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A Fast Iterative Nearest Point Algorithm for Support

Vector Machine

S. S. Keerthi, S. K. Shevade, C.

Abstract—n this paper we give a new fast iterative algorithm
for support vector machine (SVM) classifier design. The basic
problem treated is one that does not allow classification violations.
The problem is converted to a problem of computing the nearest
point between two convex polytopes. The suitability of two
classical nearest point algorithms, due to Gilbert, and Mitchell
et al, is studied. Ideas from both these algorithms are combined
and modified to derive our fast algorithm. For problems which
require classification violations to be allowed, the violations are
quadratically penalized and an idea due to Cortes and Vapnik
and Friel is used to convert it to a problem in which there are no
classification violations. Comparative computational evaluation
of our algorithm against powerful SVM methods such as Platt's
sequential minimal optimization shows that our algorithm is very
competitive.

Index Terms—Classification, nearest point algorithm, quadratic
programming, support vector machine.

. INTRODUCTION

Classifier Design

Bhattacharyya, and K. R. K. Murthy

code can be developed in short time. A Fortran code can be
obtained free from the authors for any noncommercial purpose.

The basic problem addressed in this paper is the two category
classification problem. Throughout this paper we will ust®
denote the input vector of the support vector machine and
to denote the feature space vector which is related by a
transformationz = ¢(z). As in all SVM designs, we do not
assumeb to be known; all computations will be done using only
the Kernel functionK (z, &) = ¢(x) - ¢(z), where *” denotes
inner product in the: space.

The simplest SVM formulation is one which does not allow
classification violations. Lefx;}7*; be a training set of input
vectors. Letl = the index set for class 1 antd= the index set
for class 2. We assumle# 0, J A0, IU.J ={1,---,m} and
InJ = 0. Letus definez; = ¢(x;). The SVM design problem
without violations is

1
min - |Jwl|?

HE last few years have seen the rise of support vector

machines (SVM’s) [27] as powerful tools for solving
classification and regression problems [5]. A variety of algo-

Stw-z+b>1 Viel;, w-z+b< -1 Vjel

(SVM-NV)

rithms for solving these problems has emerged. Traditional

guadratic programming algorithms [13] and modifications sudtet us make the following assumption.

as the chunking algorithm [26] that make use of the fact thatAssumption Al:There exists &, b) pair for which the con-
the number of support vectors is usually a small percentages$faints of SVM-NV are satisfied.

the total training set have been tried. These algorithms requirdf this assumption holds then SVM-NV has an optimal solu-
enormous matrix storage and do expensive matrix operatiofi@n Which turns outto be unique. L&, = {z : w-z+b =1}

To overcome these problems, recently fast iterative algorith@B8dH - = {z : w-z+b = —1}, the bounding hyperplanes sep-
that are also easy to implement have been suggested [20], [B#fting the two classedd, the margin between them is given
[19], [8], [23]; Platts SMO algorithm [20] is an importantby M = 2/||wl|. Thus SVM-NV consists of finding the pair of

example. Such algorithms are bound to widely increase tRarallel hyperplanes that has the maximum margin among all
popularity of SVM’s among practitioners. This paper makedairs that separate the two classes.
another contribution in this direction. Transforming a particular T0 deal with data which are linearly inseparable in the
SVM classification problem formulation into a problem of?-SPace, and also for the purpose of improving generalization,
computing the nearest point between two convex polytopesth?re is a need to have a problem formulation in which clas-
the hidden feature space, we give a fast iterative nearest p&iigation violations are allowed. The popular approach for
algorithm for SVM classifier design that is competitive witHdoing this is to to allow violations in the satisfaction of the
the SMO algorithm. Like SMO, our algorithm also is quitonstraints in SVM-NV, and penalize such violatidirearly
straightforward to implement. A pseudocode for our algoritht the objective function
can be found in [14]. Using this pseudocode an actual running

lninl||w||2 + C’Z &k

2 k

Stw-z+b>21-¢ Viel;, w-z;+b<-14¢&;
Vield, & >0 YeelUd. (SVM-VL)
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weighting between margin maximization and classification vBVM-VQ problem, thenk, the Kernel function for the trans-
olation. Using the Wolfe duality theory [5], [7] SVM-VL can beformed SVM-NV problem is given by
transformed to the following equivalent dual problem:

1
maxz op — 5 Z Z AROYLYIRE - 21
k l

k

1
K(zp, z1) = K(ar, x) + Eékl

whereéy; is one ifk = [ and zero otherwise. Thus, for any

St0< o £C VEk pair of training vectorgzy, ;) the modified kernel function is
> gy =0 (SVM-VL-DUAL) easily computed.
5 Our main aim in this paper is to give a fast algorithm for

solving SVM-NV. The main idea consists of transforming
wherey; = 1,2 € I andy; = —1,5 € J. Itis computationally SvM-NV into a problem of computing the nearest point be-
easy to handle this problem since it is directly based,onz;  tween two convex polytopes and then using a carefully chosen
(kernel) calculations. Platt's SMO algorithm, as well as othergarest point algorithm to solve it. Because of Remark 2,
are ways of solving SVM-VL-DUAL. SMO is particularly very ouyr algorithm can also be easily used to solve SVM-VQ. By
simple and, at the same time, impressively fast. In very simpgte&mark 1, algorithms such as SMO can also be used to solve
terms, itis an iterative scheme in which only two (appropriatelgy/m-vQ. In empirical testing however, we have found that
chosen)y; variables are adjusted at any given time so as to iy algorithm is more efficient for solving SVM-VQ, than
prove the value of the objective function. The need for adjustirg\o used in this way. Even when the “typical” computational
at least two variables at a time is caused by the presence of a8t of solving SVM-VL by SMO is compared with that of

equality constraint. solving SVM-VQ by our algorithm, we find that our algorithm
Remark 1: 1t is useful to point out that the Wolfe dual ofjs competitive.

