
An Efficient Method for Gradient-Based Adaptation
of Hyperparameters in SVM Models

S. Sathiya Keerthi
Yahoo! Research

Media Studios North
3333 Empire Avenue, Bldg. 4

Burbank, CA 91504
selvarak@yahoo-inc.com

Vikas Sindhwani
Department of Computer Science

University of Chicago
1100 E 58th Street
Chicago, IL 60637

vikass@cs.uchicago.edu

Olivier Chapelle
MPI for Biological Cybernetics

Dept. Schölkopf
Spemannstraße 38
72076 Tübingen

olivier.chapelle@tuebingen.mpg.de

Abstract

We consider the task of tuning hyperparameters in SVM models based on min-
imizing a smooth performance validation function, e.g., smoothed k-fold cross-
validation error, using non-linear optimization techniques. The key computation
in this approach is that of the gradient of the validation function with respect to
hyperparameters. We show that for large-scale problems involving a wide choice
of kernel-based models and validation functions, this computation can be very ef-
ficiently done; often within just a fraction of the training time. Empirical results
show that a near-optimal set of hyperparameters can be identified by our approach
with very few training rounds and gradient computations.

.

1 Introduction

Consider the general SVM classifier model in which, given n training examples {(xi, yi)}
n
i=1, the

primal problem consists of solving the following problem:

min
(w,b)

1

2
‖w‖2 + C

n
∑

i=1

l(oi, yi) (1)

where l denotes a loss function over labels yi ∈ {+1,−1} and the outputs oi on the training set.
The machine’s output o for any example x is given as:

o = w · φ(x) − b =
n
∑

j=1

αjyjk(x, xi) − b (2)

where b is the threshold parameter and, as usual, computations involving φ are handled using the
kernel function: k(x, z) = φ(x) · φ(z). For example, the Gaussian kernel is given by

k(x, z) = exp(−γ‖x− z‖2) (3)

The regularization parameter C and kernel parameters such as γ comprise the vector h of hyperpa-
rameters in the model. h is usually chosen by optimizing a validation measure (such as the k-fold
cross validation error) on a grid of values (e.g. a uniform grid in the (logC, log γ) space). Such
a grid search is usually expensive. Particularly, when n is large, this search is so time-consuming
that one usually resorts to either default hyperparameter values or crude search strategies. The prob-
lem becomes more acute when there are more than two hyperparameters. For example, for feature
weighting/selection purposes one may wish to use the following ARD-Gaussian kernel:

k(x, z) = exp(−
∑

t

γt‖xt − zt‖2) (4)

where γt denotes the weight on the tth feature denoted as xt. In such cases, a grid based search of
the hyperparameter space is ruled out.

In Figures 1, 2 (see section 6) we show contour plots of performance of an SVM on the logC− log γ
plane for a real-world binary classification problem. These plots show that learning performance be-
haves “nicely” as a function of hyperparameters. Intuitively, as C and γ are varied one expects the
SVM to smoothly transition from providing underfitting solutions to overfitting solutions. Given that
this phenomenon seems to occur routinely on real-world learning tasks1, a very appealing and prin-
cipled alternative to grid search is to consider a differentiable version of the performance validation
function and invoke non-linear gradient-based optimization techniques for adapting hyperparam-
eters. Such an approach requires the computation of the gradient of the validation function with
respect to h.

Chapelle et al. (2002) give a number of possibilities for such an approach. One of their most promis-
ing methods is to use a differentiable version of the leave-one-out (LOO) error. A major expense
in this method consists of the computation of the inverse of a kernel sub-matrix corresponding to
the support vectors. (We will outline some details in section 3.) This is a bottleneck in large scale
problems. Similar problems exist for gradient-based hyperparameter tuning procedures in Gaussian
processes (Rasmussen and Williams (2006)).

We highlight the contributions of this paper.

1. We consider differentiable versions of validation-set-based objective functions for model selection
(such as k-fold error) and give an efficient method for computing the gradient of this function with
respect to h. Our method does not require the computation of the inverse of a large kernel sub-
matrix. Instead, it only needs a single linear system of equations to be solved, which can be done
either by decomposition or conjugate-gradient techniques. In essence, the cost of computing the
gradient with respect to h is about the same, and usually much lesser than the cost of solving (1) for
a given h.

2. Our method is applicable to a wide range of validation objective functions and SVM models that
may involve many hyperparameters. For example, a variety of loss functions can be used together
with multiclass classification, regression, structured output or semi-supervised SVM algorithms.

3. Large-scale empirical results show that with BFGS optimization, just trying about 10-20 hyperpa-
rameter points leads to the determination of optimal hyperparameters. Moreover, even as compared
to a fine grid search, the gradient procedure provides a more precise placement of hyperparameters
leading to better generalization performance. The benefit in terms of efficiency over the grid ap-
proach is evident even with just two hyperparameters. Particularly, in problems where the learning
curve stabilizes only after several thousand examples, we expect our method to be of great value.
In our empirical study we demonstrate the efficient tuning of C and γt’s for large-scale binary
classification problems; this is perhaps the most canonical hyperparameter tuning task in SVM clas-
sification. We also show the usefulness of our method for tuning more than two hyperparameters
when optimizing other functions such as the F measure and weighted error rate. This is particularly
useful for imbalanced problems.

This paper is organized as follows: In section 2, we discuss the general class of SVM models to
which our method can be applied. In section 3, we discuss alternative approaches such as the LOO
approach of (Chapelle et al. (2002)) and evidence maximization in Gaussian processes. In section
4, we describe our framework and provide the details of the gradient computation for general vali-
dation functions. In section 5, we discuss how to develop differentiable versions of several common

1For similar contour plots on other datasets, see Chapelle et al. (2002); Keerthi (2002).

performance validation functions. Empirical results are presented in section 6. We conclude this
paper in section 7. The appendix outlines extensions of our method to other SVM models.

2 SVM Classification Models

In this section, we discuss the assumptions required for our method to be applicable. Consider SVM
classification models of the form in (1).

Assumption 1. The kernel function k is a continuously differentiable function of h.

Consider three common SVM loss functions: (1) squared loss; (2) hinge loss; and (3) squared hinge
loss. In each of these cases, the solution of (1) is obtained by computing the vector α that solves a
dual problem. The solution usually leads to a linear system relating α and b:

P

(

α
b

)

= q (5)

where P and q are, in general, functions of h.

We make the following assumption.

Assumption 2. Locally around h (at which we are interested in calculating the gradient of the
validation function to be defined soon) P and q are continuously differentiable functions of h.

Let us now write down P and q for the three loss functions mentioned above, and discuss the validity
of the above assumption.

Squared loss.
l(oi, yi) = (1 − yioi)

2/2 (6)

P =

(

λI + Ω −y
−yT 0

)

q =

(

e
0

)

(7)

where λ = 1/C, Ωij = yiyjKij , I is the identity matrix, y is a vector containing the yi, T denotes
transpose, and e is a vector of all 1’s. Assumption 2 always holds for squared loss.

