In such a way, much 

computation time could be saved. Let 

if

if

if

if

if

if

p  denotes the total number of processors used, 

 is the amount of computation time used for updating  array in the sequential 

SMO. By using the parallel program of updating  array, the amount of computation 

time used to update  array is almost reduced to 

ft if

if

if ft
p
1 .  
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Besides updating  array, calculating , ,  and can also be 

performed in parallel as the calculation involves examining all the training data points. 

By executing the program of calculating , ,  and  using all the 

processors, each processor could obtain one b  and one b  as well as the associated 

 and  based on its assigned training data patterns. The  , ,  and  

of each processor are not global in the sense they are obtained only based on a subset 

of all the training data patterns. The global  and global b  are respectively the 

minimum value of b  of each processor and the maximum value of  of each 

processor, as described in Section 2. By determining the global  and the global 

, the associated I and I can thus be found out. The corresponding two i

if

up
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then optimized by using any one CPU processor. 

According to (8), calculating DualityGap  is also independently evaluated one 

training data pattern at a time. So this program can also be executed in parallel using 

the “SPMD” mode. By running the program of Eq. (8) using multiple CPU processors, 

each processor will calculate a different subset of DualityGap  based on its assigned 

training data patterns. The value of DualityGap on the entire training data patterns is 

the sum of the of all the processors. DualityGap

In summary, based on the “SPMD” parallel mode, the parallel SMO update  

array and calculate , , , , and DualityGap  at each step in parallel using 

multiple CPU processor. The calculation of other parts of SMO which take little time 

is done using one CPU processor, which is the same as used in the sequential SMO. 

Due to the use of multiple processors, communication among processors is also 

required in the parallel SMO, such as getting global , ,  and  from , 

iF

upb

upb lowb upI lowI

upb upI lowb lowI
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upI

k
if

k
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,  and  of each processor. For making the parallel SMO efficient, the 

communication time should be kept small. A brief description of executing the 

parallel SMO can be summarized as follows. 
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Parallel SMO Algorithm: 

Notation:  is the total number of processors used.  ,  is a subset of 

all the training data patterns and assigned to processor .  , , , , , 

, ,  denote the variables associated with processor k . 
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(4) Obtain , , , DualityGap and update Dual  upb upI lowb lowI , 

Repeat 

 

A more detailed description of the parallel SMO can be referred to the pseudo-

code in appendix A. 

 

IV.   EXPERIMENT 

The parallel SMO is tested against the sequential SMO using three benchmarks: 

the adult data set, the web data set and the MNIST data set. Both algorithms are 

written in C. Both algorithms are run on IBM p690 Regata SuperComputer which has 

a total of 7 nodes, with each node having 32 power PC_POWER4 1.3GHz processors. 

For ensuring the same accuracy in the sequential SMO and the parallel SMO, the stop 

criteria used in both algorithms such as the value of τ  are all the same. 

 

A. Adult Data Set  

The first data set used to test the parallel SMO’s speed is the UCI adult data set 

[10]. The task is to predict whether the household has an income larger than $50,000 

based on a total of 123 binary attributes. For each input vector, only an average of 14 

binary attributes are true, represented by the value of “1”. Other attributes are all 

false, represented by the value of “0”. There are a total of 28,956 data patterns in the 

training data set. 

The Gaussian kernel is used for both the sequential SMO and the parallel SMO. 

The values of Gaussian variance  and  are arbitrarily used as 100 and 1. These 

values are not necessarily ones that give the best generalization performance of SVM, 

as the purpose of this experiment is only for evaluating the computation time of two 

2σ c
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algorithms. Moreover, the LIBSVMversion2.8 proposed by Chang and Lin [12] is also 

investigated using a single processor on the experiment. The aim is to see whether the 

kernel cache used in LIBSVM can provide efficiency in comparison with the 

sequential SMO without kernel cache.  

The elapsed time (measured in seconds) with different number of processors in the 

sequential SMO, the parallel SMO and LIBSVM is given in Table 1, as well as the 

number of converged support vectors (denoted as SVs) and bounded support vectors 

with ci =α ( denoted as BSVs) . From the table, it can be observed that the elapsed 

time of the parallel SMO gradually reduces with an increase in the number of 

processors. It can be reduced by almost half with the use of two processors and almost 

three-quarters with the use of four processors, etc.. This result demonstrates that the 

parallel SMO is efficient in reducing the training time of SVM. Moreover, the parallel 

SMO using one CPU processor takes slightly more time than the sequential SMO, due 

to the use of MPI programs. The table also shows that LIBSVM running on the single 

processor requires less time than that of the sequential SMO. This demonstrates that 

the kernel caching is effective in reducing the computation time of the kernel 

evaluation.  

