
A Simple Approach to the Design of Site-Level Extractors
Using Domain-Centric Principles

Chong Long
Yahoo! Labs, Beijing

chongl@yahoo-inc.com

Xiubo Geng
Yahoo! Labs, Beijing

gengxb@yahoo-inc.com

Chang Xu
Chinese Academy of Sciences

nuaaxc@gmail.com
Sathiya Keerthi

Cloud and Information
Services Lab, Microsoft

keerthi@microsoft.com

ABSTRACT
We consider the problem of extracting, in a domain-centric fashion,
a given set of attributes from a large number of semi-structured
websites. Previous approaches [7, 5] to solve this problem are
based on page level inference. We propose a distinct new approach
that directly chooses attribute extractors for a site using a scoring
mechanism that is designed at the domain level via simple classi-
fication methods using a training set from a small number of sites.
To keep the number of candidate extractors in each site manage-
ably small we use two observations that hold in most domains: (a)
imprecise annotators can be used to identify a small set of candi-
date extractors for a few attributes (anchors); and (b) non-anchor
attributes lie in close proximity to the anchor attributes. Experi-
ments on three domains (Events, Books and Restaurants) show that
our approach is very effective in spite of its simplicity.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Knowledge Acquisition;
I.2.7 [Artificial Intelligence]: Natural Language Processing—Text
Analysis

General Terms
Algorithms

Keywords
Information Extraction, Text Mining

1. INTRODUCTION
The web is a great source which can be tapped to extract use-

ful data for driving applications. Nowadays even small websites
(e.g. websites of schools, libraries, museums) automatically gener-
ate their pages via scripts that load data from underlying databases.
Thus these pages are well formatted and in semi-structured form.
Still, it is a challenge to extract useful information from them since

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

that information resides in a small part of the pages, surrounded by
a lot of extraneous elements.

We are interested in domain-centric web extraction where we
choose a domain (e.g. Events, Books and Restaurants), define an at-
tribute schema of interest (see Table 1 for examples), provide some
domain knowledge (e.g. weak annotators for some attributes) and
use these to extract the attributes of entities, from websites associat-
ed with the domain. If we have extracted a large number of entities
from various sources, we can set up many useful web applications
such as book/restaurant aggregators, hyper-local event recommen-
dation service, etc. Consider the example of extracting attributes
associated with events happening in all schools in the United S-
tates. More than 100K schools in the United States have websites.
In domains such as this, it is not scalable to provide supervision
at the individual site level. Though there is a large body of litera-
ture in information extraction [4], very few works address the large
scale domain-centric extraction problem.

In this paper we propose a new and simple approach for large
scale domain-centric extraction. Like Dalvi et al. [3] we design
site-level extractors. However, instead of learning them simply and
solely from annotations, we employ an extractor scoring model that
uses various forms of domain knowledge and features to choose the
extractors. Like [7, 5] the parameters of this model are learnt using
domain level supervision. It is sufficient to have weak annotators
only for some key attributes called the anchor attributes. We make
the observation that, on web pages of the domain, the non-anchor
attributes are located close to the anchor attributes; this is used to
keep the number of candidate extractors small, thus making extrac-
tor inference efficient. In essence, our approach keeps the positive
properties of the two classes of existing methods while discarding
their negatives.

2. DOMAIN-CENTRIC EXTRACTION
We are interested in extraction approaches that are domain-centric,

where, we fix a domain d and aim to extract a specified set of at-
tributes (schema) about entities, from a large set of websites related
to the domain, e.g., if d is Events, then: an entity is one event; the
websites could be the set of all official websites of schools; the
attributes could be Date, Time, Title, Location and Description.

A complete solution of the domain-centric extraction problem
involves the following steps: discovering websites that contain in-
formation of interest, analyzing the websites to identify the correct
subset of pages to extract from, developing the extraction rules,
and integrating the gathered data from all websites into a single
database. In this paper we are interested in the third problem of

Table 1: Examples of domains and their attributes. The anchor attributes (see Section 6) are marked in boldface.