Squared Hinge loss.
l(oi, yi) = max{0, 1 − yioi}

2/2 (8)

After the solution of (1), the training set indices get partitioned into two sets: I0 = {i : αi = 0} and
Iu = {i : αi > 0}. Then (5) is given by

α0 = 0, Pu

(

αu

b

)

= qu (9)

where α0 is a vector containing {αi : i ∈ I0}, αu is a vector containing {αi : i ∈ Iu},

Pu =

(

λI + Ωuu −yu

−yT
u 0

)

q =

(

eu

0

)

(10)

and, Ωuu, yu and eu are parallel to those for squared loss, but restricted to the indices in Iu. If the
partitions I0 and Iu do not change locally around a given h then assumption 2 holds. Generically,
this happens for almost all h.

Hinge loss.
l(oi, yi) = max{0, 1 − yioi} (11)

After the solution of (1), the training set indices get partitioned into three sets: I0 = {i : αi = 0},
Ic = {i : αi = C} and Iu = {i : 0 < αi < C}. Let α0, αc, αu, yc, yu, ec, eu, Ωuc, Ωuu etc be
appropriately defined vectors and matrices. Then (5) is given by

α0 = 0, αc = Cec,

(

Ωuu −yu

−yT
u 0

)(

αu

b

)

=

(

eu − Ωucαc

yT
c αc

)

(12)

If the partitions I0, Ic and Iu do not change locally around a given h then assumption 2 holds.
Generically, this happens for almost all h.

The modified Huber loss function (Zhang, 2004) can also be used, though the derivation of (5) for
it is more complex than for the three loss functions discussed above. Recently, weighted hinge loss
with asymmetric margins (Grandvalet et al., 2005; Wu and Srihari, 2004) has been proposed for
treating imbalanced problems and for incorporating prior knowledge.

Weighted Hinge loss.
l(oi, yi) = Ci max{0,mi − yioi} (13)

where Ci = C+, mi = m+ if yi = 1 and Ci = C−, mi = m− if yi = −1.

Because C+ and C− are present, the hyperparameter C in (1) can be omitted. The SVM model
with weighted hinge loss has four extra hyperparameters, C+, C−, m+ and m−, apart from the
kernel hyperparameters. Our methods in this paper allow the possibility of efficiently tuning all
these parameters together with kernel parameters.

The method described in this paper is not special to classification models only. It extends to a wide
class of kernel methods for which the optimality conditions for minimizing a training objective func-
tion can be expressed (or well-approximated) as a linear system (5) in a continuously differentiable
manner. We give a list of some of these models and discuss details for some of them in the appendix.

3 The Leave-One-Out (LOO) approach

Let us now briefly visit the LOO approach just to make a point regarding its computational effort.
Take squared loss to begin with. Suppose we leave out the i-th example from the training set, train
with the remaining examples and then use that solution to compute the LOO validation output vi

of the i-th example. It can be shown (see Opper and Winther (2000); Chapelle et al. (2002) for the
SVM hard margin case) that vi is given by

yivi = 1 −
αi

(P−1)ii

(14)

where P is as in (7). The vi thus obtained can be used to define smooth validation functions. In
the case of squared hinge loss we need P−1

u where Pu is as in (10). In the case of hinge loss LOO
requires the inverse of the matrix

(

Ωuu −yu

−yT
u 0

)

(15)

Thus, the biggest disadvantage of the LOO based approach for large scale problems is that it re-
quires the storage and inverse of a large matrix. For hinge and squared hinge losses, the size of
this matrix is one more than the size of the non-bounded support vector set, Iu. Note that, even if,
on some large scale problems, this set is of a manageable size at the optimal h, the corresponding
set (which is dependent on h) can be large when h is away from the optimal; on many problems,
such a far-off region is usually traversed during the adaptation process! To get an idea, consider
the Adult dataset used in our empirical studies of section 6, where a gradient-based k-fold method
(Grad-Erate-1) was used to determine the optimal hyperparameters C and γ of a SVM model using
hinge loss and Gaussian kernel. Table 1 gives the number of non-bounded support vectors (nSV),
i.e., the size of Iu, at various iterations of hyperparameter optimization. (Note that the size of the
matrix in (15) is nSV+1.) Though nSV is not too big at the optimal hyperparameters (iteration 6), it
is much bigger in the early iterations.

In Gaussian processes (Rasmussen and Williams (2006)) hyperparameters are tuned by maximizing
the Evidence. The computation of the gradient of the Evidence with respect to the hyperparameters
also requires the inverse of the kernel matrix associated with the training examples. Hence, like in
LOO, hyperparameter optimization in large scale problems is expensive for Gaussian processes too.

Table 1: Average number of non-bounded support vectors (nSV) in 5-fold training at various itera-
tions of Grad-Erate-1 method on Adult with 16000 training examples.

Iteration 1 2 3 4 5 6
nSV 8647 4490 2747 2089 1428 1241

4 The gradient of a validation function

Suppose that for the purpose of hyperparameter tuning, we are given a validation scheme involving
a small number of (training set, validation set) partitions, such as: (1) using a single validation set,
(2) k-fold cross validation, or (3) averaging over k randomly chosen (training set, validation set)
partitions. Our method applies to any of these three schemes. To keep notations simple, we explain
the ideas only for scheme (1) and expand on the other schemes towards the end of this section. Note
that throughout the optimization process, the training-validation splits are fixed.

Let {x̃l, ỹl}
ñ
l=1 denote the validation set. Let K̃li = k(x̃l, xi) involving a kernel calculation between

an element of a validation set with an element of the training set. The output on the lth validation
example is:

õl =
∑

i

αiyiK̃li − b (16)

which, for convenience, we will rewrite as

õl = ψT
l β (17)

where β is a vector containing α and b, and ψl is a vector containing yiK̃li, i = 1, . . . , n and −1 as
the last element (corresponding to b).

Let us suppose that the model selection problem is formulated as a non-linear optimization problem:

h? = argmin
h

f(õ1, . . . , õñ) (18)

where f is a differentiable validation function of the outputs õl which implicitly depend on h. In
the next section, we will outline the construction of such functions for criteria like error rate, F1
measure etc.

We now discuss the computation of ∇hf . Let θ denote a generic parameter in h and let us represent
partial derivative of some quantity, say v, with respect to θ as v̇.

Before writing down expressions for ḟ , let us discuss how to get β̇. Differentiating (5) with respect
to θ gives

P β̇ + Ṗ β = q̇ ⇒ β̇ = P−1(q̇ − Ṗ β) (19)

Now let us write down ḟ .

ḟ =

ñ
∑

l=1

∂f

∂õl

˙̃ol (20)

where ˙̃ol is obtained by differentiating (17):

˙̃ol = ψT
l β̇ + ψ̇T

l β (21)

The computation of β̇ in (19) is the most expensive step, mainly because it requires P−1. Note that,
for hinge loss and squared hinge loss, P−1 can be computed in a somewhat cheaper way: only a
matrix of the dimension of Iu needs to be inverted. Even then, in large scale problems the dimension
of the matrix to be inverted can become so large that even storing it may be a problem; even when
large storage is possible, the inverse can be very expensive. Most times, the effective rank of P is
much smaller than its dimension. Thus, instead of computing β̇ = P−1(q̇ − Ṗ β) in (19), we can
instead solve

P β̇ = (q̇ − Ṗ β) (22)

for β̇ approximately using decomposition methods or iterative methods such as conjugate-gradients.
This can improve efficiency as well as take care of memory issues by storing P only partially and
computing the remaining parts of P as and when needed.