For evaluating the performance of the parallel SMO, the following two criteria are 

used: speedup and efficiency. They are respectively defined by  

SMO parallel  theof  timeelapsed  the
SMO sequential  theof  timeelapsed the speedup =                              (9) 

processors ofnumber  
speedupefficieny =                                (10) 

The speedup of the parallel SMO with respect to different number of processors is 

illustrated in Fig. 1. The figure shows that up to 16 processors the parallel SMO scales 

almost linearly with the number of processors. After that, the scalability of the parallel 
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SMO is slightly reduced. The maximum value of the speedup is more than 21, 

corresponding to the use of 32 processors. The result means that the training time of 

the parallel SMO by running 32 processors is only about 
21
1  of that of the sequential 

SMO, which is very good. 

The efficiency of the parallel SMO with different number of processors is 

illustrated in Fig. 2. As shown in the figure, the value of the efficiency of the parallel 

SMO is 0.9788 when two processors are used. It gradually reduces as the number of 

processor increases. The reason may lie in that the use of more processors will lead to 

more communication time, thus reducing the efficiency of the parallel SMO.  

For a better understanding of the cost of various subparts in the parallel SMO, the 

computation time in different components (I/O; initialization; optimizing 
upIα  and 

lowIα ; updating  and calculating , , , , ; and obtaining 

, , , DualityGap ) is reported in Table 2. The time for updating  

and calculating , , , ,  is called as the parallel time as the 

involved calculations are done in parallel. And the time for obtaining , , , 

,  is called as the communication time as there are many processors 

included in the calculation. The table shows that the time for I/O, initialization, and 

optimizing 

k
if

lowI , 

k
upb

k
upb k

upI

DualityGap

k
lowb

k

k
lowI kDualityGap

upb

lowI

upI lowb

DualityGap

I

k
if

low

k
upI k

lowb k
lowI

upb upI b

up
α  and 

lowIα is little and irrelevant to the number of processor, while a 

large amount of time is used in the parallel time, which means that the updating of k
if  

 the calculating of k
upb , k

p
k

w
k
ow  better be performed in 

parallel using multiple processors. As expected, the parallel time decreases with the 

increase of the number of processors. In contrast, the communication time slightly 

and uI , lob , lI , k  hadDualityGap
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increases with the increase of the number of processors. This exactly explains why the 

efficiency of the parallel SMO decreases as the number of processors increases. 

 

B. Web Data Set 

The web data set is examined in the second experiment [10]. This problem is to 

classify whether a web page belongs to a certain category or not. There are a total of 

24,692 data patterns in the training data set, with each data pattern composed of 300 

spare binary keyword attributes extracted from each web page.  

For this data set, the Gaussian function is still used as the kernel function of the 

sequential SMO and the parallel SMO. The values of Gaussian variance  and  

are respectively used as 0.064 and 64. 

2σ c

The elapsed time with different number of processors used in the sequential SMO, 

the parallel SMO and LIBSVM is given in Table 3, as well as the total number of 

support vectors and bounded support vectors. Same as in the adult data set, the 

elapsed time of the parallel SMO gradually reduces with the increase of the number of 

processors, by almost half using two processors and almost three-quarters using four 

processors, so on and so for. The parallel SMO using one CPU processor also takes 

slightly more time than the sequential SMO, due to the use of MPI program. The 

LIBSVM requires less time than that of the sequential SMO, due to the use of the 

kernel cache. 

Based on the obtained results, the speedup and the efficiency of the parallel SMO 

are calculated and respectively illustrated in Fig. 3 and Fig. 4. Fig. 3 shows that the 

speedup of the parallel SMO increases with the increase of the number of processors 

(up to 30 processors), demonstrating the efficiency of the parallel SMO. For this data 

set, the maximum value of the speedup is more than 10, corresponding to the use of 

 13  



30 processors. As illustrated in Fig. 4, the efficiency of the parallel SMO decreases 

with the increase of the number of processors, due to the increase of the 

communication time. 