Domain Attributes
Events Title, Date, Time, Location, Description
Books Name, Price, ISBN10 (10 digits), ISBN13 (13 digits), Date, NumberOfPages, Description

Restaurants Name, Address, Phone, Timing, Review, Description

developing the extraction rules. Since the number of websites is
usually large (e.g. the number of Schools websites in the United
States is more than 100K), supervision at the site level is not feasi-
ble. Thus, we focus on approaches that use supervision only at the
domain level; this supervision consists of specifying weak/noisy
annotators for a few (anchor) attributes (details in Section 3) and a
small training set of correctly extracted data from a small number
of websites.

Two good methods based on Hierarchical CRF [7] and Markov
Logic Networks [5, 6] have been proposed in the literature for solv-
ing this extraction problem. Our approach is simpler and quite dis-
tinct from these. To clearly explain our approach and bring out the
differences between these methods let us introduce some notations.
Let A denote the set of attributes of interest in domain d. Let S be
the set of websites for domain d from which extraction needs to be
done. Since we will discuss extraction related to only one domain
d, hereafter we will not explicitly mention the dependence of vari-
ous terms on d. Let Ps be a representative set of web pages from a
website s ∈ S.

To keep the discussion simple, we restrict ourselves only to ex-
traction from detail pages in this paper. Here a Detail Page con-
tains information about only one entity (e.g. an event). The related
works mentioned above [7, 5] also deal with detail pages and so
this restriction facilitates comparison. Also, the ideas developed
for detail pages can be easily extended to the other formats. For
example, unsupervised methods [1] can be used first to get records
from a list; then each record can be viewed as a detail page and
attributes can be extracted using the method developed for detail
pages. Given that we work only with detail pages, we can make the
following assumption.

Assumption 1. Each attribute occurs at most once on each page.
For example, a detail page about a restaurant has only one name
and address.

Each page p ∈ Ps has an associated html dom tree. (We can also
overlay a visual tree and use signals from it.) The leaf nodes of
this tree contain the actual contents of the page, and they define a
sequence. This sequence information allows us to define a distance
measure between leaf nodes, which we will use later in Section 6.
A second assumption that commonly holds is the following.

Assumption 2. Each attribute occurs within a single leaf node.
Sometimes this assumption is violated. For example, the De-

scription attribute tends to occur in several consecutive paragraphs,
which are different leaf nodes. But this can be easily handled by do-
ing a pre-processing to analyze the dom tree and combining several
such leaf nodes into a single leaf node, thus causing assumption 2
to hold. Let Lp be the set of leaf nodes after such a pre-processing.
The extraction problem is to find, for each page p and each a ∈ A,
a node in Lp that lodges attribute a.

3. GRAPHICAL MODELS APPROACH
The extraction problem stated above can be rewritten as a prob-

lem of labeling all nodes in Lp as follows. Let us include an extra
attribute called Irrelevant in A to label nodes which have nothing

to do with the attributes in A. Let Ã = A ∪ {Irrelevant}. Let y
denote a labeling of all nodes in page p with labels from Ã while
obeying assumptions 1 and 2. Let Yp be the set of all possible y
for page p.

Let f(y, p) be a feature vector associated with y and p. This fea-
ture vector contains features based on content (word features, or-
thographic features, and dictionary-based features), proximity (e.g.
a feature that checks if two attributes are located nearby in the n-
ode sequence), precedence (e.g. a feature that checks if an attribute
occurs after another attribute in the node sequence) and alignmen-
t (e.g. a feature that checks if the same attribute is located in the
same position in two different pages). A weight wi is associated
with feature fi(y, p) to form the total score w · f(y, p) where w is
the weight vector containing the wi’s.