SVM-NV is same as SVM-VL-DUAL, withU settoco. There-  FrieRet al. [8] (deriving inspiration from the Adatron algo-

fore, any algorithm designed for solving SVM-VL-DUAL canyithm given by Anlauf and Biehl [1] for designing Hopfield nets)
be easily used to solve the dual of SVM-NV, and thereby solggd, |ater, Mangasarian and Musicant [19] (using a successive
SVM-NV. overrelaxation idea) suggested the inclusion of the extra term

Using a suggestion made by Cortes and Vapnik [6], in a rg? /2 in the objective functions of the various formulations. This
cent paper Friel3 [9] has explored the use of a sum of squafg@ione with computational simplicity in mind. Whé#f/2 is

violations in the cost function added to the objective functions of the primal SVM problems,
1 & i.e., SVM-NV, SVM-VL and SVM-VQ, itturns out that the only
min§||w||2 +5 Z & equality constraint in the dual problems, i 2;, a;y; = 0, gets
k eliminated. Therefore, it is easy to give an iterative algorithm
Stw-z+b>1-§& Viel, for improving the dual objective function simply by adjusting

w-z+b< —14+¢& Vied (SYM-VQ) asingle; atatime, as opposed to the adjustment of two such
variables required by SMO. Fried} al. [8] applied their kernel
Preliminary experiments by FrieR have shown this formulatidhdatron algorithm to solve SVM-NV, Frief3 [9] applied the same
to be promising. Unlike SVM-VL, here there is no need to into SVM-VQ, while Mangasarian and Musicant [19] applied the
clude nonnegativity constraints gp for the following reason. successive overrelaxation scheme to solve SVM-VL. The basic
Suppose, at the optimal solution of SVM-VE, is negative for algorithmic ideas used by them is as follows: chooseanéde-
somek. Then, by resetting;, = 0, we can remain feasible andtermine a unconstrained step sizedgias if there are no bounds
also strictly decrease the cost. Thus, negative valugsafnnot On«;, and then clip the step size so that the updateshtisfies
occur at the optimal solution. all its bounds.
Remark 2: As pointed out by FrieR [9], a very nice property If the term b%/2 is included in the objective functions of
of SVM-VQ is that by doing a simple transformation it can b&VM-VQ and SVM-NV, then these problems can be easily
converted into an instance of SVM-NV. Le}, denote then transformed to a problem of computing the nearest point of a

dimensional vector in which thketh component is one and allsingle convex polytope from the origin, a problem that is much
other components are zero. Define simpler than finding the nearest distance between two convex

polytopes. Our nearest point algorithm mentioned earlier sim-

. w . 2z ) plifies considerably for this simpler problem [14]. Our testing,
w= < ﬁg) pob=b A= \/1_(37 , tel described in [14] shows that these simplified algorithms do not
< perform as well as algorithms which solve problems without

i . the b% /2 term. However, for problems where the entire kernel

= __L, |, J€J (2) . ) .
\/ECJ matrix can be computed and stored in memory they can still be

very useful.

Then it is easy to see that SVM-VQ transforms to an instanceThis paper is organized as follows. In Section Il we refor-

of SVM-NV. (Usew, b, Z instead ofw, b, z.) Note that, because mulate SVM-NV as a problem of computing the nearest point

of the presence dfy variables, SVM-VQ's feasible space is albetween two convex polytopes. In Section Il we discuss op-

ways nonempty and so the resulting SVM-NV is automaticallymality criteria for this nearest point problem. Section IV de-

feasible. Also note that, ik’ denotes the Kernel function in therives a simple check for stopping nearest point algorithms so

4
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as to get guaranteed accuracy for the solution of SYM-NV. The | wrab=0

main algorithm of the paper is derived in Sections V and VI. wrztb*=l ! wrzabr=-l
Two classical algorithms for doing nearest point solution, due )

to Gilbert [10] and Mitchelket al.[18], are combined and mod- ; ~—

ified to derive our fast algorithm. A comparative computational
testing of our algorithm against Platt's SMO algorithm is taken
up in Section VII. We conclude with some closing remarks in
Section VIII.