Since the right-hand-side vector (q̇− Ṗ β) in (22) changes for each different θ with respect to which
we are differentiating, we need to solve (22) for each element of h. If the number of elements of h
is not small (say, we want to use (4) with MNIST dataset which has more than 700 features) then,
even with (22), the computations can still remain very expensive.

We now give a simple trick that shows that if the gradient calculations are re-organized, then ob-
taining the solution of just a single linear system suffices for computing the full gradient of f with
respect to all elements of h.

Let us denote the coefficient of ˙̃ol in the expression for ḟ in (20) by δl, i.e.,

δl =
∂f

∂õl

(23)

Using (21) and plugging the expression for β̇ from (19) into (20) gives

ḟ =
∑

l δl
˙̃ol =

∑

l δl

(

ψT
l P

−1(q̇ − Ṗ β) + ψ̇T
l β
)

= dT (q̇ − Ṗ β) + (
∑

l δlψ̇l)
Tβ

(24)

where d is the solution of
PT d = (

∑

l

δlψl) (25)

The beauty of the reorganization in (24) is that d is the same for all variables θ in h about which the
differentiation is being done. Thus (25) needs to be solved only once. In concurrent work (Seeger,
2006) has used a similar idea for kernel logistic regression. In many ways, the gradient computation
is much simpler and cleaner for the SVM models that we consider in this paper since the optimality
conditions (5) are non-linear for kernel logistic regression.

As a word of caution, note that P may not be symmetric. See, e.g., the P arising from (12) for the
hinge loss case. Also, when performing calculations, the parts corresponding to zero components
should be omitted and the special structure of P should be utilized. To make these points clear, let us
take the case of hinge loss. When computing Ṗ β the parts of Ṗ corresponding to α0 can be ignored.
Let (d0, du, dc, db) and (r0, ru, rc, rb) respectively denote the break-up of d and (

∑

l δlψl). Then
the structure in (12) can be utilized to get

(

Ωuu −yu

−yT
u 0

)(

du

db

)

=

(

ru
rb

)

dc = rc − ΩT
ucdu + ycdb, d0 = 0 (26)

The linear system in the above equation can be efficiently solved using conjugate gradient techniques
similar to that in Chu et al. (2005).

The sequence of the computation of the full gradient of f with respect to h is as follows. First
compute δl from (23). For various choices of validation function, we outline this computation in the
next section. Then solve (25) for d. Then, for each θ use (24) to get all the derivatives of f . The
computation of Ṗ β has to be performed for each hyperparameter separately. In problems with many
hyperparameters, this is the most expensive part of the gradient computation. Note that in some
cases, e.g., θ = C, Ṗ β is immediately obtained. For θ = γ or γt, when using (3,4), one can cache
pairwise distance computations while computing the kernel matrix. We have found that the cost of
computing the gradient of f with respect to h to be usually much less than the cost of solving (1)
and then obtaining f .

We can also employ the above ideas in a validation scheme where one uses k training-validation
splits (e.g in k-fold cross-validation). In this case, for each partition one obtains the linear system
(5), corresponding validation outputs (17) and the linear system in (25). The gradient is simply
computed by summing over the k partitions, i.e., ḟ =

∑k
j=1 ḟ

(k) where ḟ (k) is given by (24) using
the quantities P, q, d etc associated with the kth partition.

The model selection problem (18) may now be solved using, e.g., Quasi-Newton methods such as
BFGS which only require function value and gradient at a hyperparameter setting. The suggestions
made in Chung et al. (2003); Keerthi (2002) for effective application of Quasi-Newton methods to
hyperparameter optimization can be used for our method too. In particular, reaching the minimizer
of f too closely is not important. In our implementations we terminate optimization iterations when
the following loose termination criterion is met:

|f(hk+1) − f(hk)| ≤ 10−3|f(hk)| (27)

where hk+1 and hk are consecutive iterates in the hyperparameter optimization process.

Remark 1. For linear kernel, i.e., k(xi, xj) = xi · xj , efficient direct primal methods for obtaining
(w, b) without resorting to α and the dual problem (Keerthi and DeCoste, 2005) can be used. In
such a case we can replace (5) by a primal linear system with (w, b) as the variables. All the
computations and tricks of this section carry over easily. It is also possible to make good use of
any special structures. For example, in the solution of large scale text classification by linear SVMs
(Keerthi and DeCoste, 2005), both, the number of examples and the number of features can be large,
but the data matrix is very sparse. For such a case, if (5) with (w, b) is used, then the linear system
corresponding to (25) involves a large-but-sparse matrix, and, conjugate gradient techniques are
very efficient for solving such a system. The ideas for linear kernel can be even extended to special
methods involving nonlinear kernels, such as the Reduced SVM technique (Lee and Mangasarian,
2001; Lin and Lin, 2003) where a subset of the kernel basis functions is chosen and w is expressed
as a linear combination of these basis functions.

Remark 2. A general concern with descent methods is the presence of local minima. In section 6,
we make some encouraging empirical observations in this regard, e.g., local minima problems did
not occur for the C, γ tuning task; for several other tasks, starting points that work surprisingly well
could be easily obtained.

5 Smooth validation functions

We first recall some commonly used validation functions. Table 2 shows the confusion matrix
parametrized by two entries: the number of true positives (tp) and the number of false positives (fp)
for a binary classification problem with ñ+ positive and ñ− negative examples. Consider validation
functions that are general functions of the confusion matrix:

f = f(tp, fp) (28)

Table 2: Confusion Matrix

pred → +1 -1
true ↓

+1 tp ñ+ − tp
-1 fp ñ− − fp

Let u(z) denote the unit step function which is 0 when z < 0 and 1 otherwise. Denote ũl = u(ỹlõl),
which evaluates to 1 if the lth example is correctly classified and 0 otherwise. Then, tp and fp can
be written as,

tp =
∑

l:ỹl=+1

ũl, fp =
∑

l:ỹl=−1

(1 − ũl) (29)

Error rate (er) is simply the percentage of incorrect predictions, i.e., er = ñ+−tp+fp

ñ
.

For classification problems with imbalanced classes it is usual to define the validation function to be
a weighted version of error rate or a function of precision and recall.

Weighted Error rate is defined in terms of differential costs for the two types of errors, i.e., wer =
(ñ+−tp)+ηfp

(ñ++ηñ
−

) , where η is the ratio of the cost of misclassifications of the negative class to that of the
positive class.

Precision (pr) is defined as the percentage of positive predictions that are correct, i.e., pr = tp
tp+fp

.

Recall (re) is defined as the percentage of positive validation examples that are correctly predicted,
i.e., re = tp

ñ+
.

F measure (F) is defined as the harmonic mean of precision and recall, i.e., F = 2pr re
pr+re

=
2tp

ñ++tp+fp

In special problems one may want to maximize precision under a recall constraint:

maximize pr subject to: re ≥ remin (30)

Area under ROC Curve (auc) can be computed as:

auc =
1

ñ+ñ−

∑

j:ỹj=1

∑

i:ỹi=−1

u(õj − õi) (31)

The subsampling scheme of Herschtal and Raskutti (2004) can be used to reduce the O(ñ2) calcu-
lation above to O(ñ) complexity.