The computation time in different components of the parallel SMO is reported in 

Table 4. The same conclusions are reached as in the adult data set. The time for I/O, 

initialization, and optimizing 
upIα  and 

lowIα  is little and almost irrelevant to the 

number of processors. With the increase of the number of processors, the parallel time 

decreases, while the communication time slightly increases. 

In terms of speedup and efficiency the result on the web data set is not as good as 

that in the adult data set. This can be analyzed as the ratio of the parallel time to the 

communication time in the web data set is much smaller than that of the adult data set, 

as illustrated in Table 2 and Table 4. This also means that the advantage of using the 

parallel SMO is more obvious for large size problems. 

  

C. MNIST Data Set 

The MNIST handwritten digit data set is also examined in the experiment. This 

data set consists of 60,000 training samples and 10,000 testing samples. Each sample 

is composed of 576 features. This data set is available at 

http://www.cenparmi.concordia.ca/~people/jdong/HeroSvm/ and has also been used 

in Dong et al.’s work on speeding up the sequential SMO [18]. 

The MNIST data set is actually a ten-class classification problem. According to 

the “one against the rest” method, ten SVM classifiers are constructed by separating 

one class from the rest. In our experiment, the Gaussian kernel is used in the 

sequential SMO and the parallel SMO for each of ten SVM classifiers. The values of 

 and  are respectively used as 0.6 and 10, same as those used in [14]. 2σ c
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The elapsed time with different number of processors in the sequential SMO and 

the parallel SMO and LIBSVM for each of ten SVM classifiers is given in Table 5. 

The number of converged support vectors and bounded support vectors is described in 

Table 6. The averaged value of the elapsed time in the ten SVM classifiers is also 

listed in this table. The table shows that there is still benefit in the using of the kernel 

cache in LIBSVM in comparison with the sequential SMO. Fig. 5 and Fig. 6 

respectively illustrate the speedup and the efficiency of the parallel SMO. Fig. 5 

shows that the speedup of the parallel SMO increases with the increase of the number 

of processors. The maximum values of the speedup in the ten SVM classifiers range 

from 17.12 to 22.82. The averaged maximum value of speedup is equal to 21.27, 

corresponding to the use of 30 processors. Fig. 6 shows that the efficiency of the 

parallel SMO decreases with the increase of the number of processors, due to the use 

of more communication time. 

 

V.  CONCLUSIONS 

This paper proposes the parallel implementation of SMO using MPI. The parallel 

SMO uses multiple CPU processors to deal with the computation of SMO. By 

partitioning the entire training data set into smaller subsets and distributing each of 

the partitioned subsets into one CPU processor, the parallel SMO updates  array 

and calculates , , and DualityGap  at each step in parallel using multiple CPU 

processors. This parallel mode is called the “SPMD” model in MPI. Experiment on 

three large data sets demonstrates the efficiency of the parallel SMO. 

iF

upb lowb

The experiment also shows that the efficiency of the parallel SMO decreases with 

the increase of the number of processors, as there is more communication time with 

 15  



the use of more processors. For this reason, the parallel SMO is more useful for large 

size problems.  

The experiment also shows that LIBSVM with the using of the working set size as 

2 is more efficient than the sequential SMO. This can be explained that the LIBSVM 

use the kernel cache, while the sequential and parallel SMO do not take it into account. 

Future work will exploit the kernel cache for further improving  the current version of 

the parallel SMO.  

In the current version of the parallel SMO, the multi-class classification problem 

is performed by considering one class by one class. In the future work, it is worthy to 

perform the multi-class classification problem in parallel by considering all the 

classes simultaneously for further improving the efficiency of the parallel SMO. In 

such an approach, it needs to develop a structural approach to consider the 

communication between processors 

This work is very useful for the research where multiple CPU processors machine 

is available. Future work also needs to extend the parallel SMO from classification for 

regression estimation by implementing the same methodology for SVM regressor. 
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Appendix A: Pseudo-code for the parallel SMO 

 

( Note:  If there is some process rank before the code, this means that only the 

processor associated with the rank executes the code. Otherwise, all the processors 

execute the code. ) 

 

n_sample = total number of training samples 

p = total number of processors 

local_nsample = n_sample/ p   

 

Procedure takeStep (   ) 

if ( i_up==i_low&& Z1==Z2 ) return 0; 

s=y1*y2; 

if ( y1==y2 ) 

gamma=alph1+alph2; 

else  

gamma=alph1-alph2; 

if ( s==1 )  

{ 

if  (y2==1)  