Il. REFORMULATION OF SVM-NV AS A NEAREST POINT

PROBLEM
Given a sef5 we usecoS to denote the convex hull &, i.e., maximum :
co S is the set of all convex combinations of elementsSof margin
= 2wl \_//

l l
oS = {Zﬁksk sk €8, 0 20,) B = 1}.
k=1 k=1

Let I/ = co{z : ‘€ Iy an(_j V= cofz : i € ]} Where rig 1. Among all pairs of parallel hyperplanes that separate the two classes,
{21}, I andJ are as in the definition of SVM-NV. Sinckand the pair with the largest margin is the one which has — v*) as the normal
J are flnlte SetsU andV are convex polytopes ConS|der thé:irection, W?eriu*ﬁ ’U*) isa pr?lrhof closest pOint; &f andV". Note thatw* =
following generic problem of computing the minimum distanca " ~¢") for # chosen such thaju” — v*[} = 2/
between/ andV/
to show the relationships of NPP and the variables in it with the
(NPP) Wolfe—Dual of SVM-NV and the variables there.

Using Wolfe duality theory [5], [7] we first transform

It can be easily noted that the solution of NPP may not be uniquey M-NV to the following equivalent dual problem:
We can rewrite the constraints of NPP algebraically as 1
max}kj ar =3 2}; El: Yy - A

star >0 Vk > agu =(@VM-NV-DUAL)
k

min ||lu —v|| stuel, veV.

w=)y Pz fi20, i€l Y Bi=1
€T el
v=> Biz; B;20, jeJ; Y Bi=1 (2
jed jed where, as beforey; = 1,4 € [ andy; = —1,j € J. Since
) > ok Cxyr = Oimplies thatd”, ,«; = .., «;, we can in-
The equivalence of the problems SVM-NV and NPP can §gj,ce a new variable, and &rewritezk Oé&kyk — 0 as two
easily understood by studying the geometry shown in Fig. 1. ASspstraints

sumption Al is equivalent to assuming tliaandV are nonin-
tersecting. Thus Al implies that the optimal cost of NPP is pos- Z a; =\, Z a; = A\
itive. If (w*, b*) denotes the solution of SVM-NV an@*, v*)

€T icJ
denotes a solution of NPP, then by using the facts that maximum
margin= 2/||w*|| = ||[u* — v*|| andw* = §(w* —v*) for some If we also define
6, we can easily derive the following relationship between the a,
solutions of SVM-NV and NPP: b=~ Yk (4)
. 2 . IR = le)? then SVM-NV-DUAL can be rewritten as
W=t v = e ()
[[or — ]| [[ur — o]

)\2
max 2\ — > zk: zz: Bebiyryize - 21

stB >0 Vk > Bi=1 > gi=1L (5

iel jer

The following theorem states this relationship formally.

Theorem 1: (w*,b*) solves SVM-NV if and only if there
existu* € U andv* € V such that{w*,v*) solves NPP and
(3) holds.

A direct, geometrically intuitive proof is given by Sanchetj, thjs formulation it is convenient to first optimize keeping

and Keerthi [22] with reference to a geometrical problem iB constant, and then optimiz&on the outer loop. Optimizing
robotics. Later, Bennett [3] proved a somewhat close result\iih respect toh yields

the context of learning algorithms. Here we only give a dis-

cussion that follows the traditional Wolfe—Dual approach em- Vo 2

ployed in the SVM literature. The main reason for doing this is O S BBk - 2

(6)
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Substituting this in (5) and simplifying, we see that (5) becomes
equivalent to

max 2/(2 Zﬁkﬁlykyzzk 'Zz>
k1

sStB20 Vi Y Bi=1L Y =1 @ | Hed kb

el jcJ

=

This problem is equivalent to the problem

o1
min 5 zk: zz: BrBrurizi - 21

StBz0 Yk Y Bi=1 > gi=1 (8

e ———

icl jcd Fig. 2. Definition of support properties (n) is the extreme vertex aP in
the directiony;. The distance between the hyperplanés,and H is equal to
If we define a matrix? whose columns ar@;z1,...,Ymzm gr(mp)/|nll.

then it is easy to note that
Thus (11) provides a simple procedure for evaluating the sup-
Z Zﬁkﬁzykw?ﬁk - = || P2 port properties of the convex polytopE, = co Z. Let us also
koot define the functiongp : R x P — R by
If 5 satisfies the constraints of (8), théfy = « — v where

u € U andv € V. Thus (8) is equivalent to NPP. gp(n:p) = hp(n) —n-p.
Wolfe duality theory [5] actually yields By (9) it follows that
W= zk: Y- gr(n,p) >0 VneR', peP (12)

Using this, (4) and (6) we can immediately verify the expression VW& now adapt these general definitions to derive an opti-
for w* in (3). The expression fob* can be easily understoogmality cn_tenon for NPP. A simple geometrlcal an_aly3|s shows
from geometry. that a pair(u, v) € U x V solves NPP if and only if

Remark 3: The above discussion also points out an impor-
tant fact: there is a simple redundancy in the SVM-NV-DUAL
formulation which gets removed in the NPP formulation. Notghere; = « — v; in other words(u, v) solves NPP if and only
that NPP has two equality constraints and SVM-NV-DUAL hag , — 5, (—) andv = sy (2). Equivalently,(u, v) is optimal
only one, while both have the same number of variables. Thefeang only if
fore, when quadratic programming algorithms are applied to
SVM-NV-DUAL and NPP separately theywork quite differently, gv(v—u,u)=0 and gy(u—v,v)=0. (13)

evenwhen started fromthe same “equivalent” starting points. ) )
Let us define the functiong : I/ x V' — R by

hU(_Z) = —2Z-U and hyr(z) =2 -

I1l. OPTIMALITY CRITERIA FORNPP
g(u,v) = gulv —u,u) + gy (u — v, v). (14)