It is common practice to evaluate measures like precision, recall and F measure while varying the
threshold on the real-valued classifier output, i.e., at any given threshold σ0, tp and fp can be
redefined in terms of

ũl = u (ỹl(õl − σ0)) (32)

Note that as the threshold is varied from highly positive to highly negative values, (tp, fp) goes
from (0, 0) to (n+, n−). For imbalanced problems one may wish to maximize a score such as the
F measure over all values of σ0. In such cases, it is appropriate to incorporate σ0 as an additional
hyperparameter that needs to be tuned. Such bias-shifting is particularly also useful as a compensa-
tion mechanism for the mismatch between training objective function and validation function; often
one uses an SVM as the underlying classifier even though it is not explicitly trained to minimize
the validation function that the practioner truely cares about. In section 6, we make some empirical
observations related to this point.

With σ0 as a hyperparameter, it is also sensible to formulate an optimization problem to maximize
precision-recall breakeven point:

maximize re subject to: pr = re (33)

The validation functions discussed above are based on discrete counts. In order to use gradient-
based methods smooth functions of h are needed. We now develop smooth versions of validation
optimization problems and for these give expressions for δl (23).

5.1 Sigmoidal Approximation

Let s̃l denote a sigmoidal approximation to ũl (32) of the following form:

s̃l =
1

1 + exp (−σ1ỹl (õl − σ0))
(34)

where σ1 > 0 is a sigmoidal scale factor. In general, σ0, σ1 may be functions of the validation
outputs. As discussed in the previous section, one may alternatively wish to treat σ0 as an additional
hyperparameter. The scale factor σ1 influences how closely s̃l approximates the step function ũl and
hence controls the degree of smoothness in building the sigmoidal approximation. As the hyperpa-
rameter space is probed, the magnitude of the outputs can vary quite a bit. σ1 takes the scale of the
outputs into account. In section 5.2 we discuss various methods to set σ0, σ1.

Given a sigmoidal approximation, we consider a general validation function that is defined in terms
of {ũl}. We build a differentiable version of such a function by simply replacing ũl by s̃l. Thus, we
have,

f = f(s̃1 . . . s̃ñ) (35)

The value of δl (23) is given by:

δl =
∂f

∂s̃l

∂s̃l

∂õl

+

(

∑

r

∂f

∂s̃r

∂s̃r

∂σ0

)

∂σ0

∂õl

+

(

∑

r

∂f

∂s̃r

∂s̃r

∂σ1

)

∂σ1

∂õl

(36)

where the partial derivatives of s̃l with respect to õl, σ0, σ1 are given by

∂s̃l

∂õl

= s̃l(1 − s̃l)σ1ỹl,
∂s̃r

∂σ0
= −s̃r(1 − s̃r)σ1ỹl,

∂s̃r

∂σ1
= s̃r(1 − s̃r)ỹr(õr − σ0) (37)

Below we consider the computation of ∂f
∂s̃l

for the choices of validation functions mentioned earlier.

In section 5.2 we discuss the computation of the remaining partial derivatives ∂σ0

∂õl
and ∂σ1

∂õl
.

With the sigmoidal approximation tp ≈
∑

l:ỹl=+1 s̃l and fp ≈
∑

l:ỹl=−1(1 − s̃l), we can compute
the following quantity for the validation function f = f(tp, fp) (28).

∂f

∂s̃l

=
∂f

∂tp

∂tp

∂s̃l

+
∂f

∂fp

∂fp

∂s̃l

(38)

To compute (38) we require the partial derivatives of f with respect to tp, fp. Let us write down the
expressions for these terms for some common functions.

Error Rate ∂er
∂tp

= − 1
ñ

, ∂er
∂fp

= 1
ñ

(39)

Weighted Error Rate ∂wer
∂tp

= − 1
ñ++ηñ

−

, ∂wer
∂fp

= η
ñ++ηñ

−

(40)

Precision ∂pr
∂tp

= fp
(tp+fp)2 , ∂pr

∂fp
= − tp

(tp+fp)2 (41)

Recall ∂re
∂tp

= 1
ñ+

, ∂re
∂fp

= 0 (42)

F measure ∂F
∂tp

= 2(ñ++fp)
(ñ++tp+fp)2 , ∂F

∂fp
= − 2tp

(ñ++tp+fp)2 (43)

The problem (30) can be approached either by separately writing the gradient expressions of pr
and re with respect to h and feeding them to a constrained optimization method to solve (30), or,
maximize pr + ν re for several values of ν and choose the one that achieves re = remin. The
problem (33) can be similarly solved.

Area under ROC Curve (auc) Similar to what we did earlier, we can introduce new variables
z̃ji = õj − õi, relax the step function to a sigmoid over the z̃ji variables and derive expressions for
δl = ∂auc

∂õl
. For auc the threshold parameter σ0 is unnecessary.

5.2 Sigmoidal Smoothing Methods

We now discuss three methods to compute the sigmoidal parameters σ0, σ1 and calculate their partial
derivatives with respect to õ. In section 6, we will empirically compare these methods.

Direct Method

Here, we simply set,

σ0 = 0, σ1 =
t

ρ
(44)

where ρ denotes standard deviation of the outputs {õl}, i.e., ρ =

√

P

k
(õk−µ)2

n
, µ = 1

ñ

∑

k õk; and
t is a constant which is heuristically set to some fixed value in order to well-approximate the step
function. In our implementation we use t = 10. The partial derivatives required to compute (36) are
given by,

∂σ0

∂õl

= 0
∂σ1

∂õl

= −
t

nρ3
(õl − µ) (45)

Hyperparameter Bias Method

Here, we consider σ0 as a hyperparameter and set σ1 as above. Note that in this case the õ do not
depend on σ0 and one can write the gradient component with respect to σ0 simply as,

∂f

∂σ0
=
∑

r

∂f

∂s̃r

∂s̃r

∂σ0
(46)

instead of using (20). For other gradient components, we simply use (45) together with (36) and
(20).

Minimization Method

In this method, we obtain σ0, σ1 by performing sigmoidal fitting based on unconstrained minimiza-
tion of some smooth criterion N , i.e.,

(σ0, σ1) = argmin
<2

N (47)

Denote the gradient (g) and Hessian (H) of N in with respect to (σ1, σ0)
T as:

g =

(

g1

g2

)

, H =

(

H1 H0

H0 H2

)

(48)

The optimality conditions for minimizing N with respect to (σ1, σ0)
T is nothing but g = 0. We can

take the derivative of this system with respect to õl to get

H

(

∂σ1

∂õl
∂σ0

∂õl

)

+

(

∂g1

∂õl
∂g2

∂õl

)

= 0 (49)

The small 2× 2 linear system in (49) can be analytically solved. In particular, we obtain the follow-
ing:

∂σ1

∂õl

=
1

∆

(

H2
∂g1
∂õl

−H0
∂g2
∂õl

)

,
∂σ0

∂õl

=
1

∆

(

−H0
∂g1
∂õl

+H1
∂g2
∂õl

)

(50)

where ∆ = H2
0 −H1H2.

These expressions allow (36) to be computed for the this method. Note that when f and N coincide,
g = 0 implies that the last two terms in (36) evaluate to zero.