Inference is done using the score of (y, p):

y∗(p) = arg max
y∈Yp

w · f(y, p) (1)

The features in f can be viewed as factors defined on a graphi-
cal model involving y. Then, (1) becomes the Viterbi computation
associated with that graphical model. Depending on the type of
cliques that get formed (for example, whether the factors connect
only local labels or not), this inference computation can be easy or
hard. In Hierarchical CRF [7], complex factors that connect dis-
tant labels are avoided so as to keep the inference computationally
tractable. But, Satpal et al. [5] show that using complex factors
significantly lifts the performance of Hierarchical CRF. Note, how-
ever, that this gain in performance comes at the expense of much
more complex inference in the method of Satpal et al. [5]. Thus
the graphical model approach involves a balance between improved
performance and complexity of inference.

Learning of w is done by using a training set {(pi,yi)} and
minimizing the training objective function:

min
w

R(w) +
∑
i

L(w, pi,yi) (2)

whereR(w) is a regularizer (e.g. the L2 regularizer, ∥w∥2/(2σ2))
and L(w, pi,yi) is either the negative log-likelihood of yi given by
the model, or a loss function based on the large margin principle.
When the underlying graphical model is complex, the solution of
(2) is also complex; Satpal et al. [5] employ a MIRA type algorith-
m [2].

4. OUR APPROACH
Our approach is rooted on the following three key observations.
(O1) There exist good site-level extractors for the attributes.
(O2) By utilizing domain knowledge it is possible to generate

a manageably small set of candidate site-level extractors that con-
tains good site-level extractors in it.

(O3) A domain-centric scoring model can be used to choose the
best site-level extractor from the candidate extractors generated for
each site.

O1 makes sense because, even in a small site such as a School
website, web pages are automatically generated using a script that

takes inputs from a database. Thus all detail pages tend to have the
same format and so excellent site-level extractors (such as xpaths)
exist. We will take up O2 in Section 6. Like in the graphical model
approach, O3 is reasonable since signals based on content, prox-
imity, precedence, alignment, etc. tend to be uniform across sites
associated with a given domain.

Let e denote a site-level extractor; e consists of a collection of
{ea}a∈A where each ea is the extractor associated with attribute
a. It is possible that the extractors for the various attributes could
be dependent on each other. We will define e precisely in Section
6; for now it suffices to say that e can be applied on all pages in
a site to extract the attributes. Let Es denote the set of candidate
site-level extractors for site s. Given a site-level extractor e, let
f(e, Ps) denote a vector of site-level features for e derived from
the representative set of pages, Ps. Like in the graphical model
approach, the features are based on content, proximity, precedence,
alignment etc. The key difference is that, here we derive site-level
features by aggregating statistics over Ps, whereas the graphical
model approach uses features at the page level.

Inference (choosing a site-level extractor) can be defined by as-
sociating a weight vector w with f and using

e∗(s) = arg max
e∈Es

ψ(w, e, Ps) = w · f(e, Ps) (3)

Learning of w can be done in several ways. It turns out that learn-
ing is much simpler for our approach. See Section 6 for details.

5. PARAMETER LEARNING
Let us now consider the learning of the parameter vector w used

in (3). The training set for our approach consists of a set of triples,
{(ej , sj , Psj)} where ej is the true extractor associated with site
sj . This training set is of a different type than the one used by the
graphical model approach: the former specifies site-level extractors
while the latter specifies page level extractions. In our approach,
each site chosen for providing supervision seems to give just one
training example. But note that, each training example also has a
representative page set Ps, which is used for forming the feature
vector f(e, Ps). We can work with different representative subsets
of pages Ps within a site s to generate more training examples. A-
part from providing more training examples, such a generation also
gives the ability for the extractor design to be robust to operation
with a subset of the pages in a site instead of all pages in a site,
during inference.

There are several possibilities for setting up the learning model
to find w.

