Predictive Approaches For Sparse Gaussian Process
Regression

S. Sundararajan SSRAJAN@QYAHOO-INC.COM
Yahoo! India R € D
Bangalore, India

S. Sathiya Keerthi SELVARAK@QYAHOO-INC.COM
Yahoo! Research Labs
Santa Clara, CA, USA

Shirish Shevade SHIRISHQCSA.IISC.ERNET.IN
Computer Science and Automation

Indian Institute of Science

Bangalore, India

Editor:

Abstract

We propose and study algorithms using leave-one-out cross validation (LOO-CV) based
predictive measures namely, LOO-CV error (LOO-CVE), Geisser’s surrogate Predictive
Probability (GPP) and Predictive Mean Squared Error (GPE) to select basis vectors for
building sparse Gaussian process regression models. While the LOO-CVE measure uses
only predictive mean information, the GPP and GPE measures use predictive variance in-
formation as well. All of these three LOO-CV based predictive measures can be used to find
the number of basis vectors in the model automatically. The computational complexities
of these measures are same as that of marginal likelihood and approximate log posterior
probability maximization approaches. We also give an efficient cache implementation for all
the algorithms which gives similar or better generalization performance with lesser number
of basis vectors. The experimental results on several real world benchmark datasets show
better or comparable generalization performance over existing approaches.

Keywords: Sparse models, Gaussian process regression, Cross validation

1. Introduction

Gaussian process (GP) regression models are flexible, powerful, and easy to implement prob-
abilistic models that can be used to solve regression problems in many areas of application
(Rasmussen and Williams, 2006). While GPs exhibit state of the art performance, they suf-
fer from a high computational cost of O(n?) for learning from n samples; further, predictive
mean and variance computation on each sample cost O(n) and O(n?) respectively (Can-
dela and Rasmussen, 2005a). The high computational cost limits direct implementation
of GPs to problems with few thousands of samples. There have been several approaches
proposed to address this concern and build sparse approximate GP models. Gibbs and
MacKay (1997) and Williams and Seeger (2001) used matrix approximations to reduce the
computational cost. Tresp (2000) introduced Bayesian committee machine. Csato and Op-

(©2007 S. Sundararajan, S. Sathiya Keerthi and Shirish Shevade.

per (2002) developed an online algorithm to maintain a sparse representation of the GP
model. Smola and Bartlett (2001) proposed a forward basis vector selection method that
maximizes approximate log posterior probability for building sparse GP models. Other
selection methods include entropy and information gain based score optimization (Seeger,
2003; Lawrence et al., 2003; Seeger et al., 2003), marginal likelihood maximization (Candela
and Rasmussen, 2005a) and kernel matching pursuit (Keerthi and Chu, 2005). Snelson and
Ghahramani (2006) proposed to use pseudo-inputs to build sparse GP models. It is also
interesting to note that relevance vector machine and subset of regressors can be thought
of as sparse linear approximations to GPs (Tipping, 2001; Wahba et al., 1999).

In general, all sparse GP methods aim at selecting an informative set of basis vectors for
the predictive model. Due to memory and computational constraints, the number of basis
vectors in the model is usually limited by a user defined parameter d,,q;. With n > dp4z,
the sparse GP models have reduced training computational complexity of O(nd2,,,); the
reduced prediction complexity is O(dq) and O(d2,,,) to compute the predictive mean
and variance respectively. Considering the various sparse approximations that have been
studied, Candela and Rasmussen (2005b) brought in a unifying view of sparse approximate
GP regression that includes all existing proper probabilistic sparse approximations.

We note that none of the approaches mentioned above estimate predictive ability of
the model directly. CV based predictive measures have been successfully used in model
selection in various contexts (Cawley and Talbot, 2004; Geisser, 1975; Geisser and Eddy,
1979; Stone, 1974; Sundararajan and Keerthi, 2001; Wahba et al., 1999). Hong, Chen,
and Harris (2006) combined orthogonal forward selection and a LOO-CV based measure
to design sparse linear kernel classifiers with Gaussian kernels. Cawley and Talbot (2004)
designed a LOO-CVE based sparse least squares support vector machine.

The main contributions of this article are as follows. Borrowing ideas from the LOO-
CV and sparse GP literature, we propose and study algorithms using the LOO-CV based
predictive measures to select basis vectors for building sparse GP regression (SGPR) models.
In this context, we consider the LOO-CV error (LOO-CVE), Geisser’s surrogate Predictive
Probability (GPP) and Predictive Mean Squared Error (GPE) measures. These measures
are quite generic and mesh well with the unifying view on SGPR presented by Candela and
Rasmussen (2005b). The importance of these measures lies in the fact that they estimate
the predictive ability of the model and, the GPP and GPE measures make use of the
predictive variance information as well. The computational complexity is same as that
of the marginal likelihood (ML) and approximate log posterior probability maximization
approaches. Like the ML approach, the use of predictive measures has the advantage that
the number of basis vectors in the model can be automatically determined. We also give
an efficient cache implementation for all the algorithms. This implementation allows one
to select the basis vectors from a larger set of candidate basis vectors and gives similar or
better generalization performance with lesser number of basis vectors. In our algorithm,
hyperparameters are selected by maximizing the marginal likelihood instead of minimizing
one of the predictive measures. This is done to achieve computational efficiency in the
presence of many hyperparameters and is found to be effective. The experimental results
on several benchmark datasets show better or comparable generalization performance over
the existing approaches.

This paper is organized as follows. We give a brief introduction to the SGPR and
related work in Section 2. In Section 3, we define the LOO-CV based predictive measures
and illustrate their use for a given predictive distribution. Various efficient implementation
aspects and the main algorithm are given in Section 4. Section 5 discusses the behaviors
of the proposed algorithms with the predictive measures. In Section 6, we present the
experimental results and conclude with Section 7.

2. Sparse GP Regression

In regression problems, we are given a training data set composed of n input-output pairs
(x;,7;) where x; € RP, y; € R, i € T and I = {1,2,...,n}. The true function value
at x; is represented as a latent variable f(x;) and the target y;(= f(x;) + €;) is a noisy
measurement of f(x;). The goal is to compute the predictive distribution of the function
values f, (or noisy y,) at test location x,. In standard GPs for regression (Rasmussen and
Williams, 2006), the latent variables f(x;) are modelled as random variables in a zero mean
GP indexed by {x;}. The prior distribution of {f(X,,)} is a zero mean multivariate joint
Gaussian, denoted as p(f) = N(0,Kg¢), where f = [f(x1),...,f(xn)]", Xn = [X1,...,Xn]
and Kg ¢ is the nxn covariance matrix whose (4, j)!* element is k(x;,x;) and is often denoted
as K; ;. One of the most commonly used covariance function is the squared exponential
covariance function given by: cov(f(x;), f(x;)) = k(xi,x;) = Boerp(—3 Z,?Zl W)
Here, [y represents signal variance and the f;’s represent width parameters across different
input dimensions. These parameters are also known as automatic relevance determination
(ARD) hyperparameters. We call this covariance function as the ARD Gaussian kernel
function. Now, given the prior the likelihood is a model of additive measurement noise ¢;
i € I, which is modelled as p(y|f) = N(f,0%I), where y = [y1,...,yn]T and o is the noise
variance. These models with the hyperparameters 8 = [B,31,--.,p,0?] characterize the
GP model. These hyperparameters can be either estimated from the dataset, or can be
integrated out using Markov Chain Monte Carlo methods in full Bayesian solution. Using
standard Bayesian rule, inference is made for x, from the posterior predictive distribution:
p(fly) = N(Kig(Keg +0°D) 'y, K — K (K g +0°1) "Kg).