A natural choice of N is based on Platt’s method (Platt (1999); Lin et al. (2003)) where s̃l is in-
tepreted as the posterior probability that the class of lth validation example if ỹl. Then the sigmoid
parameters σ1 and σ0 may be obtained by minimizing the negative log-likelihood function

N = −
∑

l

log(s̃l) (51)

In practice, as derived from Bayesian considerations in Platt (1999); Lin et al. (2003), one makes a
small allowance for the opposite label to be true,

N = −
∑

l

t̃l log(s̃l) + (1 − t̃l) log(1 − s̃l) (52)

t̃l =

{

(ñ+ + 1)/(ñ+ + 2) if ỹl = +1
(ñ− + 1)/(ñ− + 2) if ỹl = −1

for the ñ+ positive and ñ− negative examples respectively. This amounts to adding regularization to
avoid overfitting σ1 and σ0. N can be minimized with respect to (σ1, σ0)

T using Newton’s method
with backtracking line search following the pseudo-code given in Lin et al. (2003). Sigmoidal fitting
based on the negative log-likelihood function has also been previously proposed in Chapelle et al.
(2002). Below, we record some expressions we need to compute (36) for this choice.

g =

∑

l ỹlõl(s̃l − t̃l)

∑

l(t̃l − s̃l)σ1ỹl

 , H =

(
∑

l õ
2
l s̃l(1 − s̃l) −

∑

l σ1õls̃l(1 − s̃l)
−
∑

l σ1õls̃l(1 − s̃l)
∑

l σ
2
1 s̃l(1 − s̃l)

)

(53)

∂g1
∂õl

= ỹl(s̃l − t̃l) + σ1ỹlõls̃l(1 − s̃l),
∂g2
∂õl

= −σ2
1 s̃l(1 − s̃l) (54)

In case f = N as defined in (51), in (36) we can use,

∂f

∂s̃l

=
(s̃l − t̃l)

s̃l(1 − s̃l)
(55)

Remark 3. If we are mainly interested in negative log-likelihood (51) as the measure of general-
ization performance, it is more appropriate to train a kernel logistic regression model instead of the
SVM model. However, this complicates the gradient computations since the optimality conditions
(5) for kernel logistic regression are non-linear. See Seeger (2006) for more details in this direction.

We can also use the σ0 and σ1 obtained using (47) and (52) to define the probabilitstic error rate
(per):

per =
1

ñ

∑

l

(1 − s̃l) (56)

For the Minimization method another choice for N is the squared loss N =
∑

l(ũl − s̃l)
2 for which

computations similar to those for negative log-likelihood can be done.

6 Empirical Results

We demonstrate the effectiveness of our method on binary classification, mainly taking error rate
as the validation/test objective function of interest. The SVM model with hinge loss was used.
SVM training was done using the SMO algorithm. Five fold cross validation was used to form the
validation objective functions. Four datasets were used in our study: Adult, IJCNN, Vehicle and
Splice. The first three were taken from http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/ and
Splice was taken from http://ida.first.fraunhofer.de/˜raetsch/. The total number of examples and the
number of features in these datasets is given in Table 3. For each dataset training sets of different
sizes were chosen in a class-wise stratified fashion; the remaining examples formed the test set.

Table 3: Properties of various datasets.

Adult IJCNN Vehicle Splice
Total examples 32561 141691 98528 3175
Num of features 123 22 100 60

The Gaussian kernel (3) and the ARD-Gaussian kernel (4) were used. In the case of the Gaussian
kernel, for which the SVM model has the two hyperparameters C and γ, we also tried the popular
Grid approach of searching over a grid of values in the (C, γ) space to minimize validation error
rate. For each of these two parameters we tried 15 values: 2imin+i, i = 0, . . . , 14. The value of
imin was chosen differently for C and γ; for each of the datasets, these imin values were chosen so
that the optimal hyperparameter values were in the middle of the region covered by the grid. To be
efficient, the solution (α) from one hyperparameter vector was seeded as the starting point of SMO
for the nearby hyperparameter vector.

For our gradient based methods, we used the starting point, C = 1 and γ = 1 for the hyperparameter
optimization process when the Gaussian kernel was used. In the case of the ARD-Gaussian kernel,
we did the following. We first optimized the validation function using the Gaussian kernel, obtained
the optimal (C?, γ?) and then continued the optimization with the ARD-Gaussian kernel, using
C = C? and γt = γ? ∀t as the starting point.

Comparison of validation functions. For minimizing error rate, we can use er of section 5 together
with the Direct method of section 5.2. Let us refer to this approach as Grad-Erate-1. An alternative
is to use the probabilistic estimate of error rate in (56). Let us refer to this approach as Grad-Erate-2.
We compare the performance of these validation functions using the IJCNN dataset. For a training
set size of 2000, Figure 1 gives the contours of: (1) actual validation error rate based on counting
misclassifications; (2) er, the smooth validation error rate based on the Direct method; (3) per, the
probabilistic error rate of (56); and (4) actual test error rate. The plots also show the sequence of
points obtained by the optimization process by Grad-Erate-1 and Grad-Erate-2 as well as the best
point produced by the Grid method. Clearly, Grad-Erate-1 and Grid perform better than Grad-
Erate-2. A comparison of the contours shows that er is a better representation of the generalization
error than per; also er is a very nicely smoothed representation of the (discontinuous) validation
error rate. Figure 2 shows the corresponding contour plots for a much larger training set of size
8000. With such a large training set, the contours of test error rate, those of validation error rate and
those of er become closer, while the contours of per are still somewhat shifted away. We also studied

−2 0 2
0

2

4

6
Val Error Rate

Log gamma

Lo
g

C
−2 0 2

0

2

4

6
Smooth Val Error Rate (er)

Log gamma

Lo
g

C

−2 0 2
0

2

4

6
Prob Val Error Rate (per)

Log gamma

Lo
g

C

−2 0 2
0

2

4

6
Test Error Rate

Log gamma

Lo
g

C
Figure 1: Various contours for IJCNN with 2000 training points. The sequence of points generated
by Grad-Erate-1 and Grad-Erate-2 are shown, respectively by the symbols, � and ×. The best point
produced by Grid is shown by ◦. All optimal points are marked in red.

−2 0 2
0

2

4

6
Val Error Rate

Log gamma

Lo
g

C

−2 0 2
0

2

4

6
Smooth Val Error Rate (er)

Log gamma

Lo
g

C

−2 0 2
0

2

4

6
Prob Val Error Rate (per)

Log gamma

Lo
g

C

−2 0 2
0

2

4

6
IJCNN (Test Error Rate)

Log gamma

Lo
g

C

Figure 2: Various contours for IJCNN with 8000 training points. The sequence of points generated
by Grad-Erate-1 and Grad-Erate-2 are shown, respectively by the symbols, � and ×. The best point
produced by Grid is shown by ◦. All optimal points are marked in red.

the contours of negative log-likelihood (51); this function tends to behave very similar to per. The
sequence of points generated by the gradient-based method using (51) (call it as the Grad-LogLik
method) is also very close to that of Grad-Erate-2.

Comparison of Grid and Grad methods. For various training set sizes of the IJCNN dataset we
compare the speed and generalization performance of Grid, Grad-Erate-1, Grad-Erate-2 and Grad-

LogLik. Table 4 gives the results. Clearly the gradient-based methods are much more efficient
than Grid. The good speed improvement is seen even at small training set sizes. Although the
efficiency of Grid can be improved in certain ways (say, by doing a crude search followed by a
refined search, by avoiding unnecessary exploration of difficult regions in the hyperparameter space
etc) the gradient-based methods are still much better because of their ability to systematically plunge
in hyperparameter space to precisely fix the hyperparameters at the optimal locations. The test error
rates of Table 4 also quantify our earlier finding that, for minimizing error rate Grad-Erate-1 is a
better method than Grad-Erate-2 and Grad-LogLik. Table 5 compares Grid and Grad-Erate-1 on
Adult and Vehicle datasets for various training set sizes. Though the generalization performance of
the two methods are close, Grid is much slower.