The first idea is to use the scoring function ψ(w, e, Ps) to define
a multi-class model over the set of candidate extractors Es. This
leads to the training problem

min
w

R(w) +
∑
j

L(w, ej , Psj) (4)

where R(w) is the regularizer (like in (2)) and L is a suitable loss
function. For example, in the case of the large margin (SVM) ap-
proach, L is given by

L(w, ej , Psj) = max
e∈Esj

ψ(w, e, Psj)−ψ(w, ej , Psj)+∆(e, ej)

where ∆(e, ej) is a non-negative function that is zero only when
e = ej . One could also use a multinomial probabilistic loss in-
stead.

A second and simpler idea is to set up a binary classification
problem in which ej is treated as a positive example and each
e ∈ Esj , e ̸= ej is treated as a negative example. This creates

imbalance, but it can be handled easily by down-weighting the loss
associated with each negative example by the factor 1/(|Esj |−1).
We will refer to this method as the Classifier Method.

Another effective method is to use ranking/ preference learning
in which the true extractor esj is paired with every other extractor
e ∈ Esj and, in the training formulation ψ(w, ej , Psj) is pres-
sured to be higher than ψ(w, e, Psj). A variant of this method is
to form groups of extractors (excellent, good, fair, bad, etc.) and
use only pairs of extractors between groups. We will refer to this
method as the Ranking Method.

6. GENERATION OF CANDIDATE EXTRAC-
TORS

The feasibility of the approach that we described in section 4
depends on the ability to generate, for each site s, a manageably
small set of candidate site-level extractors, Es that contains good
extractors in it. In this section we point out one such generation
method which is effective on many domains. This method is found-
ed on the observation that, on many domains, there exist some eas-
ily recallable attributes (anchors) for which candidate extractors
are easy to form and, the remaining attributes are located in close
proximity to the anchors. Thus, we divide the attribute set A into
two parts: Anchor attributes are those for which it is possible to
form annotators with decent precision (P) and recall (R); the re-
maining attributes are Non-Anchor attributes. Note that precision
P can be less than 1, and so annotations are allowed to be noisy.

Annotators for the anchor attributes are typically based on one
of the following: regexes (e.g. date, phone number), dictionaries
(e.g. states), language models/classifiers (e.g. title, description, re-
view). Most domains have a few anchor attributes that can be easily
identifiable. Table 1 shows in boldface the anchor attributes asso-
ciated with the three domains, Events, Books and Restaurants. As
mentioned above, the annotators can be noisy; thus, for example, if
we take a regex for date and apply it to all detail pages containing
events, it will also mark date occurrences other than the true event
dates.

Let us now see how the annotators can be used to form extrac-
tors for the anchor attributes. We represent the site-level extractors
for anchor attributes as xpaths. For a given site and each anchor
attribute we choose a candidate set of (site-level) xpaths as follows.

Algorithm 1 Choosing candidate xpaths for anchor attribute a in
site s
1: Use the annotator for attribute a to find all occurrences (leaf

nodes) on pages in Ps.
2: Make a list of all xpaths that correspond to these nodes. Dalvi

et al. [3] give an algorithm for getting this list of xpaths.
3: Choose only those xpaths with #occurrences ≥ τ |Ps|.

Here τ is a fraction threshold that is set at the domain level; it
could be set differently for different attributes depending on the
quality of the annotators. If τ is too big, good xpaths may fail to get
selected. On the other hand, if τ is too small, many useless xpaths
can get selected which will affect the efficiency of our approach.
We now provide a rough analysis to help set τ and understand what
is needed on the quality of annotators.

Take one anchor attribute. Let n+ be the number of pages in Ps

that are detail pages of interest. It can be written as n+ = ρ|Ps|
where the fraction ρ typically varies from 0.2 to 1 depending on the
site s and how Ps is formed.