First let us give some definitions concerning support prop- _ _ _

define thesupport function» : R* — R, by (u,v) is optimal if and only ifg(w, v) = 0. The following the-
orem states the above results (and related ones) formally.
hp(n) = max{n-z:z € P} 9) Theorem 2: Supposer € U, v € V andz = u — v. Then

the following hold. 1)g(u,v) > 0. 2) if & € U is a point that
'satisfiesz -« < z - u, then there is a poirit on the line segment,
co{u,n} suchthat|i—v|| < ||u—wv]|.3)ifv € V is apoint that

See Fig. 2. We usep(n) to denote any one solution of (9), i.e.
sp(n) satisfies

7 _ .n and cP 10) satisfies:-o < z-v, thenthere is a point on the line segment,
w(n) = splm) - andsp{n) (10) w5} such thallu — 3] < |[u - v]l. 4) (u, ) Solves NPP if
Now consider the case where is a convex polytopeZ = and only ifg(u,v) = 0.
{#1,...,2-} andP = co Z. Itis well known [16] that the max-  Proof: a) This follows from (12) and (14).

imum of a linear function over a convex polytope is attained by b) Define a real variableand a functiong(t) = ||u + t(z —
an extreme point. This means that = h; andsp = sz. u)—vl||?. ¢ describes the variation {f.—v||* as a generic point
Thereforeh p andsp can be determined by a simple enumeras varies fromu to @ over the line segment joining them. Since

tion of inner products ¢’'(0) = 2z - (& — u) < 0, the result follows.
. ¢) The proof is along similar lines as that of b).
hp(n) =hz(n) =max{n- 2 :k=1,...,r} d) First let g(u,v) = 0. Let@ € U, & € V. Since

sp(n) =sz(n) =z wheren- z; = hz(n). (11) gy(—=,u) = 0 andgy(z,v) = 0, we havez - v < 2 -4 and
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Note that, sincey(i, 9) = ||2]|? + hv (=2) + hv(2) < €]|2]]?,

we have

—hy(=2) = hy(2) > (1- 9121 (17)

2

Thus,M > (1 — €)||#|| > 0. The determination ofi that is
consistent with the feasibility of SVM-NV can be easily found
by setting

W =3 (18)

and choosingy such thath = 2/||&||. Using (16) we get
Fig. 3. Asituation satisfying15). Here:a = su(—2);b = sv(2); Hy : £+
z=—hy(=%);Hz: 2z =hy(%);andH, : 3-z = 0.5(hv(2)—hy(=%)). 2

1T G = e G
z-v > z-b. Subtracting the two inequalities we def|* < z-2  Since the equation of the central separating hyperplHgédias

wherez = 4 — . Now to be of the forma - z + b = 0, we can also easily get the
expression fob as

(19)

V2<V2 ‘,—:2::2 2V2_:.V<32
el < Nl + llz = 20 = 1l + 200211 — 2 -2) < |1 - hes

and hencéu, v) is optimal for NPP. On the other hand(if, v) hv(2) + by (=2)°

is optimal for NPP, we can set= sy (—z), v = sy(z) anduse  Using (16) and (17) and the fact that* = ||2*||, we get
results a) and b) to show thatu, v) = 0. O . . .
[w*| _ 7 _ —hu(=2) — hv (%)

(20)

IV. STOPPINGCRITERIA FORNPP ALGORITHMS [l m [Z[]=]l
Wh . : . _—hu(=2) - hv(2) 2] B
en a numerical algorithm is employed to solve any of the = s 2> (1—e).

problems mentioned earlier, approximate stopping criteria need # #
to be employed. In SVM design a dual formulation (such ag derive a bound foi=*|| /|| 2||, note that|=*|| = M* > M =
SVM-NV-DUAL and NPP) is solved instead of the primal (such_p, (—2) — hy())/]|2|. Then
as SVM-NV) because of computational ease. However, it has to
be kept in mind that it is the primal solution that is of final in- el > —hy(=%) = hv(Z) > (1—¢)
terest and that care is needed to ensure that the numerical algo- (2 - 121> B '

rithm has reached an approximate primal solution with a Quafg ;s we have proved the following important result.
anteed specified closeness to the optimal primal solution. It iSThaorem 3: Let (u*,v*) be a solution of NPR* = u* — v
. bl ~4 T 1

easy to give an example [14] to show that simply stopping Whedrflld(w*7 b*) be the optimal solution of SVM-NV. Lél < ¢ <
the dual approximate solution has reached the dual optimal $0Supposer € U, o € V, 2 = 4 — % and (15) holds. Then