Candela and Rasmussen (2005b) noted that by approximating the joint prior p(f, f.) to
q(f, fx) = [q(f|u)g(flu)p(u)du with additional assumptions about the two approximate
inducing conditionals ¢(f|u) and ¢(f.|u) almost all probabilistic sparse GP approximations
are obtained with exact inference. Here u denotes an additional set of m latent variables
u = [ug,...,un]’ which are called inducing variables; these latent variables are values of
GP like f, corresponding to a set of input locations Xy, referred to as inducing inputs and
are commonly known as basis vectors or active set. In the context of predictive approaches
we are mainly interested in the resultant posterior predictive distributions corresponding to
these approximations and we give some of them that are useful for our discussion below.

A likelihood approximation proposed by Snelson and Ghahramani (2006) which is
termed as the Fully Independent Training Conditional (FITC) approximation (Candela and
Rasmussen, 2005b) results in the posterior predictive distribution:

grire(fly, Xu,0) = N(f(z.),02) (1)

where the predictive mean and variance are given by f (z«) = Kiuo and o = K. .—
Qi + KiuZKyy. Here a = TKyfA 'y and & = (KufA'Key + Kyu)™' and
A = diag[Kesr — Qgg + o?1]; further Q.. and Qg ¢ are defined with the convention
Qup = Ka,uK;}uKu,b. We note that the Deterministic Training Conditional (DTC)
approximation corresponding to the likelihood approximation proposed by Seeger, Williams,
and Lawrence (2003) and the subset of regressors (SoR) approximation (Silverman, 1985;
Wahba et al., 1999) result in similar expressions except that in the cases of DTC and SoR
approximations we have A = ¢°I; further in the case of SoR approximation the predictive
variance is only K, 3Ky .. Note that the posterior predictive distribution is dependent
on the inducing inputs Xy; therefore, the choice of Xy is very important in achieving good
generalization performance. Similar to the posterior predictive distributions, the marginal
likelihood can be obtained for the different effective priors and its negative logarithmic form
is given by: ¢(y|Xu,0) = %yT(Qf,f +A)ly+ %log\Qf,f + A|+ Zlog(2m). As earlier in the
cases of SoR and DTC approximations A = 1.

In sparse GPs the basis vectors are chosen from the training instances or test instances
in a transduction setup (Schwaighofer and Tresp, 2003) or as pseudo-inputs in a continuous
optimization setup (Snelson and Ghahramani, 2006). To reduce computational burden, the
basis vectors are selected in a greedy fashion with suitably defined measure. For example,
Smola and Bartlett (2001) proposed to select the basis vector that minimizes the nega-
tive logarithm of an approximate posterior probability (NLPP); Candela and Rasmussen
(2005a) suggested to minimize negative logarithm of marginal likelihood (NLML) with the
DTC approximation and made comparison with the NLPP algorithm. See also references
given in Section 1 for other approaches. None of these approaches measure the predictive
ability of the model directly. The GPP and GPE predictive measures take the predictive
variance information into account. Though entropy and information gain score criteria use
predictive variance (Seeger et al., 2003; Lawrence et al., 2003), they make approximations
which result in O(1) score computation per sample. Such approximations may affect the
generalization performance for a given number of basis vectors, as was observed in Keerthi
and Chu (2005). Further, they may result in more number of basis vectors for a given
generalization performance. In our approaches, we do not make any approximation in the
computation of predictive measures and this comes with additional cost. However, the com-
putational complexity is same as that of the ML and approximate log posterior probability
maximization approaches.

We note that the LOO-CV based predictive measures are quite generic in the sense
that they can be used to select the basis vectors irrespective of whether they are selected
from the training instances and/or the test instances in the transduction setup or optimized
as pseudo-inputs in the continuous optimization setup mentioned earlier. Nevertheless to
illustrate our approaches here we restrict our discussion to the selection of basis vectors
from the training inputs.

In the following sections, we give the LOO-CV based predictive measures and the algo-
rithms that we propose to build sparse GP regression models. For the purpose of comparison
we restrict to NLML and NLPP minimization algorithms only. This is because they have
similar computational complexity as that of the proposed algorithms.

3. LOO-CYV based predictive measures

Let q(y;|y—i, Xu, @) be the Gaussian posterior predictive distribution with mean fA_i(xi)
and variance o2 ;(x;). Here, y; denotes the i'® noisy measurement of f(x;) and y_; denote
the training set outputs with i*» sample removed. Note that we use y; for both the variable
and observed noisy sample leaving the context to explain its usage. Then, the LOO-CV
based predictive measures are defined as follows.

3.1 LOO-CYV Error

The LOO-CV error (LOO-CVE) is defined as the average squared error of the predictive
mean of the i"® sample with the predictive distribution q(y;|y_;, X4, @) obtained from leav-
ing out i*" sample. To be specific,

n

LOO ~ OVE(Xy,0) = > (41 — f(x))’ 2)
i=1

Note that though f_i(xi) is dependent on the inducing inputs X, and hyperparameters 6,
we have suppressed them for notational convenience.

3.2 Geisser’s surrogate measures

The negative logarithm of Geisser’s surrogate predictive probability (NLGPP) measure is
defined (Geisser, 1975; Sundararajan and Keerthi, 2001) as

1 n
NLGPP(Xy,0) = —Ezlog a(yily—i, Xu, 0)

i=1
and it can be written within some constant as

NLGPP(Xy,0) = %iw + log(o?,(xi)) (3)

On comparing (2) and (3), we see that the key difference is while the LOO-CVE takes
only the predictive mean into account, NLGPP takes the predictive variance also into ac-
count. Geisser’s surrogate predictive mean squared error (GPE) is defined (Sundararajan
and Keerthi, 2001) as GPE(X,,0) = 237 | E((y; — t;)?) where y; is the observed out-
put and ¢; is a random variable and the expectation operation is defined with respect to
q(tily—i; Xy, 80). Then the GPE measure can be written as

1 A
GPE(Xy,0) = — (yi — f-i(xi)* + 0%,(xi) (4)
=
Note that the first term is nothing but LOO-CVE and the second term comes from uncer-
tainty associated with the predictions. On comparing (3) and (4), we see that the predictive
variance in GPE is additive in nature compared to the NLGPP measure where the predictive

variance interacts in a nonlinear fashion.

3.3 Predictive measures with training inputs

The choice of training inputs as the inducing inputs is motivated by the fact that they are
often representative of the input distribution. While using the subset of training inputs as
the inducing inputs, a subtle point is that we may not be strictly leaving the (X, yu) pairs
in the LOO-CV measures given above; this is because the summation is defined over all
the samples. However, this is not a limitation since we are only using X, for the inducing
inputs and not using y, while predicting those outputs; also, we can afford to leave those
samples in the summation as we are working with a large number of samples and n > d,,45 -

Let us consider the FITC posterior predictive distribution (1). Then, the LOO predictive
mean f,i(xi) and variance o2 ,(x;) are given by: f,i(xi) = Ki,uE,iKu,,iAjy,i and
O'%Z-(Xi) = Kz’,i - Qz’,z’ + K,-,uZ,,-Ku,Z- where ¥ _; = (Ku,fiA:Zlei,u + Ku,u)_l and
Qii = KiuK;,Ku; Here, Ky _; is nothing but Ky ¢ with the ith column removed.
Similarly, A_; denotes A with i*® column and row removed. Note that in the case of
noisy sample, the predictive variance contains o? additionally. In the following sections
we consider (1) with A = o?I (that is, the DTC approximation); note that the FITC
predictive distribution (1) case can be extended in a straightforward way by considering

transformed set of matrices like A_%y and Ku,fA_%.