Typically, each attribute has a unique xpath associated with the
detail pages of site s; this is the true xpath of interest to us. By

assumption 1 (see section 2), n+ is the maximum number of oc-
currences of the attribute in site Ps; assuming that the attribute is
rarely missing in a detail page we can take n+ as the number of
occurrences associated with the true xpath. The number of correct
annotations, ncorrect is given by Rn+ = Rρ|Ps|. To make sure
that the desired true xpath for the attribute gets chosen by algorith-
m 1, we require ncorrect ≥ τ |Ps|. This translates to the condition
τ ≤ Rρ. Using domain knowledge on R and ρ we can set τ suit-
ably.

Though precision P of the annotators does not enter in the above
analysis of τ , it plays a role in keeping the number of xpath candi-
dates chosen by algorithm 1 to be small. Even with a precision of
just 0.5, we typically find that the number of xpath candidates cho-
sen by algorithm 1 is just a few, say about 2. This is because, wrong
annotations tend to occur non-systematically on different pages and
so the number of occurrences associated with their xpaths tend to
be very small, thus getting discarded by algorithm 1.

Let us say we have chosen extractors (xpath candidates) for each
anchor attribute. If all the attributes are anchor attributes, then the
set of candidate extractors is the cross product of the sets of xpaths
of the attributes. In case there is one or more non-anchor attributes,
we choose extractors for these attributes utilizing the property that
they occur in close proximity to anchor attributes.

One way of setting up the extractor for a non-anchor attribute
is by attaching it with one anchor attribute and requiring that the
non-anchor attribute is located at an (integer) offset δ from the an-
chor attribute occurrence determined by its xpath. Here, offset is
defined as the forward (positive) or backward (negative) distance
from the anchor attribute node on the sequence formed by the html
leaf nodes. Most times domain knowledge tells us which anchor at-
tribute to base a non-anchor attribute on. For example, in the Event
domain, Title, Location and Description tend to occur within an ab-
solute offset of 5 from Date. Thus we can select a window size µ
(set at the domain level, e.g. µ = 5) and, for each non-anchor at-
tribute, consider all offsets δ satisfying −µ ≤ δ ≤ µ. If available,
we may also use domain knowledge on attribute ordering (e.g. De-
scription always occurs after Date) to consider only offsets on one
side (+ or -) of the associated anchor attribute.

If we don’t have clear domain knowledge as to which anchor at-
tribute to base a non-anchor attribute on, then we can connect that
non-anchor attribute to each anchor attribute and consider all result-
ing offsets as candidates. Each (anchor_xpath, offset) combination
defines an extractor for a non-anchor attribute. If ma (mna) is the
number of anchor (non-anchor) attributes and nxpath is the maxi-
mum number of xpaths for each anchor attribute, then the size of
the candidate extractor set can be bounded as follows:

|Es| ≤

 (nxpath)
ma(2µ+ 1)mna if base anchor

is clear
(nxpath)

ma(ma(2µ+ 1))mna else
(5)

For the event domain, ma = 2, mna = 3 and we find the fol-
lowing values to work well: µ = 7, nxpath = 2. The size of the
candidate extractor set is at most 13,500 to 108,000. With prece-
dence knowledge these numbers decrease by a factor of eight. Use
of other forms of domain knowledge can bring down the numbers
even further. Also, with code optimization the score computation
associated with different extractors can be made very fast.

7. EXPERIMENTS

7.1 Datasets
We use datasets from three domains: Events, Books and Restau-

rants. The Events dataset was formed by collecting event detail

90%

100%

80%

60%

70%

g
e

40%

50%

C
o
v
e
ra
g

mean

title

location

30%

40% location

description

10%

20%

0%

0 5 10 15

Window Size

Figure 1: Events: Coverage of non-anchors for different win-
dow sizes

pages from 247 sites having Events information such as schools,
libraries, city halls and museums. Each site has at least 3 labeled
detail pages, totally 1292 pages were labeled. This dataset is used
to do basic experiments about our method. Ten fold cross validation
(at the site level) is used to form the train/test data for comparing
classifier and ranking models.