lution within a good accuracy can be dangerous, as far as % 5) as defined by (18)—(20) is feasible for SYM-NV and
solution of SVM-NV is concerned.
Suppose we have an algorithm for NPP that iteratively im- || ||M|| A
. . A N . > (1 _ )
proves its approximate solutioft, € I/, o € V in such a way T @] 1A= z €).
thati — «* ando — v*, where(w*, v*) is a solution of NPP.
Recall the functiory defined in (14). By part (d) of Theorem If one is particularly interested in getting a bound on the cost
2 and the fact thay is a continuous functiog(i, #) — 0. function of SVM-NV then it can be easily obtained
Also, ||2|| — ||#*]| wherez = & — ¢ and z* = uw* — v™. i N2
By assumption A1)|%|| > ||z*|| > 0. Thus we also have ||wA I — <||wA ”) >(1—¢)% > (1-2).
g(@,9)/||2|/* — 0. Suppose is a specified accuracy parameter [l el / ~ -
satisfying0 < € < 1, and that it is desired to stop the algorithnh similar bound can be obtained fe*||2/||2|2.
when we have found @@, b) pair that is feasible to SVM-NV All these discussions point to the important fact that (15)

and||w*|| = (1 — ¢)||w|| where(w*, b*) is the optimal solution . : : ;
= i g o can be used to effectively terminate a numerical algorithm for
of SVM-NV. We will show that this is possible if we stop the 4 g

solving NPP.
dual algorithm wheri, ©) satisfies pab

2

o 2 V. ITERATIVE ALGORITHMS FORNPP
g(, o) < €|2]]". (15) o :
NPP has been well studied in the literature, and a number
Fig. 3 geometrically depicts the situation. Lt be the Of good algorithms have been given for it [10], [18], [29], [2],
margin corresponding to the directioh,Clearly [15]. Best general-purpose algorithms for NPP such as Wolfe's
algorithm [29] terminate within a finite number of steps; how-
ever they require expensive matrix storage and matrix opera-
tions in each step that makes them unsuitable for use in large

—hu(=2) = h(5).

H (16)

m =
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SVM design. (It is interesting to point out that the active set Gilbert's algorithm is a method of solving MNP that does not
method used by Kaufman [13] to solve SVM'sidenticalto require the explicit formation ofV. Its steps require only the
Wolfe's algorithm when both are used to solve SVM-NV.) Iterevaluations of the support propertiés; and s;. Fortunately
ative algorithms that need minimal memory (i.e., memory sizbese functions can be computed efficiently

needed is linear im, the number of training vectors), but which

only reach the solution asymptotically as the number of itera- hz(n) =hw(n) = onax - (2 — 25)

tions goes to infinity, seem to be better suited for SVM design. — max(n - %) J’:max(_n %)

In this section we will take up some such algorithms for inves- icl e -

tigation. =hy(n) + hy (—n). (22)

sz(n) =su(n) — sv(—n). (23)

A. Gilbert's Algorithm

Gilbert's algorithm [10] was one of the first algorithms sug! "US: for a givem the computation ok z () andsz () requires
gested for solving NPP. It was originally devised to solve certaﬂply O(m_l + _m2) fumg. ) ] )
optimal control problems. Later its modifications have found AN optimality criterion for MNP can be easily derived as in
good use in pattern recognition and robotics [29], [11]. In thiR€ction IIl. This is stated in the following theorem. We will
section we briefly describe the algorithm and point to how it cf{Mit its Proof since it is very much along the lines of proof of
be adapted for SVM classifier design. Theorem 2. Theg function of (12), as applied t& plays a key

Let {z.}, I, J, U, andV be as in the definition of NPP. Let "'€:

Z denote the Minkowski set difference &fandV [16], i.e., Theorem 4: Suppose: ¢ Z. Then the following hold. 1)
gz(—z,2) > 0.2)If zis any pointinZ such that|z||? — 2.z >

0, there is a point in the line segmentyo {z, z} satisfying
lIZ|l < l|2]|- (c) = solves MNP if and only ifyz(—z,2) = 0. O
) ) ] o Gilbert's algorithm is based on the results in the above the-
Clearly, NPP is equivalent to the following minimum NOMyrem. Suppose we startwith some Z. If g (—z, z) = 0 then
problem: z = z*, the solution of MNP. On the other handgif(—z, z) >

0, thenz = sz(—2) satisfies|z||? — z - Z > 0. By part 2) of the
1z €4} (MNP)  theorem, then, searching on the line segment conneetiog

_ ) ) ) ) yields a point whose norm is smaller th#|. These observa-
Unlike NPP this problem has a unique solution. MNP is velyons yield Gilbert's algorithm.

much like NPP and seems like a simpler problem than NPP, buGiipert's Algorithm for Solving MNP