{ 

L=MAX( 0,gamma-C);  

H=MIN(C, gamma); 

} else  

{ 

              L=MAX(0,gamma-C); 

             H=MIN(C, gamma);  

} 

} else 

{ 

L=MAX(0,-gamma); 

           if (y2==1) 

H=MIN(C, C-gamma); 

else  
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H=MIN(C, C-gamma); 

} 

if (H<=L)   return 0; 

K11 = kernel ( X1, X1 ); 

K22 = kernel ( X2, X2 ); 

K12 = kernel ( X1, X2 ); 

eta=2*K12-K11-K22; 

if ( eta<EPS*(K11+K22) ) 

{ 

a2= alph2-(y2*(F1-F2)/eta); 

if (a2<L)  

a2=L; 

else if (a2>H) 

a2=H; 

} else  

{ 

slope=y2*(F1-F2); 

change=slope *(H-L); 

if( fabs(change)>0 ) 

{ 

if (slope>0 )  

a2=H; 

else   

a2=L; 

} else  a2=alph2; 

} 

if  (y2==1) 

{ if (a2> C-EPS*C)  

a2=C; 

else if (a2<EPS*C)  

a2=0; 

else ; 

} else  

{ if (a2>C-EPS*C)   
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a2=C; 

else if (a2<EPS*C)  

a2=0; 

else ; 

} 

if( fabs(a2-alph2)<eps* (a2+alph2+eps) return 0; 

if ( s==1 ) 

 a1=gamma-a2 

else    

a1=gamma+a2; 

if  (y1==1) 

{ if (a1> C-EPS*C)  

a1=C; 

else if (a1<EPS*C) 

a1=0; 

else ; 

} else  

{ if (a1>C-EPS*C)   

a1=C; 

else if (a1<EPS*C) 

a1=0; 

else ; 

} 

update the value of Dual 

return 1 

Endprocedure 

                    

Procedure ComputeDualityGap( ) 

 DualityGap=0; 

 loop i over local_nsample training samples 

 if ( y[i]==1 ) 

  DualityGap += C*MAX(0, (b-fcache[i]) ); 

 else 

  DualityGap +=C*MAX(0, (-b+fcache[i]) ); 
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 loop i over training samples in I_0 and I_2 and I_3 

  DualityGap+=alpha[i]*y[i]*fcache[i]; 

 return DualityGap; 

Endprocedure 

 

Procedure Main( ) 

processor 0:  read the first block of local_nsample training data patterns from 

the data file and save them into the matrix X 

 for i=1 to p 

read the ith block of local_nsample training data patterns 

from the data file and send them to processor i 

 end i 

processors 1 to p: receive local_nsample training data patterns from  

processor 0 and save them into the matrix X 

 

(all the processors) 

initialize alpha array to all zero (for local_nsample training data patterns ) 

initialize fcache array to the negative of y array (for local_nsample training 

data patterns ) 

store the indices of positive class in I_1 and negative class in I_4 (for 

local_nsample training data patterns ) 

set b to zero  

initialize the value of Dual to zero 

DualityGap=ComputeDualityGap( ) (for local_nsample training data patterns ) 

sum up DualityGap of each processor and broadcast it to every processor 

compute ( b_low, i_low ) and ( b_up, i_up) using i in I and fcache array (for 

local_nsample training data patterns ) 

compute global b_low and global b_up using local b_low and local b_up of 

each processor 

find out processor Z1 containing global b_up 

find out processor Z2 containing global b_low 

 

processor Z1: alph1=alpha[ i_up ]; 

y1=y[ i_up ]; 
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F1=fcache[ i_up ]; 

X1=X[ i_up ]; 

broadcast alph1, y1, F1, and X1 to every processor 

 

processor Z2: alph2=alpha[ i_low ]; 

y2=y[ i_low]; 

F2=fcache[ i_low]; 

X2=X[ i_low]; 

broadcast alph2, y2, F2, and X2 to every processor 

 

numChanged=1; 

while ( DualityGap>tol*abs(Dual) && numChanged!=0 ) 

{ 

processor 0:   numChanged=takeStep( ); 

               broadcast numChanged to every processor 

   

if ( numChanged==1 ) 

  { 

   processor 0: broadcast a1, a2, and Dual to every processor 

  

processor Z1: alph[i_up ]=a1; 

    if  (y1==1)  