The Books and Restaurants datasets are exactly the ones used in
Satpal et al. [5]; these datasets are used to compare our approach
with methods based on graphical models. Books dataset has 5 web-
sites and 3437 labeled pages; Restaurants dataset has 4 websites
and 885 labeled pages. Given the small numbers of sites but large
number of labeled pages for each site in these two datasets, we do
the following two steps. (1) To increase training sites, we split each
Book or Restaurant site into multiple sub-sites. Each Book sub-site
has 46 detail pages on average and each Restaurant sub-site has 12
detail pages on average. After this process, 5 Book sites turn into 74
sub-sites and 4 Restaurant sites become 75 sub-sites; (2) the leave-
one-out validation approach has been used for comparing methods;
thus, each time one of the 5 original Book websites (or one of the 4
original Restaurant sites) is excluded as the test set.

7.2 Features
For the experiment on the comparison with other extraction meth-

ods involving Books and Restaurants datasets, we implemented ex-
actly the same features as Satpal et al. [5] in Books and Restaurants
domains. Details of these features can be found in that reference.

Let us now describe the features implemented in experiments
on the Events domain. It is useful to describe these features since
selection of good features is crucial for getting good performance
in any domain.

The following features are based on page-level properties. Even
though we only mention the page-level properties, when forming
features at the site-level we aggregate these properties, e.g. the
average value of a quantity over all pages in the site. The page-
level features are similar to those page-level extraction approaches.
Three of them are (1) Binary attributes that show whether a date
segment matches with a date, time or location entity; (2) Average
length range of a title or description; (3) Context feature. Some
contextual words indicate the label of the segments, e.g. "Location:
city hall".

The following properties are direct site-level aggregated features.
(1) Pages extracted. The number of pages extracted. It is normal-

Table 2: Comparison of various learning algorithms
Method Events Books Restaurants

Linear Regression 71.8% 91.3% 90.2%
Neural Network 67.3% 94.8% 92.7%

SVM Classification 57.0% - -
SVM Ranking 82.8% 93.0% 91.1%

Table 3: Comparison of various methods
Method Books Restaurants

MLN (MWS) 64.4% 68.7%
MLN (IHI) 88.4% 90.1%

Hierarchical CRF 60.0% 59.0%
Our Method 94.8% 92.7%

ized by the number of pages under this site; (2) Items extracted.
The average number of items extracted per page under a site. It is
normalized by the number of extracted pages; (3) Exceptions rate.
Here "exceptions" refers to out-of-bound occurrences. For exam-
ple, suppose Date exists on the top (the first segment) (call this
position DatePos) and there is no segment in the position DatePos-
7, then for offset −7 there is an exception; (4) Content variance. It
takes low value whenever the text contents of the nodes are similar.
This feature is useful since we expect non-static content across dif-
ferent records for a given attribute; (5) Xpath feature. It takes high
value whenever the same types of attribute nodes share the same
xpath, and low value otherwise.

7.3 Verification of two properties
A key property assumed by our approach is that the non-anchor

attributes lie in close proximity to the xpaths chosen for the anchor
attributes. We want to check if a chosen window size µ (see the
discussion around (5)) covers all the non-anchor attributes. Figure
2 shows, for Events, the variation of the coverage of attributes as
a function of the window size, µ. From this figure we can see
that window size of 7 covers more than 90% of occurrences for
attributes Title and Location and more than 80% for Description.
In our implementation we use 7 as the default window size as a
good balance between coverage and efficiency.

A necessary property for our approach is that the attributes are
ordered consistently within each site. For Events, we evaluated the
consistency with the majority order in websites. The order consis-
tency percentage (ocp) for a site is computed as the average, over
all pairs of attributes, of the percentage of web pages in the site
consistent with the majority order for an attribute pair. 82.4% of
websites have perfect attribute order and an additional 11.5% have
70%≤ocp<100%; this is an indication of how well this property
holds in domains.