4. Implementation Aspects

For calculating the LOO-CV based predictive measures we need to find efficient ways of
computing f_;(x;) and 0% ,(x;) for all 4 € T given u; we also need to efficiently evaluate
the measure as we add a new basis vector to u. To do that, we take advantage of rank
one update and single basis vector addition to the matrices ¥ and K, 4. In practice,
working with Cholesky decomposition of these matrices provides both numerical stability
and computational advantages. We present here only the basic ideas; see appendix for
detailed derivations.

We first illustrate finding f,i(xi) for a given u. Using rank one update of 3 we have

yi — foi(xi;u) = %’EL;) where f(x;;u) = Kiua, @ = 0 2ZKysy and n;(u) =

07 2K; uXKy, (Cawley & Talbot, 2004; Hong et al., 2006). Therefore, given f (x;;u) and
ni(u) for all i € T the LOO-CV error computation has O(n) complexity. Note that with
some abuse of notation we have indicated explicit dependence on the inducing inputs X,,.
Now to select a basis vector based on the various predictive measures we need to compute
the LOO-CV error as we add a new basis vector. Let u; be an additional element added to
the set uand @; = (u ;). The key is to efficiently compute f(@;) and 5(@;) from f(u)
and 7(u) with incremental cost; as shown in the appendix these computations have O(nm)
complexity where m represents the number of basis vectors selected so far. Note that f (@)
and n(u;) represent the vectorized forms.

Next we discuss computation of the predictive variance. In the case of DTC approxima-
tion it can be shown that az_i(xi, u)prc = Ki; — Qi i(u) + #,2([1) Since n;(u) is already
computed we need to compute Q;;(u) = Ki,uKl_l}uKu,i additionally and this is needed only
for the NLGPP measure. Again the key is to efficiently compute Q; ;(u;) from Q;;(u); this

computation has O(nm) complexity. In the case of GPE, we need not explicitly compute

Qi i(0;); this is because it is enough to find Y 7 ; Q; (@) and can be computed efficiently
in O(m?) time.

The generic greedy selection algorithm used in the SGPR model learning is well-known
(Rasmussen and Williams, 2006). Note that the goal is to find the optimal set of ba-
sis vectors and hyperparameters; the algorithm interleaves basis vector set selection and
hyperparameter optimization and continues until a stopping criterion is met.

ALGORITHM

1. Initialize the hyperparameters 6.
2. Initialize X, = ¢, A = ¢, and R = {1,2,...,n}.

3. Create a working set J C R. Compute M (Xg,;,0) (one of the predictive measures
given in (2), (3) and (4)) forall j € J. | = Mfé”f" M(Xgy,,).

4. Set Xy + Xy U {x;}, A < A U {i} and R < R\ {l}. Initialize relevant variables
in the first iteration and update them in subsequent iterations.

5. Terminate the basis vector addition and go to step 6 if the measure starts increasing
or stops decreasing significantly or dnmq; basis vectors are added. Otherwise, go to
step 3.

6. Re-estimate the hyperparameters 6.

7. Terminate the algorithm if the stopping criterion (Seeger, 2003) is met. Otherwise,
go to step 2.

In step 3 of the algorithm due to resource constraints like memory and computational
cost requirements for choosing a basis vector, the algorithm maintains a set of candidate
basis vectors J of fixed size k; we refer to this set as working set. Smola and Bartlett (2001)
suggested to construct this working set in each iteration by randomly choosing elements
from the remaining set of training inputs R and set « to 59. In our cache implementation
apart from randomly chosen 59 candidate basis vectors we propose to retain some of the
members of the current working set in the cache. After sorting the working set members
according to the chosen measure the top basis vector is added to X, (step 4) and the next
deache basis vectors are kept in the cache. The cache implementation has the advantage
that we can choose basis vector from a larger working set subsequently. Then as shown in
the appendix, for each member in the cache necessary computations (that is, computing
mainly 7;(4;), Qs,i(@;) for all ¢ € I) can be done in an incremental fashion efficiently in
O(n) cost instead of O(nm).

In step 5 of the algorithm, we observed in our experiments that the predictive measures
start increasing beyond the addition of a certain number of basis vectors; we refer this
number as d,,¢. This happens as these measures estimate the predictive ability of different
models when the basis vectors are added sequentially and the predictive ability falls-off
when the model becomes more complex and starts fitting noise. Thus, the number of basis
vectors needed can be automatically determined. Since d,p,; is not known apriori the user

defined d, 4, can still be used if there are computational constraints and the algorithm can
be terminated if d;;,q, basis vectors are added and dya, < dopt-

In step 6 of the algorithm, ideally the complete LOO-CV based predictive approach
would select the hyperparameters (Sundararajan and Keerthi, 2001). However gradient
evaluation is expensive (O(nDm?)) in this approach when the ARD type hyperparameters
are used. Therefore we re-estimate the hyperparameters by maximizing the marginal like-
lihood (Candela and Rasmussen, 2005a). Though this approach is not optimal it is found
to be very effective in practice.

The worst case storage and computational complexities for the proposed algorithms are
O(ndyqz) and O(knd2,,,) respectively; additional memory of size O(ndegehe) and compu-
tational cost of O(ndcechedmaz) are needed for cache implementation. Note that the NLML
and NLPP algorithms have the same computational and storage complexities.

Next, we make following additional remarks.

1. In step 3 of the algorithm, the NLML and NLPP algorithms can also benefit from the
cache implementation with some additional memory as shown in the appendix. Next
note that it is not necessary to select dcqche basis vectors from the top; the reason
is, if some of these basis vectors are very close to the best chosen basis vector in the
current working set, then they will have measure values similar to that of the chosen
basis vector. Here, closeness is defined with reference to the kernel in the inducing
input space. However, as we include the chosen basis vector, these close basis vectors
are less likely to be at the top next time. This can possibly be avoided by introducing
an additional check (based on some distance measure) to select d.qche basis vectors;
but this comes with additional cost. In our experiments we did not use any additional
step; nevertheless, the simple approach mentioned above is very effective.

2. In step 6 of the algorithm, since the marginal likelihood function and gradient evalu-
ation cost O(nm? + nDm) (Candela and Rasmussen, 2005a) only short optimization
of hyperparameters is done in the interleaving optimization process. In cases where
the ARD type hyperparameters may not be needed it would be interesting to study
the performances with LOO-CV based predictive approaches for the hyperparameter
optimization as well.

3. The actual training time for the different algorithms depends on several other fac-
tors. This is because d,,; may not be same for the different algorithms. Further, even
though we use ML based optimization for the hyperparameters the different algo-
rithms need not converge at same hyperparameters and as a consequence depending
on the function surface in that region of hyperparameters, the number of function
and gradient evaluations needed in the hyperparameter optimization algorithm can
be different unless it is fixed.

4. The stopping criterion of the interleaving optimization iteration (step 7) is typically
based on changes in the measure values over the iterations; therefore, the number of
iterations needed for convergence can vary depending on the surface nature of the
different measures.