{ 

if ( a1==C )   

move i1 to I_3; 

else if (a1 ==0 )  

move i1 to I_1; 

else      

move i1 to I_0; 

} else  

{ 

if ( a1==C )    

move i1 to I_2; 

else if ( a1==0 )  
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move i1 to I_4; 

else     

move i1 to I_0; 

} 

 

processor Z2: alph[i_low]=a2; 

if  (y2==1) 

{  

if ( a2==C )  

 move i2 to I_3; 

else if ( a2==0 )  

move i2 to I_1; 

else    

move i2 to I_0; 

} else  

{ 

if ( a2==C )    

move i2 to I_2; 

else if  (a2==0 )   

move i2 to I_4; 

else    

move i2 to I_0; 

} 

  

(all the processors) 

update fcache[i] for i in I using new Lagrange multipliers (for 

local_nsample training data patterns ) 

compute (b_low, i_low) and (b_up, i_up) using i in I and 

fcache array (for local_nsample training data patterns ) 

compute global b_low and global b_up using local b_low and 

local b_up of each processor 

find out processor Z1 containing global b_up 

find out processor Z2 containing global b_low 
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processor Z1: alph1=alpha[ i_up ]; 

y1=y[ i_up ]; 

F1=fcache[ i_up ]; 

X1=X[ i_up ]; 

broadcast alph1, y1, F1, and X1 to every 

processor 

 

processor Z2: alph2=alpha[ i_low ]; 

y2=y[ i_low]; 

F2=fcache[ i_low]; 

X2=X[ i_low]; 

broadcast alph2, y2, F2, and X2 to every 

processor 
 

   b=(blow+bup)/2 

              DualityGap=ComputeDualityGap( ) 

sum up DualityGap of each processor and broadcast it to every 

processor 

} ( end of while loop) 

 

b=(blow+bup)/2 

             DualityGap=ComputeDualityGap( ) 

sum up DualityGap of each processor and broadcast it to every 

processor 

Primal=Dual+DualityGap 

Endprocedure 
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Fig. 1.   The speedup of the parallel SMO on the adult data set. 

 

 

Fig. 3.  The speedup of the paralleled SMO on the web data set. 

 

 

 

 

 

 

 

 

 

Fig. 2.   The efficiency of the parallel SMO on the adult data set. 
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Fig. 3.   The speedup of the parallel SMO on the web data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  The efficiency of the parallel SMO on the web data set. 
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Fig. 5.  The speedup of the parallel SMO on the MNIST data set.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 Fig. 6.  The efficiency of the parallel SMO on the MNIST data set. 
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TABLE  I 

THE ELAPSED TIME (SECONDS) USED IN THE SEQUENTIAL SMO AND THE PARALLEL SMO AND 

LIBSVM ON THE ADULT DATA SET. 

 

Parallel  SMO  LIBSVM Sequential 

SMO 1P 2P 4P 8P 16P 32P 

Time(s) 1132.06 2010.1 2048.06 1026.81 521.92 275.80 145.05 93.79 

SVs 8563 10591 10763 10683 10825 10853 10948 11022 

BSVs 7649 8631 9023 8972 8953 9013 9038 9215 

 

 

 

 

TABLE  II 

THE COMPUATION TIME IN DIFFERENT COMPONENTS OF THE PARALLEL SMO ON THE ADULT DATA 

SET. 

   

Number of processors Components 

1P 2P 4P 8P 16P 32P 

I/O  1 1 1 1 1 1 

initialization  0 0 0 0 0 0 

aI_up, aI_low 0 0 0 0 0 0 

bup, Iup, blow, Ilow, DualityGap 0 2 6 8 8 18 

Fk, bk
up, Ik

up, bk
low, Ik

low, DualityGapk 2041 1017 507 261 129 66 
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TABLE  III 

THE ELAPSED TIME  USED IN THE SEQUENTIAL SMO AND THE PARALLEL SMO AND LIBSVM ON 

THE WEB DATA SET. 

 

Parallel  SMO  LIBSV

M 

Sequential 

SMO 1P 2P 4P 8P 16P 30P 

Time(s) 104.27 172.75 191.33 95.70 52.42 31.59 23.11 16.0 

SVs 528 672 703 712 726 752 805 817 

BSVs 493 658 685 687 694 703 718 742 

 

 

 

 

TABLE  IV 

THE COMPUATION TIME IN DIFFERENT COMPONENTS OF THE PARALLEL SMO ON THE WEB DATA 

SET. 