7.4 Comparison of learning models
We compared different learning models on three domains: Events,

Books and Restaurants. First consider “Events" column of Table 2
(from the second line to the end) for the results on the Events do-
main. Average F1-scores on features (see Table 1) are listed. There
are the results of LR, NN, SVM classification and SVM ranking us-
ing full enumeration of the candidate wrappers. The SVM ranking
model has the highest average F1 score. The SVM classification
method gives relatively less accuracy. In general we found that,
with SVMs, the classification method is not competitive to SVM
ranking. Therefore, for the Books and Restaurants domains we do
not provide the results of SVM classification. Books and Restau-
rants columns give the results on these two domains, respectively.

Different from Events domain, LR, NN and SVM ranking all give
similar good results. The results of MN are slightly better than
the other two. As described in the description of datasets in Sec-
tion 8.1, each Events website has (1292/247=) 5.2 detail pages on
average, but each Books site has (3437/74=) 46.4 pages and each
Restaurants site has (885/75=)11.8 pages. We can see from these
numbers that there are much less annotated detail pages on each
Events site. The SVM ranking model gives stable good perfor-
mance irrespective of whether a site has enough annotated pages
or not. On the other hand, LR and MN perform better when the
number of annotated pages per site is sufficiently large.

7.5 Comparison with graphical model meth-
ods

We compare our approach (Neural Network model) with the graph-
ical model based methods: the MLN method of Satpal et al. [5] and
the Hierarchical CRF method of Zhu et al. [7]. We obtained Books
and Restaurants datasets from the authors of Satpal et al. [5] and
used exactly the same features as used by them, for our approach.
Satpal et al. [5] implemented two inference schemes: a generic
MaxWalkSat (MWS) scheme and an improved heuristic inference
(IHI) scheme; they also implemented and compared their method
with Hierarchical CRF on these datasets. Given the identical e-
valuation scenario, we directly borrow the results for the graphical
model methods from Satpal et al. [5] and compare them with those
of our method; see Table 3. Looking at the Average-F1 values it is
clear that Hierarchical CRF does not do well; this is mainly due to
the lack of complex factors connecting distant labels. With com-
plex factors MLN performs very well; from a comparison of MLN
(MWS) and MLN (IHI) it is clear that careful inference is crucial
for MLN to perform well. Our method outperforms these state-of-
the-art methods at the Average-F1 value.

8. CONCLUSION
In this paper we have given a new approach to large scale domain-

centric extraction. This approach directly chooses attribute extrac-
tors for a site, using a scoring mechanism that is designed at the
domain level via simple classification methods. Experiments on
three domains show that our approach is competitive with complex,
graphical models based approaches, while being a lot simpler.

9. REFERENCES
[1] M. Alvarez, A. Pan, J. Raposo, F. Bellas and F. Cacheda.

Using clustering and edit distance techniques for automatic
web data extraction. In WISE, 2007.

[2] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz and
Y. Singer, Online passive-aggressive algorithms. JMLR, vol
7, pp. 551-585, 2006.

[3] N. Dalvi, R. Kumar and M. Soliman, Automatic wrappers
for large scale web extraction. Proceedings of the VLDB
Endowment, vol 4, issue 4, pp. 219-230, January 2011.

[4] S. Sarawagi, Information extraction. Foundations and trends
in databases, vol 1, pp. 261-377, 2008.

[5] S. Satpal, S. Bhadra, S. Sundararajan, R. Rastogi and P. Sen,
Web information extraction using Markov logic networks. In
KDD 2011.

[6] J. M. Yang, R. Cai, Y. Wang, J. Zhu, L. Zhang and W. Y. Ma,
Incorporating site-level knowledge to extract structured data
from web forums. In WWW, 2009.

[7] J. Zhu, Z. Nie, J. Wen, B. Zhang and J. Wen, Simultaneous
record detection and attribute labeling in web data extraction.
In KDD 2006.