Table 4: Comparison of Grid, Grad-Erate-1, Grad-Erate-2 and Grad-LogLik on IJCNN. nf is the
number of hyperparameter vectors tried. (For Grid, nf is 225.) cpu is computational time in minutes.
erate is the percentage test error rate.

Grid Grad-Erate-1 Grad-Erate-2 Grad-LogLik
ntrg cpu erate nf cpu erate nf cpu erate nf cpu erate

2000 10.03 2.95 11 4.58 2.87 11 3.21 3.12 12 3.97 3.16
4000 38.77 2.42 12 11.40 2.42 12 12.04 2.74 11 11.62 2.75
8000 218.92 1.76 14 68.58 1.77 15 53.25 1.94 14 50.72 1.94

16000 1130.37 1.24 12 127.03 1.26 13 137.07 1.30 12 130.08 1.32
32000 5331.15 0.91 9 382.20 0.91 11 410.76 0.96 12 437.98 0.97

Table 5: Comparison of Grad-Erate-1 and Grid methods on Adult and Vehicle. nf is the number of
hyperparameter vectors tried. (For Grid, nf is 225.) cpu is computational time in minutes. erate is
the percentage test error rate. For Vehicle and ntrg=16000, the solution of Grid was discontinued
after 5 days of computation.

Adult Vehicle
Grad-Erate-1 Grid Grad-Erate-1 Grid

ntrg nf cpu erate cpu erate nf cpu erate cpu erate
2000 9 3.62 16.21 8.66 16.14 7 2.50 13.58 15.25 13.84
4000 16 15.98 15.64 37.53 15.95 5 8.60 13.29 135.28 13.30
8000 10 52.17 15.69 306.25 15.59 9 83.10 12.84 1458.12 12.82

16000 6 256.40 15.40 3667.90 15.37 6 360.88 12.58 – –

Feature Weighting Experiments. To study the effectiveness of our gradient-based approach when
many hyperparameters are present, we use the ARD-Gaussian kernel in (4) and tune C together
with all the γt’s. Like in Grad-Erate-1, the smooth estimate er based on Direct method is used. As
mentioned earlier, the solution of Grad-Erate-1 was used to initialize the solution. We denote the
resulting method as Grad-ARD. Table 6 gives the results for various training set sizes of IJCNN.
Grad-ARD achieves a decent improvement in generalization performance over Grad-Erate-1 with-
out increasing the computational cost by much. Table 7 gives the results of Splice for the training
set size of 2000. In spite of the fact that the number of hyperparameters tuned is large (i.e., 61),
the extra cpu time is not excessive. What is remarkable is the huge improvement in generalization
performance that is achieved by allowing individual feature weights to be tuned. In large scale prob-
lems where such significant gains are possible, our gradient-based methods with the ARD-Gaussian
kernel are very valuable.

Improving F-measure by threshold adjustment. In section 5 we mentioned about the possible
value of threshold adjustment when the validation/test function of interest is a quantity that is differ-
ent from error rate. We now illustrate this by taking the Adult dataset, with F-measure as the quantity
of interest. The size of the training set is 2000. Gaussian kernel (3) was used. For smoothening we
employed the direct method of section 5.2. We implemented two methods: in the first method we set
σ0 = 0 and tuned only C and γ; in the second method we tuned the three hyperparameters C, γ and
σ0. For the first method we started the optimization from C = 1, γ = 1 as usual. After obtaining
its optimizer (C?, γ?), we started the second method with C = C?, γ = γ? and σ0 = 0. We ran the
methods on ten different randomly chosen training set/test set splits. Table 8 gives the statistics of

Table 6: Comparison of Grad-Erate-1, Grid and Grad-ARD (Grad-Erate-1 with feature weighting)
on IJCNN. nf is the number of hyperparameter vectors tried. (For Grid, nf is 225.) cpu is computa-
tional time in minutes. (The solution of Grad-ARD was seeded using the solution of Grad. The cpu
given is the extra time needed for doing this optimization.) erate is the percentage test error rate.

Grad-Erate-1 Grid Grad-ARD
ntrg nf cpu erate cpu erate nf cpu erate

2000 11 4.58 2.87 10.03 2.95 28 5.63 2.65
4000 12 11.40 2.42 38.77 2.42 13 8.40 2.14
8000 14 68.58 1.77 218.92 1.76 17 38.58 1.50

16000 12 127.03 1.26 1130.37 1.24 20 154.03 1.08
32000 9 382.20 0.91 5331.15 0.91 7 269.16 0.82

Table 7: Comparison of Grad-Erate-1, Grid and Grad-ARD (Grad-Erate-1 with feature weighting)
on Splice. nf is the number of hyperparameter vectors tried. (For Grid, nf is 225.) cpu is computa-
tional time in minutes. (The solution of Grad-ARD was seeded using the solution of Grad. The cpu
given is the extra time needed for doing this optimization.) erate is the percentage test error rate.

Grad-Erate-1 Grid Grad-ARD
ntrg nf cpu erate cpu erate nf cpu erate

2000 13 7.57 8.17 11.42 9.19 37 35.04 3.49

F-measure values on 5-fold cross validation and on the test set. Clearly, the use of σ0 yields a very
significant improvement on the F-measure. To give a better idea we plot, in Figure 3, the variation
of error rate and F-measure on validation and test, for one run. The SVM solution corresponds to
zero threshold. Clearly, error rate has its minimum very close to zero threshold. On the other hand,
F-measure has its maximum at a threshold value that is well shifted away from zero. Also, the F-
measure value of the SVM solution (zero threshold) is significantly smaller than the maximum value
of F-measure. In general, error rate and F-measure achieve their best values at different values of
hyperparameters.

Table 8: Mean (standard deviation) of F-measure values on the Adult dataset.

Without σ0 With σ0

Validation Test Validation Test
F-measure 0.6385 (0.0062) 0.6363 (0.0081) 0.6635 (0.0095) 0.6641 (0.0044)

Optimizing weighted error rate in imbalanced problems. In imbalanced problems where the
proportion of examples in the positive class is small, it is usual to minimize weighted error rate wer
(see section 5) with a small value of η. One can think of four possible methods in which, apart from
the Gaussian kernel parameter γ and threshold2 σ0, we include other parameters by considering
sub-cases of the weighted hinge loss model of section 2 – (1) Usual SVM: Set m+ = m− = 1,
C+ = C, C− = C and tune C. (2) Set m+ = m− = 1, C+ = C, C− = ηC and tune C.
(3) Set m+ = m− = 1 and tune C+ and C− treating them as independent parameters. (4) Use
the full Weighted Hinge loss model of section 2 and tune C+, C−, m+ and m−. For the first two
methods we started the optimization from C = 1, γ = 1. For the third method we started from
C+ = C− = 1, γ = 1. After obtaining the optimizer (C?, γ?) of method 1, we seeded the fourth
method with C+ = C− = C?, γ = γ? and m+ = m− = 1. For all four methods, the initial
value of σ0 was set to 0. To compare the performance of these methods we take the IJCNN dataset,
randomly choosing 2000 training examples and keeping the remaining examples as the test set. Ten
such random splits were tried. We take η = 0.01. The top half of Table 9 gives the statistics of
weighted error rate values associated with validation and test. The weighted hinge loss model gives
the best performance.