5. Though the proposed algorithms have the same computational and storage complexi-
ties as the NLML and NLPP algorithms, additional quantities like 7;(u), Q;;(u) and

some associated quantities have to be computed and stored. See the appendix for
more details.

5. Discussion

In this section we discuss the behaviors of algorithms using different measures as we add
the basis vectors in a greedy fashion. The behaviors on the Friedman3 dataset (Friedman,
1991) are given in Figure 1. The multiple lines indicate the behaviors for different values of
hyperparameters - as the optimization proceeds. Notice that after a certain number of basis
vectors are added, the measures start increasing. Like ML measure, the number of basis
vectors can be automatically selected with all the predictive measures. As pointed out by
Candela and Rasmussen (2005a), this may not be the case with the NLPP measure. The
point at which the chosen measure starts increasing is a useful point to stop the addition
of basis vector. As a measure may sometime have multiple minima it is useful to observe it
for a few more iterations and terminate only when it has increased significantly. The multi-
minima nature of the measure is mainly due to the greedy selection process and randomly
chosen elements with constrained working set size. The optimal number of basis vectors
shows some variation as we optimize over hyperparameters - but in most cases we observed
that the variation is only about 10%.

Among the LOO-CV based measures, the GPE measure minimization results in the
highest number of basis vectors. This can be explained with reference to the variance term
which is reduced as we add more basis vectors. Note that initially both the first term in (4)
(which is essentially LOO-CVE) and the second term (variance part) will start decreasing.
However, beyond a certain point the LOO-CVE term will start increasing; but, the variance
term will continue decreasing. Then, there can be an interval where the reduction in the
variance term is more compared to the increase in LOO-CVE. This results in an overall
decrease in GPE. But, beyond that point the increase in LOO-CVE dominates, resulting in
an overall increase in GPE. This explains why the use of the GPE measure results in more
number of basis vectors than the use of the LOO-CVE measure. If we compare it with the
NLGPP measure, the main difference comes from the way the variance term is utilized.
It is known that predictive density loss function (which is essentially NLGPP) penalizes
both over-confident and under-confident estimates. However, it penalizes over-confident
estimates more for a given error; therefore, it would go with under-confident estimates.
On the other hand, the GPE measure encourages over-confident estimates because of its
additive nature. Therefore, as the estimates become more and more over-confident with
increase in the number of basis vectors, the NLGPP measure will start penalizing them
more. This results in lesser number of basis vectors than those given by the GPE measure.
It is difficult to compare the NLML measure with the LOO-CV based measures in a similar
fashion.

6. Numerical Experiments

In this section, we study and compare the performances of the algorithms using predictive
measures presented in Section 3 with the algorithms using the NLML and NLPP measures
discussed in Section 2; we refer to these algorithms as LOO-CVE, NLGPP, GPE, NLML

0.3
0.25¢
=
.
2 3
z o)
)
0.2}
-50 - - - 0.15 - - -
50 100 150 200 50 100 150 200
Number of basis vectors Number of basis vectors
0.5
0.45¢
w
o
(O]
0.4¢
: : : 0.35 : : :
50 100 150 200 50 100 150 200
Number of basis vectors Number of basis vectors

Figure 1: Friedman3 dataset: The behaviors of algorithms using different measures as we
add basis vector and optimize hyperparameters in an interleaving fashion are
shown. The legend in the bottom-right plot holds for all the plots.

and NLPP algorithms. In the case of the NLPP algorithm we fixed the number of basis
vectors. To evaluate the generalization performance we use normalized mean squared error
(NMSE) (normalized with respect to the data variance) and the negative predictive density
loss (NPDL). We also report results from paired-t statistical significance test at a signifi-
cance level of 0.05. This test was conducted by comparing the algorithm that gives the best
average performance with the rest of the algorithms. If the test reveals that the results are
statistically significant, then the algorithm under comparison is highlighted with symbol *
and this implies that the average performance of this algorithm is inferior in statistical sense.
The experiments were conducted using eight datasets. The description of the datasets is
given in Table 1; here n, D, p and nr represent number of training samples, input dimension,
number of test samples and number of runs with different training/test sets respectively.
The Boston housing dataset was obtained from the StatLib archive'. For the Abalone
dataset? gender encoding (male/female/infant) was mapped into {(1,0,0), (0,1,0), (0,0,1)}.

1. http://lib.stat.cmu.edu/datasets/boston
2. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/abalone/

10

Table 1: Data sets description

Dataset n D P nr
Boston housing | 481 13 25 100
Abalone 3000 | 10 | 1177 | 20
bank8FM 4500 | 8 | 3692 | 20
cpusmall 4500 | 12 | 3692 20
cpuact 4500 | 21 | 3692 | 20
bank32NH 4500 | 32 | 3692 | 20
Friedman2 200 4 | 5000 | 100
Friedman3 200 4 5000 | 100

The last four datasets were obtained from another site®. The last two datasets were gener-
ated, as described by Friedman (1991). For all the experiments, we used the ARD Gaussian
kernel as defined in Section 2. We conducted three experiments. In the first experiment,
we fixed the hyperparameters by maximizing the marginal likelihood of full GP with only
a subset of the training samples and skipped steps 6 and 7 of the algorithm. In the cases of
Boston housing and Abalone datasets, we used 200 and 750 random samples respectively. In
the cases of bank8FM, cpusmall, cpuact and bank32NH datasets we used 1000 samples. In
the cases of Friedman2 and Friedman8 datasets we used 100 samples. In the second exper-
iment we included cache implementation and the working set size was set to 300 for all the
datasets except for the Friedman2 and Friedmand datasets; for these datasets the working
set size was set to 100. In the third experiment, we included hyperparameter optimization
with ML function and gradient evaluations of the sparse GP model.

The results from the first and second experiments with fixed hyperparameters are given
in Table 2 and Table 3. The average performances without cache over 20, 10 and 5 runs for
Boston housing, abalone and bank8FM datasets respectively are given in Figure 2; similarly
average over 5 runs for cpusmall, cpuact and bank32NH datasets and average over 20 runs
for Friedman?2 and Friedman3 datasets are given in Figure 3 and Figure 4 respectively. We
observed that the plots reflect the behavior in individual run as well.

From Figures 2-4 we see that the NLGPP algorithm gives excellent NPDL performance
and the NLGPP measure is highly correlated with the NPDL generalization measure; in
general, the GPE algorithm closely follows the NLGPP algorithm in the initial iterations
but the NLGPP algorithm outperforms as the iterations progress. In terms of NMSE
performance the NLGPP algorithm gives good performance only in the Abalone dataset and
it gives inferior performance on the Boston housing and Friedman2 datasets. In contrast,
the NLML, NLPP and LOO-CVE algorithms progress well in terms of NMSE performances
and they closely follow each other. It is interesting to see that the NPDL performance of
the LOO-CVE algorithm closely follows the NLML and NLPP algorithms in the beginning
and slowly makes transition to the GPE/NLGPP algorithm. The NMSE performance of the
GPE algorithm is better than the NLGPP algorithm in the Boston housing and Friedman2
datasets.