 

Number of processors Components 

1P 2P 4P 8P 16P 30P 

I/O  2 2 2 2 2 2 

initialization  0 0 0 0 0 0 

aI_up, aI_low 0 0 0 0 0 0 

bup, Iup, blow, Ilow, DualityGap 0 1 1 2 3 3 

Fk, bk
up, Ik

up, bk
low, Ik

low, DualityGapk 183 87 43 20 9 5 
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TABLE  V 

THE ELAPSED TIME  USED IN THE SEQUENTIAL SMO AND THE PARALLEL SMO AND LIBSVM ON 

THE MNIST DATA SET. 

 

Parallel  SMO Class LIBSVM Sequential 

SMO  1P 2P 4P 8P 16P 30P 

0 2931.668 3597.97 3948.83 1862.49 1006.46 483.51 283.19 210.10 

1 2753.418 3717.91 3326.05 1845.33 895.45 462.50 266.70 196.09 

2 5160.932 5644.19 5595.01 2781.18 1302.27 656.56 372.72 248.32 

3 5737.956 6021.50 5404.18 2749.00 1330.94 703.06 399.22 271.97 

4 5145.859 6044.60 6143.85 2771.65 1544.05 719.86 400.72 274.08 

5 4825.642 5568.70 5529.62 2551.38 1408.74 655.09 378.62 267.57 

6 3448.498 4232.65 4226.76 2099.81 973.81 491.43 294.33 194.78 

7 5421.564 5788.88 5796.86 3124.36 1467.97 731.57 412.99 292.19 

8 6565.783 7183.05 7243.13 3321.72 1800.28 822.35 468.53 314.70 

9 7642.706 8033.80 7960.56 3645.48 1844.40 932.33 554.03 353.78 

Averaged  4963.403 5583.325 5517.485 2675.24 1357.437 665.826 383.105 262.358 
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TABLE  V 

THE NUMBER OF CONVERGED SUPPORT VECTORS AND BOUNDED SUPPORT VECTORS  IN THE 

SEQUENTIAL SMO AND THE PARALLEL SMO AND LIBSVM ON THE MNIST DATA SET. 

 

Parallel  SMO Class LIBSVM 
#SVs 
#BSVs 

Sequential 

SMO  

#SVs 
#BSVs 

1P 

#SVs 
#BSVs 

2P 

#SVs 
#BSVs 

4P 

#SVs 
#BSVs 

8P 

#SVs 
#BSVs 

16P 

#SVs 
#BSVs 

30P 

#SVs 
#BSVs 

0 1871 
1807   

2021 
1865  

2130 
2011  

2048 
1929  

2060 
1946  

2073 
1947  

2074 
1958  

2095 
1996  

1 1982  
1862 

2104  
1928 

2167  
2072 

2140  
1968 

2170  
1981 

2179  
1934 

2131  
1988 

2190  
2039 

2 2108 
2010  

2811 
2084  

2338 
2297  

2547 
2209  

2571 
2132  

2479 
2163  

2597 
2242  

2314 
2409  

3 2976 
1989  

3092 
2607  

2403 
2046  

3316 
2460  

3073 
2594  

3119 
2108  

303 
2331  

3109 
2322  

4 2126 
1934  

2374 
2463  

2317 
2221  

2384 
2272  

2674 
2129  

2565 
2104  

2614 
2021  

2863 
2100  

5 2106 
2213  

2356 
2093  

3022 
2143  

2799 
2191  

2628 
2615  

3128 
2055  

2997 
2544  

3190 
2651  

6 2483 
2199  

2551 
2236  

2891 
2179  

2650 
2165  

2718 
2018  

2716 
2215  

3036 
2117  

3179 
2110  

7 2265 
2008  

2807 
2313  

2985 
2187  

2752 
2178  

2805 
2204  

2803 
2214  

3027 
2126  

3287 
2121  

8 2146 
2008  

2813 
2102  

3035 
2163  

2741 
2159  

2852 
2205  

2879 
2220  

3065 
2203  

3242 
2259  

9 2317 
2011  

2887 
2112  

3003 
2218  

2879 
2173  

2896 
2213  

2982 
2225  

3201 
2216  

3384 
2255  

Averaged  2248 
2004  

2572 
2180  

2630 
2154  

2627 
2170  

2686 
2204  

2744 
2119  

2719 
2175  

2788 
2226  
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