The presence of the threshold parameter σ0 is important for the first three methods. Interestingly, for
the weighted hinge loss method, tuning of threshold has little effect. Grandvalet et al. (2005) also

2We used the Hyperparameter bias method of section 5.2 for smoothening.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Adult

Threshold

E
rr

or
 r

at
e

an
d

F
−

m
ea

su
re

Val Error Rate
Test Error Rate
Val F−measure
Test F−measure

Figure 3: Plot of Error rate and F-measure versus threshold for the Adult dataset with 2000 training
points and 30561 test points.

Table 9: Mean (standard deviation) of weighted (weight is 1 for positive class and η = 0.01 for
negative class) error rate values on the IJCNN dataset.

C+ = C, C
−

= C C+ = C, C
−

= ηC C+, C
−

tuned Full Weighted Hinge
With σ0

Validation 0.0571 (0.0183) 0.0419 (0.0060) 0.0490 (0.0104) 0.0357 (0.0063)
Test 0.0638 (0.0160) 0.0549 (0.0098) 0.0571 (0.0136) 0.0461 (0.0078)

Without σ0

Validation 0.1953 (0.0557) 0.1051 (0.0164) 0.1008 (0.0607) 0.0364 (0.0061)
Test 0.1861 (0.0540) 0.0897 (0.0154) 0.0969 (0.0502) 0.0469 (0.0076)

make the observation that this method places the threshold at the right spot on its own. The bottom
half of Table 9 gives the performance statistics of the methods when threshold is not tuned. We also
found that the weighted hinge loss method did not lose its good performance even when one of the
margin parameters, m+ is simply set to 1 and only the remaining parameters (C+, C−, m− and γ)
were tuned. The weighted margin hinge loss model seems to be very good for solving imbalanced
problems.

Cost Break-up. In the gradient-based solution process, each step of the optimization requires the
evaluation of f and ∇hf . In doing this, there are three steps that take up the bulk of the computa-
tional cost: (1) the solution of the training problem (determination of α) using the SMO algorithm;
(2) the solution of the linear system in (25); and (3) the remaining computations associated with the
gradient, of which the computation of Ṗ β in (24) is the major part. It is useful to have an idea of the
break-up of these individual costs. Table 10 gives the relative break-up of the costs for the IJCNN
dataset, for solution by Grad-Erate-1 and Grad-ARD methods. Clearly, the cost of solution by SMO
forms the major bulk of the total computational time. It is also encouraging to note that the Ṗ β cost
of Grad-ARD doesn’t become large in spite of the fact that 23 hyperparameters are tuned there. This
is mainly due to the efficient usage of terms in the ARD-Gaussian calculations that we mentioned in
section 4.

7 Conclusion

The main contribution of this paper is a fast method of computing the gradient of a validation func-
tion with respect to hyperparameters for a range of SVM models; together with a nonlinear opti-

Table 10: Cost break-up for Grad-Erate-1 and Grad-ARD on IJCNN. We take the cost of computing
the full gradient vector ∇hf to be unity and give all other costs relative to that. SMO is the cost of
SMO. Lin is the cost of solving the linear system in (25); Ṗ β is the cost of all remaining gradient
computations, of which Ṗ β in (24) is the major part.

Grad-Erate-1 Grad-ARD
ntrg SMO Lin Ṗ β SMO Lin Ṗ β

2000 6.5 0.26 0.74 6.6 0.32 0.68
4000 15.5 0.31 0.69 4.8 0.34 0.66
8000 10.2 0.29 0.71 4.9 0.38 0.62

16000 8.5 0.34 0.66 4.6 0.37 0.63
32000 9.4 0.31 0.69 5.2 0.34 0.66

mization technique such as BFGS it can be used to efficiently determine the optimal values of many
hyperparameters. Even in models with just two hyperparameters our approach is faster and offers
a more precise hyperparameter placement than the Grid approach, even in medium sized problems.
Our approach is particularly of great value for large scale problems.

The ability to tune many hyperparameters easily should be used with care. On a text classification
problem involving many thousands of features (see Remark 1 at the end of section 4) we placed an
independent feature weight for each feature and optimized all these weights (together with C) only
to find severe overfitting taking place. Therefore, for a given problem it is important to choose the
set of hyperparameters carefully, in accordance with the amount of training examples available.

Appendix. Other SVM Models
In section 2 we discussed the SVM classification model and several associated loss functions. The
expression of local optimality via (5) is the key property that allows the application of the ideas of
section 3 to derive efficient expressions for the gradient of the validation objective function with
respect to hyperparameters. We now show that (5) also holds for several other SVM models.

The derivation of (5) for regression models (squared loss, ε-insensitive loss etc) is quite easy. For
the SVM ordinal regression models in Herbrich et al. (2000); Shashua and Levin (2000); Chu and
Keerthi (2005) the derivation of (5) is very much along the lines of the SVM classification model.

Multi-class SVM models. There are several versions of these models. For multi-class models
that involve a single optimization problem (Weston and Watkins, 1999; Crammer and Singer, 2005)
the derivation of (5) is easy as it follows directly from the optimality conditions of the dual problem.
But these models are rarely used in practice because of their expensive solution. More popular are
models that use combinations of several binary models, such as One-Vs-Rest, One-Vs-One and Error
Correcting Codes. We describe the details of the approach only for One-Vs-Rest. Similar ideas can
be used for the other models.

Suppose there are m classes. In the One-Vs-Rest method, for each c = 1, . . . ,m there is one binary
model for differentiating class c from the rest, with the ‘local’ representation:

õc
l = ψcT

l βc, P cβc = qc (57)

Here õc
l ∀ l is the set of validation outputs. Let us say this binary model is set up in such a way

that õc
l > 0 denotes class c and õc

l < 0 denotes the remaining classes. In the presence of several
independent hyperparameters (e.g., a different C value for each binary model) it is appropriate to
define normalized outputs,

ôc
l = õc

l /σ
c (58)

where σc is the standard deviation of {õc
l }

m
l=1 (like it was done in (34) and (44)). Then the multi-

class decision function for the l-th validation example can be taken as

class = arg max
c
ôc

l (59)

The following soft-max function can be used to approximate this function smoothly:

class = arg max
c
ŝc

l , where ŝc
l =

exp (tôc
l)

∑

y exp (tôy
l)

(60)

where t is a constant, say t = 10. Suppose, for example l, the correct class is cl. The validation
error function can be approximated as

f =
∑

l

(1 − ŝcl

l) (61)

Parallel to (20) we can write

ḟ = −
∑

l

∑

c

∂ŝcl

l

∂ôc
l

[

∂ôc
l

∂õc
l

+
∂ôc

l

∂σc

∂σc

∂õc
l

]

˙̃ol (62)

The remaining calculations go as in section 3. Thus, the only added complication in the gradient
expressions is that, everywhere there is a summation term over all m models.