We see from the left half of Tables 2-3 that the NLGPP algorithm gives the best average
NPDL performance on six datasets; in five cases the results are statistically significant.
When the results are not statistically significant it achieves similar performance with lesser
number of basis vectors. In terms of NMSE performance it gives best average performance

3. http://www.liacc.up.pt/ ltorgo/Regression/DataSets.html

11

Table 2: Test results on the Boston housing, Abalone, bank8FM and cpusmall datasets (in
that order) - fixed hyperparameters: Mean and Standard deviation of performance
measures and number of basis vectors. In the case of Abalone dataset the NPDL
measure has a multiplication factor of 1072,

Without cache With cache
ALGORITHM | NMSE x 102 NPDL # BV NMSE x 10~2 NPDL # BV
NLPP 11.65 + 6.74 2.73 £0.70* 200 11.69 + 6.80 2.74+0.72* 200
NLML 11.73 &+ 6.73 2.76+0.72* 156.2 £17.2 12.02 £ 6.81 2.794+0.69* 131.1 £17.3
LOO-CVE 12.34 + 6.86 2.6410.54 117.1£19.2 13.33 £ 8.63 2.5940.50 107.4+£15.3
NLGPP 16.85 + 11.29* 2.53 + 0.32 107.4 + 15.4 16.88 + 11.14* 2.54 + 0.34 101.8 + 15.4
GPE 12.30 + 7.41 2.71 £ 0.67* 160.0 £ 12.8 12.20 £ 7.42 2.69 £+ 0.66* 150.1 + 13.2
NLPP 42.35 + 1.81 100.91 +1.34 200 42.36 + 1.82 100.93+1.33 200
NLML 42.44 £ 1.78 104.54+3.10* 47.9 +£11.0 42.38 + 1.91 107.47+4.23* 53.6 +16.9
LOO-CVE 42.28 + 1.87 101.71+2.16* 70.84+34.3 42.21 + 1.94 102.10+1.53* 65.4+19.1
NLGPP 42.27 + 1.91 100.33 + 1.31 78.4 £+ 26.4 42.17 4+ 1.90 100.17 £+ 1.21 79.1 £ 24.5
GPE 42.36 £+ 1.80 100.87 £+ 1.35 142.8 £+ 37.2 42.36 + 1.82 100.86 + 1.36 130.9 + 32.0
NLPP 3.62 £ 0.2 -2.14 +£0.01* 500 3.61 £+ 0.14 -2.14+0.02* 500
NLML 3.60 + 0.12 -2.15+0.01* 194.1 +£58.7 3.67 &+ 0.17* -2.15+0.01* 140.6 £20.1
LOO-CVE 3.69 £ 0.18* -2.15£0.01% 153.1+£34.8 3.56 + 0.09 -2.16£0.01* 151.8+34.2
NLGPP 3.70 + 0.18* -2.17 £+ 0.01 104.6 £+ 20.0 3.66 + 0.20* -2.17 + 0.02 99.9 + 19.2
GPE 3.56 + 0.14 -2.15 + 0.01* 259.5 + 44.5 3.60 £+ 0.11 -2.15 + 0.01* 238.2 + 54.3
NLPP 2.46 £+ 0.13 2.45 £0.02 500 2.49 £+ 0.16 2.461+0.03* 500
NLML 2.46 + 0.12 2.4540.02 359.7 £111.2 2.45 + 0.14 2.454+0.02* 318.8 +88.18
LOO-CVE 2.56 + 0.25 2.4540.02 265.31+68.2 2.55 £ 0.16 2.46+0.03* 249.9466.5
NLGPP 2.57 £ 0.13* 2.44 + 0.03 206.1 £+ 58.2 2.57 £ 0.17* 2.43 £ 0.02 202.1 £+ 59.8
GPE 2.55 + 0.17 2.45 + 0.03 363.6 £ 71.0 2.52 + 0.14 2.45 + 0.02* 330.2 + 67.2

only in the case of Abalone dataset. The NMSE performances of NLML, NLPP, LOO-
CVE and GPE algorithms are similar and the results are not statistically significant in five
cases. However, the LOO-CVE algorithm gives better average NPDL performance compared
to the NLML algorithm for Boston housing, Abalone, Friedman2 and bank32NH datasets;
further, it requires lesser number of basis vectors on bank8FM, cpusmall and cpuact datasets
where similar average performances are seen. Use of additional basis vectors in the NLPP
algorithm does not provide any clear advantage over other algorithms. Though the GPE
algorithm uses predictive variance information, it results in more number of basis vectors
(Section 5); but in general it does not provide any advantage over other algorithms.

Next we see from the right half of the Tables 2-3 that the NLGPP algorithm again gives
excellent average NPDL performance over all the datasets and the results are statistically
significant in six cases. Overall, the performances of all the algorithms with and without
cache are very similar on all the datasets but the important observation with all algorithms
(except the NLPP algorithm) and all the datasets is, the average number of basis vec-
tors used by all the algorithms is less compared to their respective results without cache
implementation except in only one case. Thus the experimental results demonstrate the
effectiveness of the cache implementation.

The results from the third experiment with hyperparameter optimization are given in
Tables 4-5. On comparing the results on Boston housing and Abalone datasets in the left half
of Table 2 and Table 4 we see improved generalization performances of all algorithms except
for minor variations in the NMSE performances on Abalone dataset. In some cases increase

12

x 10 x 10
0.02 \
® 0.015 Boston housing 06 Abalone 0 6 bank8FM
2 3 2
2 o001 s4 S 4
£ E E
2 0.005 22 22
. =
0 0 : 0
50 100 150 200 50 100 150 200 50 100 150 200 250 300
Number of basis vectors Number of basis vectors Number of basis vectors
0.2 0.44 0.084 — NLML
Boston housin Abalone — NLPP
0.18 9 0.435 0.042 — LOO-CVE
w w w NLGPP
€016 2 2 0.04 — GPE
z =4 =4
0.43
0.14 0.038 bank8FM
0.036
0.12 0.425
50 100 150 200 50 100 150 200 50 100 150 200 250 300
Number of basis vectors Number of basis vectors Number of basis vectors
3 1.1 -2.1
- Boston housingl 1.08 Abalone bank8FM
' -2.12
~ 1.06 -
228 2 g
Z 1.04 z
-2.14
27 1.02
2.6 1 -2.16
50 100 150 200 50 100 150 200 50 100 150 200 250 300
Number of basis vectors Number of basis vectors Number of basis vectors

Figure 2: The normalized measure values and generalization performances of different mea-
sures on Boston housing, Abalone and bank8FM datasets as we add basis vector
are shown. The legend in the middle-right plot holds for all the plots.

in the number of basis vectors is needed to improve the generalization performance. Due
to excess computational time needed with hyperparameter optimization we reduced n to
2048 from 4500 and increased p to 6144 samples for bank8FM and cpusmall datasets. Hence
these results are not directly comparable with those in Table 2. In general the NMSE
performances of all the algorithms are similar for large datasets and the results are not
statistically significant; this is not the case with the NPDL performance measure. As earlier
the NLGPP algorithm gives excellent NPDL performance. Also except for bank8FM dataset
its NMSE performance has improved significantly with hyperparameter optimization. On
comparing the results on Friedman2 and Friedman3 datasets in the left half of Table 3 and
Table 5 we see slight degradation in the performances of NLPP and NLML algorithms;
however, in the case of NLML algorithm this seems to be due to underfitting as the number
of basis vectors has come down. On the other hand, the performances of all LOO-CV
based algorithms have improved significantly with hyperparameter optimization and the
results are statistically significant. In general, overall improved performances of all LOO-CV
based algorithms on the different datasets demonstrate the effectiveness of hyperparameter