Z=UoV={u—v:ueliveV}

min{

zZ

it is only superficially soZ is the convex polytopeZ = co W, 0) Choosez € Z.
where 1) Computeh;(—z) andgz(—z, z). If gz(—z,2) = 0 stop
. . with z* = z; else, set = sz(—=z).
W=Az—-2:i€l,jel} (21)  2) Computez, the point on the line segment joiningand z

which has least norm, set= z and go back to Step 1).
a set withmyms points(my = |I|,m2 = |J|). To see this, take A efficient algorithm for computing the point of least norm
two general pointsy € U andv € V' with the representation  on the line segment joining two points is given in the Appendix.
Gilbert showed that, if the algorithm does not stop withat

w = Zﬁizi, Zﬁi =1, B:>0 Viel Step 1) within a finite number of iterations, ther- »* asymp-
el el totically, as the number of iterations goes to infinity.
. To adapt Gilbert's algorithm for SVM design itis important to
v= Zﬁjzj’ Zﬁj =L fiz0 Viel note thatz can be represented as= 3", v,w;, wherey", 7 =
icd icd 1,7 > 0Vtandw, € W, i.e.,w, has the formw, = z;,) —
Then writez — 4 — v as 2. Hence only{~; } and{(i(t),j(¢))} need to be stored and
maintained in order to represent Maintaining and updating
cache for the inner products,- z;;y and z - 2, improves
z= 2/371271 - Zﬁizﬂ' efficiency. More details are given En) [14]. o
iel et We implemented Gilbert's algorithm and tested its perfor-
mance on a variety of classification problems. While the algo-
= Z B; Z Bizi — <Z ﬁvﬁ) Z Biz; rithm always makes rapid movement toward the solution during
jed el el jed its initial iterations, on many problems it was very slow as it ap-
- Z Zﬁiﬁj(zi — z) proached the final solution. Also, suppose there is, avhich
icl jcd gets picked up by the algorithm during its initial stages, but
which is not needed at all in representing the final solution (i.e.,
and note the fact thad_, ., > . ;88 = (> ,c;3) 2w > z*-2%), then the algorithm is slow in driving the
(ZJEJ B;) = 1. In general it is possible foZ to have corresponding: to zero. Because of these reasons, Gilbert's al-

O(mymy) vertices. Sincen;my can become very large, it is gorithm, by itself, is not very efficient for solving the NPP’s that
definitely not a good idea to for##” and then defingZ using it. arise in SVM classifier design.
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Fig. 4. Definition of A. Here:A = w¢min; B = sz(—z); andA(z) =
(=z+B) = (—z-A).

Fig. 5. Illustrating the various ideas for improvement. Hede:= w; min;

B. Mitchell-Dem'yanov—Malozemov Algorithm B = sz(—2) = Wema; 2B = Gilbert line segment;C' = MDM line
y 9 segment£C is parallel toAB); Ty = trianglezCB; T, = trianglezA’B;

Many years after Gilbert's work, Mitchedt al.[18] indepen- Q= = quadrilateraldBA’B’; and,Ty = triangle DAB.
dently suggested a new algorithm for MNP. We will refer to
their algorithm as the MDM algorithm. Unlike Gilbert's algo- We implemented and tested MDM algorithm. It works faster
rithm, MDM algorithm fundamentally uses the representatiothan Gilbert's algorithm, especially in the end stages when-
z =y, yw; in its basic operation. When = »*, it is clear proaches*. Algorithms which are much faster than MDM al-
thatz - w; = 2 - » for all ¢ which havey; > 0. If gz(—=2,2) =0 gorithm can be designed using the following two observations:
thenz = z* and hence the above condition automatically hold§l) it is easy to combine the ideas of Gilbert's algorithm and
However, at an approximate point.# z*, the situation is dif- MDM algorithm into a hybrid algorithm which is faster; and (2)
ferent. The pointz could be very close to* and yet, there could by working directly in the space wheté andV” are located it

very well exist one or more, such that is easy to find just two elements §£; } that are used to modify
thez, and at the same time, keep the essence of the hybrid algo-
zowg»z-z oand v >0 (24)  rithm mentioned above. In the next section we describe the ideas

behind the hybrid algorithm. Then we take up details of the final

(thoughy, is small). For efficiency of representation as well aﬁlgorithm incorporating both observations in Section VI.

algorithm performance, it is a good idea to eliminate sifcbm
the representation of. With this in mind, define the function ¢ A Hybrid Algorithm

see Fig. 4 : .
( g-4) A careful look at MDM algorithm shows that the main com-
A(2) = hz(=2) — min (=2 - w;). (25) putational effort of each iteration is associated with the compu-
e >0 tation of hz(—z), the determination of min and the updating

Clearly, A(z) > 0, and,A(z) = 0if and onlygz(—z,2) = 0 of v, and of the inner products cache. Hence we can quite af-
- ’ ford to make the remaining steps of an iteration a little more

At each iteration, MDM algorithm attempts to decreage) COMplex, provided that leads to some gain and does not dis-
whereas Gilbert's algorithm only tries to decreggé—z, »). tu_rb the deterr_mnatlon_afmm, ¢ max, and the updz:;\tmgs. Since
This can be seen geometrically in Fig. 4. MDM algorithm trie§ilbert's algorithm mainly requires the computatioriofl —z)
to crush the total slab toward zero while Gilbert's algorithm onf#1d sz(~=), which are anyway computed by the MDM algo-
attempts to push the lower slab to zero. This is the essentf§iM. it is possible to easily insert the main idea of Gilbert's
difference between the two algorithms. Note that, if therefis 90rithm into MDM algorithm so as to improve it. A number
satisfying (24) then MDM algorithm has a much better potenti&lf ideas emerge from this attempt. We will first describe these
to quickly eliminate suct from the representation. ideas and then comment on their goodness.