The above ideas for gradient computation can be easily extended to other multi-class methods that
combine binary models, and even to other situations (such as those in (Collobert et al., 2002)) where
several SVM models are combined to form a single overall model.

Multivariate Losses and Structured Output models. The gradient calculations of sec-
tion 3 can also be used for structured output models such as those in Tsochantaridis et al. (2004)
and for the multivariate performance measures model of Joachims (2005). We now briefly explain
the details for Joachims’ SVM model for multivariate performance measures. Similar ideas can be
applied to the structured output models of Tsochantaridis et al. (2004).

Consider the classification problem of section 2. To make the presentation short, we first consider
the case of linear kernels and use the same notations as in Joachims (2005). Let Ȳ = {−1,+1}n,
x̄ = (x1, . . . , xn), ȳ = (y1, . . . , yn), ȳ′ ∈ Ȳ , and Ψ(x̄, ȳ′) =

∑

i y
′
ixi. The primal problem

(Optimization Problem 2 of Joachims (2005)) is

min
w,ξ

1
2‖w‖

2 + Cξ

s.t. ∀ȳ′ ∈ Ȳ : wT [Ψ(x̄, ȳ) − Ψ(x̄, ȳ′)] ≥ ∆(ȳ, ȳ′) − ξ (63)

Although the number of inequalities is exponential, application of Algorithm 1 of Joachims (2005)
usually leads to only a small number of active inequalities. We can write [Ψ(x̄, ȳ)−Ψ(x̄, ȳ′)] = Xz
where X is a matrix that has xi, i = 1, . . . , n as the columns and z = ȳ − ȳ′ is a sparse vector.
With α denoting the Lagrange multiplier vector corresponding to the active inequality constraints,
the optimality conditions can be written as

ZTXTXZα− ξe−D = 0, −eTα+ C = 0 (64)

where Z is a matrix that contains the z vectors of the active inequalities in its columns, e is a vector
having all 1’s, and D is a vector containing the ∆(ȳ, ȳ′)’s of the active inequalities. This is the
optimality system that is parallel to (12). For nonlinear kernels we just need to replace XTX by the
kernel matrix. For efficiency reasons it is useful to note that we only need to form the kernel sub
matrix corresponding to the non-zero rows of Z. This model can be particularly very effective when
combined with the validation objective functions of section 5.

Semi-supervised Models. There has been significant interest in semi-supervised learning re-
cently. Most approaches extend the SVM objective function with loss terms over unlabeled data
and/or use special kernel functions. For example, in the manifold regularization approach of Belkin
et al. (2006), one solves optimization problems of the following form:

min
w,ξ

1
2‖w‖

2 + C
∑l

i=1 l(oi, yi) + C?
∑n

i,j=1(oi − oj)
2Wij

where only l of the n examples are labeled, W is the adjacency matrix of a data-similarity graph,
and C? is an additional hyperparameter. The last term in the objective function is a measure of
how much outputs vary over similar examples. This biases learning towards weight vectors that
produce smooth outputs over data clusters or manifolds. For common choices of l, one can interpret
this approach as a standard SVM with a modified kernel derived in Sindhwani et al. (2006), with
optimality conditions of the form in (5). Thus, one can tune C? together with C and other kernel
parameters using the gradient procedure described in section 3. An interesting direction is the design
of validation functions using unlabeled data.

References

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold Regularization: A Geometric Framework for
Learning from Labeled and Unlabeled Examples. JMLR 2006 (to appear)

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support
vector machines. Machine Learning, 46:131–159, 2002.

W. Chu, C. J. Ong and S. S. Keerthi. An improved conjugate gradient scheme to the solution of least
squares SVMs. IEEE Transactions on Neural Networks, 2005.

W. Chu and S. S. Keerthi. New approaches to support vector ordinal regression. ICML, 2005.

K. M. Chung, W. C. Kao, C. L. Sun, L. L. Wang and C. J. Lin. Radius margin bounds for support
vector machines with the RBF kernel. Neural Computation, 15:2643–2681, 2003.

R. Collobert, S. Bengio and Y. Bengio. A parallel mixture of SVMs for very large scale problems.
Neural Computation, 14:1105–1114, 2002.

K. Crammer and Y. Singer. On the learnability and the design of output codes for multiclass prob-
lems. COLT, 2000.

Y. Grandvalet, J. Mariéthoz and S. Bengio. A probabilistic interpretation of SVMs with an applica-
tion to unbalanced classification. NIPS, 2005.

R. Herbrich, T. Graepel and K. Obermayer. Large margin rank boundaries for ordinal regression.
NIPS, 2000.

A. Herschtal & B. Raskutti. Optimising Area Under the ROC Curve Using Gradient Descent ICML,
2004.

T. Joachims. A Support Vector Method for Multivariate Performance Measures ICML, 2005.

S. S. Keerthi. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative
algorithms. IEEE Transactions on Neural Networks, 13:1225–1229, 2002.

S. S. Keerthi and D. DeCoste. A modified finite Newton method for fast solution of large scale linear
SVMs. JMLR, 6:341–361, 2005.

K. M. Lin and C. J. Lin. RSVM: Reduced support vector machines. SIAM Conference on Data
Mining, 2001.

H. T. Lin, C. J. Lin, and R. C. Weng. A note on Platt’s probabilistic outputs
for support vector machines. Technical report, National Taiwan University, 2003.
www.csie.ntu.edu.tw/˜cjlin/plattprob.ps.

K. M. Lin and C. J. Lin. A study on reduced support vector machines. IEEE Transactions on Neural
Networks, 14:1449–1459, 2003.

M. Opper and O. Winther. Gaussian processes and SVM: Mean field and leave-one-out. In Advances
in Large Margin Classifiers, pages 311–326. MIT Press, Cambridge, Massachussetts, 2000.

J. Platt. Probabilities for support vector machines. In Advances in Large Margin Classifiers. MIT
Press, Cambridge, Massachussetts, 1999.

C. E. Rasmussen and C. K. I. Wiiliams. Gaussian Processes for Machine Learning, MIT Press,
Cambridge, 2006.

R. Rifkin, G. Yeo, and T. Poggio. Regularized least squares classification. In Advances in Learning
Theory: Methods, Models and Applications, pages 131–154. VIOS Press, Amsterdam, Nedher-
lands, 2003.

M. Seeger. Cross validation optimization for structured Hessian kernel methods. Tech. Report, MPI
for Biological Cybernetics, Tübingen, Germany, May 2006.

A. Shashua and A. Levin. Ranking with large margin principle: Two approaches. In Advances in
Large Margin Classifiers, pages 937–944. MIT Press, Cambridge, Massachussetts, 2003.

V. Sindhwani, P. Niyogi and M. Belkin, Beyond the point cloud: from Transductive to Semi-
supervised Learning. ICML,2005.

I. Tsochantaridis, T. Hoffmann, T. Joachims and Y. Altun. Support Vector Machine learning for
interdependent and structured output spaces. ICML, 2004.

J. Weston and C. Watkins. Multi-class support vector machines. ESANN, 1999.

X. Wu and R. K. Srihari. Incorporating prior knowledge with weighted margin support vector
machines. KDD, 2004.

T. Zhang. Statistical behavior and consistency of classification methods based on convex risk mini-
mization. The Annals of Statistics, 32:56–85, 2004.