13

0.02 0.015 T T T T 0.6
© 0,015 cpusmall © cpuact © bank32NH
2 3 001 3 04
© © ©
[} (9] (9]
= 0.01 = =
£ £ £
5 5 0.005 5 0.2
zZ 0.005 z z
0 — 0 0
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
Number of basis vectors Number of basis vectors Number of basis vectors
0.04 T T T T T 0.025
0.54 :
nk32NH
0.035 cpusmall cpuact 052 bank3
w w w o
2 2 oo02 g
Z 0.03 = Z 05
0.48
0.025
0.015 0.46
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
Number of basis vectors Number of basis vectors Number of basis vectors
2.7 2.4
-08 — NLML
— NLPP
cpusmall 235 cpuact 0.9 — LOO-CVE
y 2.6 B B : NLGPP
o 2 23 2 4 — GPE
z z z bank32NH
25 ' _
205 1.1
-1.2
2.4 2.2
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
Number of basis vectors Number of basis vectors Number of basis vectors

Figure 3: The normalized measure values and generalization performances of different mea-
sures on cpusmall, cpuact and bank32NH datasets as we add basis vector are
shown. The legend in the bottom-right plot holds for all the plots.

estimation using marginal likelihood maximization interleaved with basis vector selection
using predictive approaches.

Finally we note that though the computational and storage complexities of all the algo-
rithms are similar the actual computational time and storage requirements of the proposed
algorithms are about 2 to 3 times higher than those of the NLML and NLPP algorithms.

7. Conclusion

In this paper we proposed LOO-CV predictive measures based basis vector selection algo-
rithms in building SGPR models. The computational complexities of these measures are
same as that of the NLML and NLPP algorithms. These measures estimate the predictive
ability of the model and they have the advantage that the number of basis vectors can be
found automatically. The GPP and GPE measures also take the predictive variance infor-
mation into account. We also gave an efficient cache implementation and the experiments
demonstrate its effectiveness by achieving similar performance with lesser number of basis
vectors. The NLGPP algorithm is very successful in achieving excellent NPDL performance

14

Table 3: Test results on the Friedman2, Friedmand3, bank32NH and cpuact datasets (in that
order) - fixed hyperparameters: Mean and Standard deviation of performance
measures and number of basis vectors.

Without cache With cache
ALGORITHM NMSE x 1072 NPDL # BV NMSE x 1072 NPDL # BV
NLPP 11.44 + 3.52 6.57 +0.16 75 11.45 + 3.58 6.57£0.16 75
NLML 11.85 + 3.76 6.794+0.23* 44.1 +13.6 11.95 + 3.74 6.8240.23* 42.0 £10.5
LOO-CVE 12.31 + 4.02 6.67+£0.17* 45.2+9.2 12.20 + 4.12 6.70+0.19* 44.3+8.5
NLGPP 14.13 + 7.21* 6.57 £ 0.18 56.2 = 13.3 14.54 + 7.74* 6.58 £ 0.17 54.4 £ 13.9
GPE 11.67 + 3.63 6.56 + 0.16 65.3 £ 13.5 11.80 £ 3.75 6.56 + 0.16 62.5 + 12.2
NLPP 12.14 + 1.39 0.71 +0.06 75 12.13 + 1.39 0.71+0.06 75
NLML 12.59 + 1.35 0.77+0.07* 47.9 +£13.4 12.64 £+ 1.41* 0.78+0.07* 46.6 £13.7
LOO-CVE 12.62 + 1.43* 0.754+0.06* 49.6+10.9 12.63 + 1.37* 0.7540.06* 44.3+8.5
NLGPP 12.77 + 1.44* 0.72 4+ 0.05* 53.1 £ 11.5 12.81 + 1.40* 0.73 £+ 0.05* 52.1 + 10.5
GPE 12.20 + 1.37 0.70 + 0.06 70.1 £ 13.0 12.20 £+ 1.39 0.70 £ 0.06 68.4 £ 11.9
NLPP 50.3 & 4.68 -1.11£0.03* 500 49.87 + 3.27 -1.09+0.02* 500
NLML 49.1 &+ 3.82 -1.11+0.02* 486.4 +56.3 50.14 £ 3.68 -1.08+0.02* 481.5 +66.8
LOO-CVE 47.69 £ 3.89 -1.194£0.03* 427.61+89.1 48.75 + 3.79 -1.19+0.03* 424.8+87.1
NLGPP 48.47 £+ 3.95 -1.25 +£ 0.04 | 479.4 4+ 47.65 49.18 £+ 3.74 -1.25 4+ 0.04 | 443.6 + 124.6
GPE 48.03 + 3.73 -1.16 + 0.02* 488.2 + 48.7 49.61 + 3.37 -1.14 + 0.03* 481.0 &+ 68.5
NLPP 1.59 + 0.11 2.234+0.02 500 1.60 £+ 0.16 2.23+0.03 500
NLML 1.56 + 0.07 2.24+0.02* 425.1 £83.2 1.60 + 0.09 2.25+0.02* 315.9 £121.0
LOO-CVE 1.62 £ 0.08* 2.2440.03 248.6+ 49.5 1.57 + 0.07 2.25+0.02* 206.0+ 47.2
NLGPP 1.60 £ 0.09 2.22 + 0.03 182.5 + 52.2 1.63 £ 0.09* 2.22 + 0.02 160.0 + 28.7
GPE 1.60 £+ 0.10 2.23 + 0.03 351.9 £+ 59.1 1.59 £ 0.08 2.24 + 0.03* 313.4 £ 44.8

Table 4: The left half of the table contains test results on the Boston housing and Abalone
datasets and the right half contains test results on the bank8FM and cpusmall
datasets (in that order) - with hyperparameters optimization: Mean and Standard
deviation of performance measures and number of basis vectors. In the case of

Abalone dataset the NPDL measure has a multiplication factor of 1072,

NMSE x 10~2 NPDL # BV NMSE x 10~? NPDL # BV

NLPP 10.06 £ 5.35 2.4740.22 200 4.02 £ 0.20 -2.13+0.01* 500
NLML 10.94 £ 6.03 2.68+0.21* 116.7 £12.8 3.96 £ 0.16 -2.14£0.01* 112.6 +20.0
LOO-CVE 9.87 £+ 5.69 2.48+0.173 143.2+18.0 3.92 £ 0.16 -2.14£0.01* 117.6+21.8
NLGPP 10.15 £ 6.02 2.42 £+ 0.23 168.8 £ 16.8 4.10 £ 0.30* -2.15 £ 0.01 | 177.8 £ 71.7
GPE 10.16 £ 5.78 2.42 £+ 0.26 199.9 £ 0.33 4.06 £ 0.30 -2.12 £ 0.02* | 274.5 + 83.4

NLPP 42.87 £ 1.77 99.60+4.42* 200 2.92 + 0.32 2.45+0.02 500
NLML 42.50 + 1.69 100.60+2.42* 76.2 £19.2 2.91 £ 0.29 2.474+0.01* 230.3 +£55.0
LOO-CVE | 42.29 + 2.01 97.70+£1.87* 80.2438.4 2.81 £ 0.19 2.48+0.01* 198.8+46.5
NLGPP 42.41 £ 2.28 94.69 £ 1.51 35.6 £ 9.0 2.91 £ 0.33 2.46 £ 0.01* 226.0 £+ 36.2
GPE 42.48 + 1.88 97.86 £ 2.23 * | 164.5 £ 34.4 2.76 £ 0.24 2.46 + 0.01 286.4 = 51.7

and the LOO-CVE algorithm is very useful in achieving good NMSE performance. Both
the algorithms result in sparse solutions and are excellent alternatives to existing methods
in achieving good generalization performance.