Let us now describe the main step of MDM algorithm. Let The situation at a typical iteration is shown in Fig. 5. As be-
+min be an index such that fore, let us take the representation foas

o z = E Wy
—Z Wi min = min (—z - wy) YWt
tiye >0 +

e,z = z*.

Letd = sz(—2) — Wy min. With the reduction ofA(z) in mind, Without loss of generality let us assume that —z) = w; max
MDM algorithm looks for improvement of norm value along thdor some index¢ max. (If sz(—z) is not equal to anyv;, we
directiond atz. ForA > 0, letz = z + A\d and#()\) = ||z||2. can always include it as one maig and set the corresponding
Since¢’(0) = 22 - d = —2A(z), itis easy to see that moving~,; to zero without affecting the representation.ah anyway.)
alongd will strictly decreasd|z|| if z # z*. Since, in the rep- The pointsw; i, @andw, 1,5 are, respectively, shown asand
resentation foe, v min decreases during this movemehtias B in the figure. The pointz + ¢ min (Wt max — Wt min) (i-€., the
to be limited to the interval defined iy < A\ < 44 in. Define  z of MDM algorithm) is shown a€”.

Z = z+ v mind. SO, the basic iteration of MDM algorithm con- Idea 1: At Step 2 of each iteration of the MDM algorithm,
sists of finding the point of minimum norm on the line segmenéke # to be the point of minimum norm ofiy, the triangle
joining » andz. formed byz, C and B.



KEERTHI et al.: A FAST ITERATIVE NEAREST POINT ALGORITHM FOR SUPPORT VECTOR MACHINE CLASSIFIER DESIGN 131

An algorithm for computing the point of minimum norm on We say that an indexX; satisfies conditiond at (u, v) if
atriangle is given in the Appendix. Since the line segment con-

nectingz andC (the one on which MDM algorithm finds the kelo—2-zn+2-u> ; z||? (26)
minimum point) is a part off}, this idea will locally perform €n
(in terms of decreasing norm) at least as well as MDM algo- ked oz zm—z-v2 PLL 27)

rithm. Note also that, since the minimum norm pointfncan . . . .
be expressed as a linear combinatioroft andB, the cost of _ SUPPOSE: satisfies (26). Ifu is the point on the line segment

updatingy, and the inner products cache is the same as that@fing « andz; that is closest ta, then, by the relation (A.8)
MDM algorithm. given in the Appendix we get an appreciable decrease in the

For a givery, let us define objective function of NPP

- . f. €
A0 = (e ). Hu—wﬁ—nu—wﬁzmm<a3J (28)

Clearly, =(£) is the pointinZ obtained by removingy; fromthe Wheree = 0.5¢[|2]|*. A parallel comment can be made/f
representation of and doing a renormalization. Let us definsatisfies (27). Onthe other hand, if we are unable to find an index

1—%

A’ = z(¢min); see Fig. 5. Since k satisfying.A then (recall the definitions from Section IlI) we
get
C==z + Yt min | Wt max — Wtmin) = 1- Yt min Al + Y minB a a
i pin) = (L= i 47 gu(=20) S Sllel gv(z0) < SHAIP glww) < elz?
it follows thatC lies on the line segment joining’ andw; ,ax. (29)

Idea 2: At Step 2 of each iteration of MDM algorithm, takewhich, by Theorem 3, is a good way of stopping. These obser-
z to be the point of minimum norm ofY,, the triangle formed vations lead us to the following generic algorithm, which gives

by z, A’ and B. ample scope for generating a number of specific algorithms
Becaus€; contains?y, Idea 2 will produce & whose norm from it. The efficient algorithm that we will describe soon after
is less than or equal to that produced by Idea 1. is one such special instance.

One can carry this idea further to generate two more ideasGeneric Iterative Algorithm for NPP:
Let B’ = 2(t max) andD be the point of intersection of the line0) Choose: € U, v € V and setr = u — v.

joining A, B’ and the line joining3, A’; itis easily checked that 1) Find an index: satisfying.A. If such an index cannot be

D is the point obtained by removing both the indexesin and found, stop with the conclusion that the approximate opti-
tmax from the representation afand then doing a renormal-  mality criterion, (29) is satisfied. Else go to Step 2) with the
ization, i.e., k found.
1 2) Choose two convex polytopds,c U andV C V such that
D= (Z — Yt minWt min — VYt maxWt ma.x)~ u € U, v € V and
(1 — Ytmin — Vt max)

Let Q3 denote the quadrilateral formed by the convex hull of . -

{A, B, A, B’} andT, be the triangle formed b, A, andB. aelU ifkel, zneV ifkeld (30)
Siiaégs’ﬁ OCSth,V.V/-t\Lsa%galgn%the lines of an earlier argumemCompute(a,f/) to be a pair of closest points minimizing the
Idea 3: At Step 2 of each iteration of MDM algorithm, takedistance betweety and V. Setu = 4, v = ¢ and go back to
- . - Step 1). O

Z to be the point of minimum norm ofys.