15

0.04

© 003} Friedman2]
?
©
()
= 0.021 1
£
(=]
Z 001} 54’_/,/
0 : : -
10 20 30 40 50 60 70
Number of basis vectors
0.25 T T T T T T
Friedman2
w 02}
0
=
z
0.15|
10 20 30 40 50 60 70
Number of basis vectors
7 : T T T T T
6.9 Friedman2
—1 6.8
[a)
a
Z 6.7
6.6
6.5

10

20 30 40

50 60

Number of basis vectors

70

NMSE Norm. Measure

NPDL

0.04
003l Friedman3
0.02
0.01¢
ol —
10 20 30 40 50 60 70
Number of basis vectors
0.16 T T T T T T T
015 Friedman3
0.14 ¢
0.13 ¢
0.12 ¢
10 20 30 40 50 60 70
Number of basis vectors
0.9 T T T T T T
— NLML
— NLPP
085} — LOO-CVE
NLGPP
0.8} — GPE
Friedman3

0.75} .

0.7¢

10

20 30 40

50

Number of basis vectors

Figure 4: The normalized measure values and generalization performances of different mea-
sures on Friedman2 and Friedman3 datasets as we add basis vector are shown.
The legend in the bottom-right plot holds for all the plots.

Table 5: The left half of the table contains test results on the Friedman2 dataset and the
right half contains test results on the Friedmand dataset - with hyperparameters
optimization: Mean and Standard deviation of performance measures and number
of basis vectors.

NMSE x 10-2 NPDL # BV NMSE x 10~ 2 NPDL # BV
NLPP 13.26 + 8.78* | 6.63+0.26 75 12.71 £ 2.39% | 0.7740.11° 75
NLML 14.28 £ 7.19* | 7.30£0.26 | 28.4 £6.9 | 13.41 £ 1.80* | 0.07£0.08* | 34.8 £9.4
LOO-CVE | 11.12 + 4.41* | 6.8740.21" 34 £6.7 | 12.36 + 1.38° | 0.84%0.06* | 44.4 £10.9
NLGPP | 10.00 £ 3.24 | 6.51 £ 0.06 | 375 £6.3 | 11.93 £1.27 | 0.73 £ 0.05° | 51.6 £ 10.2
GPE 10.09 £ 3.76 | 6.50 £ 0.06 | 522 £ 9.9 | 11.63 £ 1.29 | 0.70 £ 0.04 | 74.7 £ 11.6
References

J. Q. Candela and C. E. Rasmussen. Analysis of some methods for reduced rank Gaussian
process regression. In R. Murray-Smith and R. Shorten, editors, Switching and Learning

16

in Feedback Systems, volume 3355 of Lecture Notes in Computer Science, pages 98-127.
Springer, Heidelberg, Germany, 2005a.

J. Q. Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian
process regression. Journal of Machine Learning Research, 6:1939-1959, 2005b.

G. C. Cawley and N. L. C. Talbot. Fast exact leave-one-out cross-validation of sparse least
squares support vector machines. Neural Networks, 17(10):1467-1475, 2004.

L. Csato and M. Opper. Sparse on-line Gaussian processes. Neural Computation, 14(3):
641668, 2002.

J. H. Friedman. Multivariate adaptive regression splines. Annals of Statistics, 19:1-141,
1991.

S. Geisser. The predictive sample reuse methods with applications. Journal of American
Statistical Association, 70(35):320-328, 1975.

S. Geisser and W.F. Eddy. A predictive approach to model selection. Journal of American
Statistical Association, 74(365):153-160, 1979.

M. Gibbs and D. J. C. MacKay. Efficient implementation of Gaussian processes. Technical
report, Cavendish Laboratory, Cambridge university, Cambridge, London, UK, 1997.

X. Hong, S. Chen, and C. J. Harris. Fast kernel classifier construction using orthogonal
forward selection to minimise the leave-one-out misclassification rate. volume 4113 of
Lecture Notes in Computer Science, pages 106-114. Springer, 2006.

S.S. Keerthi and W. Chu. A matching pursuit approach to sparse Gaussian process regres-
sion. In Advances in Neural Information Processing Systems, volume 17. The MIT Press,
2005.

N. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: The

informative vector machine. In Advances in Neural Information Processing Systems,
volume 15, pages 609-616. The MIT Press, 2003.

C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. The MIT
press, 2006.

A. Schwaighofer and V. Tresp. Transductive and inductive methods for approximate Gaus-
sian process regression. In Advances in Neural Information Processing Systems, vol-
ume 15. The MIT Press, 2003.

M. Seeger. Bayesian Gaussian process models: PAC-Bayesian generalisation error bounds
and sparse approzimations. PhD thesis, University of Edinburgh, 2003.

M. Seeger, C. K. I. Williams, and N. D. Lawrence. Fast forward selection to speed up sparse
Gaussian process regression. In C. M. Bishop and B. J. Frey, editors, Proceedings of the
Ninth International Workshop on Artificial Intelligence and Statistics, San Francisco,
USA, 2003. Morgan Kaufmann.

17

B. W. Silverman. Some aspects of the spline smoothing approach to non-parametric regres-
sion curve fitting (with discussion). Journal of Royal Statistical Society (Series B), 47
(1):1-52, 1985.

A. J. Smola and P. L. Bartlett. Sparse greedy Gaussian process regression. In Advances in
Neural Information Processing Systems, volume 13. The MIT Press, 2001.

E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Advances
in Neural Information Processing Systems, volume 18. The MIT Press, 2006.

M. Stone. Cross-validatory choice and assessment of statistical predictions (with discussion).
Journal of Royal Statistical Society (Series B), 36:111-147, 1974.

S. Sundararajan and S. S. Keerthi. Predictive approaches for choosing hyperparameters in
Gaussian processes. Neural Computation, 13(5):1103-1118, 2001.

M. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine
Learning Research, 1:211-244, 2001.

V. Tresp. A Bayesian committee machine. Neural Computation, 12(11):2719-2741, 2000.

G. Wahba, X. Gao, F. Xiang, R. Klein, and B. Klein. The bias-variance trade-off and the
randomized GACV. In Advances in Neural Information Processing Systems, volume 11.
The MIT Press, 1999.

C. K. I. Williams and M. Seeger. Using the Nystrom method to speed up kernel machines.
In Advances in Neural Information Processing Systems, volume 13, pages 682-688. The
MIT Press, 2001.

Appendix

In this appendix, we give the necessary details concerning Section 4. In the following, with
some abuse of notations we indicate dependence on the basis vectors X, and x; through
the variables u and u; respectively. Let u denote the set of indices of the basis vectors in
the present model and u; denote the set when u; is added to the set u. u; = (u u;). Let m
denote the cardinality of the set u. In order to calculate the predictive measures described
in Section 3, we need to find the predictive mean and variance using the basis vectors in u.
Moreover, to observe the effect of adding a new basis vector u; to the current basis vector
set on different predictive measures, we need to compute the predictive mean and variance
using the basis vectors in wi; efficiently. The key idea here is to update the relevant matrices
using simple matrix update formulas.

Recall from Section 3 that the predictive mean and variance using the DTC approxima-
tion are given by f(a:z, u) = 02K, uEK, ey and 6%(z;5u) = Ki; — Qii(u) + K; uZKu,
where 3 = (Kyu + 0_2Ku,fo,u)71 and Q;;(u) = Ki,uK;}uKu,i. Using the same approxi-
mation, the LOO predictive mean and variance are given by f_i(a:i; u) = J_QKi,UE_iKu,_iy_i
and 62,(zi;u) = K;; — Qii(u) + K; wX_; Ky, As discussed in Section 4, y; — f_i(xi; u) =

%f&;) and 631-(:15; u) =K;;—Q;i(u)+ #j(u) where 7;(u) = O'_QKZ',UEKU,Z'. Thus, it is

easy to calculate different predictive measures in (2)-(4) if o2, & and K; u, F(z5;u), n;(u)
and Q;i(u) for every i are available for the basis vector set u. Initially, when m is one, all
these quantities are easy to compute as the matrices involved are of size, 1 x 1. Further, as
we will explain below, these quantities are easy to update if a new basis vector u; is added
to the set u. Then, the computation of different predictive measures for the basis vector
set u; becomes straightforward, resulting in an easy way to select the basis vector.

Let 7! = A, = Kyu+ U*QKu,fo,u = L,LL. We now see how to update L, to get
the Cholesky decomposition of Ag; if a new basis vector, u;, is added to the set u. We

know that
A — Aq bj\ (Ly O LZ; Z;
o bf Cj o Z;‘F dj OT dj

where b; = Ky ; + J*QKU,fo,j and ¢; = K;; + 0*2Kj7fo,j. Thus, z; can be obtained
by forward substitution in the lower triangular system of equations, Lyz; = b;. Then d; is

calculated as d; = 4/c¢; — zJsz. Finding the Cholesky decomposition of Ay, thus requires

O(m?) effort if the Cholesky decomposition of A, is available.

We now describe a way to calculate 7;(0;) efficiently. Note that n;(u) = U_QKi,uAl_llKu,i =
a_QKi,uL;TL; lKu,i. If we obtain ¢;(u) by using the lower triangular system of equations,
Lu(;(u) = Ky, then we have 7;(u) = 072¢] (u)¢;(u). Now, 7;(@i;) can be expressed as,

L Z;) ! (L 0) ! (K)
2 u 2,1
(o) K. K, n J ’

(b Z’J) (OT dJ Z;F dj Kz’]

which can be rewritten as 7;(1;) = o~ 2¢7 (;)¢;(9;) where,

¢i(u;) = (Czl(l;))

and G j = Kij 2] C(w) Therefore i (@) = n: —2,2
i = 7 . , we can write n;(@;) = mi(u) +07°¢;

J
evaluated in O(m) time for every training set sample 3.
Computation of f(z;;1;) can be done efficiently if f(z;;u) is available for every i. We
have f(z;;u) = 07 2K; uLy’ Ly 'Kury. So, f(zi;u;) is

LY 2, \ ' [Ly 0\ "
(5 3) (3 3) "

(Vu) (O'_QKu,fy)
Ya; =)= -2 -
’UJ g Kj7fy

L, 0 Wu) [Vu

Z? dj wj - ’Uj)

wy is obtained by solving the lower triangular system of equations, Ly,wy = v, and w;
. Uj*ZTWu
is then calculated as w; = dij
Computation of wy requires O(m?) effort. w; can then be evaluated in O(n) time as

and (;; can be

where

. It is easy to see that f(wi;ﬁj) = flzsu) + w;iGij-

computation of v; needs O(n) effort. Note that ¢; ; was evaluated during the computation
of n;(u;). Therefore, f(x;;u;) can be obtained in O(n) time for all training samples.

Efficient computation of 62 ,(x;;1;) requires an easy way to compute Q;;(u;) from
Qii(u). Let Kyu = G,GZT. Then, Kag; q; is

Gu 0 GE Vj(ll) o Ku,u Ku,j
vi(v) e 0" ¢) \ Kju Kj;)

v;(u) is obtained by solving the lower triangular system of equations G,vj(u) = Ky ; and e;
is set to \/Kj,j - VJT(u)uj(u). Therefore, Q; ;(u) = v} (u)v;(u) and Q; ;(u;) = Qi,i(u)+u2j

T (Wi
K“Uje—()yl() Updating Q;i(u) to Q;;(10;) can thus be done in O(m) time

for every training set sample i if v;(u) is available.
In step 3 of the algorithm, M (Xy,,0) can be calculated by using the following incre-
mental calculations for every training sample 3.

where Vij =

Ki,j—ZJTC,-(U)

Giyj ;
ni(u;) = ni(u) + o072 12]
. vj—zJTwu

1{\]] - . dj
flzsa;) = flzgu) +wiGy,

K;i—V] (u)Vi(u)
vig = g
Qii(o;) = Qui(u)+ v} X
6% (zis0y) = Kig— Qui(ny) +o0 2(1—ni(ay))” .

A~

The variables, 7;(u), f(z;,u) and Q;;(u) can be stored in the memory. Further, it is a
good idea to store wy,(;(u) and v;(u). This will require an additional storage of O(mn).
But, this will result in doing the above calculations in O(mn) time for all the training set
samples. Note that the computation of ¢;; for a given j € J and for all training samples
requires O(mn + m?) computational effort, which is O(mn) if n > m. For a given j € J,
w; can be computed in O(n) time and v; ; for all the training set samples can be calculated
in O(mn) time.

Note that in the case of GPE measure (4), it is enough to compute Y, 52,(z;;u)
rather than the individual 62,(z;;u). That is, we need to compute Q(u) = Y, Qi i(u) =
D Kz-,uKl_l’luKu,i which is equivalent to trace (K;}uKu,fo’u). Recall that Ay, = Ky,u +
0 ?KusKeu = LuLl; therefore, Q(u) = o?trace (K, Au) — 0°m. Let us define E, =
Gy'Lyu. Then, Q(u) = o*trace (E,EL) — 0?m. Next, to compute Q(i1;) from Q(u) incre-
mentally we make use of the lower triangular structures of G, and L,. More specifically,

we have
(Gu 0) (Eu O)Z(Lu 0)
UJT(u) e; pJT fj z]T d;
. _FwTy,.
Hence, f; = ‘Z—j and p; = %ﬁ(u) Note that p; has computational complexity of

O(m?). Therefore, Q(ii;) can be computed in O(m?) time.
In step 4 of the algorithm, the basis vector index set is updated to (u u;). The neces-
sary updates of the variables Ky u, Ly, Gu, Eu, ¢;(u),v;(u) and w, can be done easily if

the relevant variables like z,d;,e;,w;, (;; and v;; are available in memory. Note that the
dimension of these variables increases by one after they are updated.

Next, we discuss cache implementation details. From the above-mentioned calculations,
it is clear that we need to compute ijCi(u) for every j € J and every i € I. Further,
computation of z; needs O(m?) effort. Once a basis vector [is selected in Step 3 of the
algorithm, it is a good idea to store z;, (;; and d; for some of the existing working set
members and for every i € I if some additional memory is available. Computation of Gi,j
in the next iteration will then require the computation of z;; and d; only as the necessary
elements are already stored in the cache memory; as a consequence (; ; can be computed
in O(n) time instead of O(nm) time. Following the similar steps, by storing v; ; and e;
computation of Q;;(7;) can be done efficiently. Similarly in the case of GPE, by storing
E’v;(u) computation of Q(u;) can be done efficiently. Finally, we note that the quantities
like zj;, (;,j, d; and e; are needed for the NLML/NLPP algorithms as well; therefore, the
above implementation details are directly applicable.