Idea 4: At Step 2 of each iteration of MDM algorithm, takef] i:ptflzsler;emsstfr?eiz _V(\)/i_do glnedfollo;vnlgg‘gflf_e 1, Chl;)lzze
# to be the point of minimum norm dfi;. ! 9 Joining and zy, = {u}. v

We implemented and tested all of these ideas. Idea 1 giveI flaf € J, choosel” as the line segment joining andz;, and

. . = {u}. Then the algorithm is close in spirit to Gilbert's algo-
very good overall improvement over MDM algorithm and Ide thm. Note however, that here only one indéplays a role in

2 improves it further, a little more. However, we have founcﬁ1 . : . ; . . .
: e iteration, whereas Gilbert's algorithm requires two indexes
that, in overall performance, Idea 3 performs somewhat worse

ne each frond and.J) to definez. In a similar spirit, by appro-

compared to Idea 2, and Idea 4 performs even worser! (We do o~ ~ . . .
not have a clear explanation for these performances.) On réately choosing’ andV’, the various ideas of Section V-C can

basis of these empirical observations, we recommend Idea CE%(:X;egthﬂgéh:F (I)r:i\'?rjmlr\r?nvg\]/eonlr%\t/\év?:cﬂ?/g)r(eesﬁEeegofrterzwgvee?::ric
be the best one for use in modifying MDM algorithm. 9 ' P 9 9

algorithm.

Theorem 5:The generic iterative algorithm terminates in
Step 1 with a(u,v) satisfying (29), after a finite number of

In this section we will give an algorithm for NPP directlyiterations.
in the space in whictt/ and V' are located. The key idea is The proof is easy. First, note that (28) holds because of the
motivated by considering Gilbert's algorithm. Letc I/ and way 7 andV are chosen in Step 2). Since, by assumption A1,
v € V be the approximate solutions at some given iteration aiiel||? is uniformly bounded below by zero, there is a uniform
z=u—uv. decrease iffz||? at each iteration. Since the minimum distance

VI. A FAST ITERATIVE ALGORITHM FORNPP
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betweerl/ andV is nonnegative the iterations have to terminate
within a finite number of iteratons. ... .

Consider the situation in Step 2) where an indesatisfying o
A is available. Suppose the algorithm maintains the following R AT
representations far andv:

U = Zﬁizi, v = Zﬁjzj (31) B
icT jcJ s

wherel c I, J c J, and D

B>0 Veeluld, Y pi=1 > pi=1
icl jcd Fig. 6. lllustration ofi min, j min,, ¢ max, andj max. HereC' = z; jmin,

i ~ ~ i D = z;min. A = Zimax andB = Zjmax-

We will refer to az,, k € I U J as asupport vectorconsis-

tent with the terminology adopted in the literature. Let us defin~,

1min andj min as follows (see Fig. 6):

imin = argmin{—z -z :i € I, 5; > 0} <
Jjmin =argmin{z-z; : j € J, B; > 0}. (32) C’%

u

]

|

| i

(Though redundant, we have stated the conditigns; 0 and ' !
B; > 0 to stress their imgortapce. Also, in a numerical imple E D,<i7'

mentation, an index € [ U J having s, = 0 could occur ! y
numerically. Unless such indexes are regularly cleaned out
TU J, itis best to keep these positivity checks in (32).) Case 1 Case 2
There are a number of ways of combiningv, z;, and one
index from {7 min, jmin} and then doing operations along -
ideas similar to those in Section V-C to create a variety ¢ u
possibilities forl/ and V. We have implemented and tested \

|

'\1 _

some of the promising ones and empirically arrived at one fin: A C
choice, which is the only one that we will describe in detail.

First we sef min as follows:k min = ¢ min if —» - 2; pin + D
Z-u < Z- Zjmin — 2 - v; €lsekmin = jmin. Then Step 2) is
carried out using one of the following four cases, depending c VNSl D
k andk min. See Fig. 7 for a geometric description of the case: Case 3 Case 4

Case 1k € I, kmin € I. Let C’ be the point in/ obtained
by removingzx i, from the representation af, i.e.,

Fig. 7. A geometric description of the four cases. For Cases 1 aAd3z,;
1 for Cases 2 and 43 = z.
Cl = m(u - Bk min?k min) =u+ /J(U — 2k min)
. (33) [17]. Tremendous improvement in efficiency can be achieved by
wherep = Bimin/(1 — Brmin). Choosel/ to be the triangle doing two things: 1) maintaining and updating caches for some
formed byu, C" andz; and,V = {v}. variables and 2) interchanging operations between the support
Case 2:k € J, kmin € J. Let D’ be the pointinV” obtained vector and nonsupport vector sets. These ideas are directly in-
by removingzy min from the representation af i.e., spired from those used by Platt in his SMO algorithm. Let us
1 now go into these details.
D= m(v—ﬁk min?k min) = V(U =2k min) (34) First let us discuss the need for maintaining cache for some
Foxmin variables. A look at (26), (27), and (32) shows that,, v - 2,
wherey = Brmin/(1 — Bk min)- ChooseV to be the triangle « - u, u - v, v - v andz - z are important variables. If any of
formed byv, D’ andz,; and,U = {u}. these variables is to be computed from scratch, it is expensive;
Case 3:k € I, kmin € J. Choosel’ to be the line segment for example, computation af - z (for a singlek) using (31)
joining « andz,,; andV to be the line segment joiningandD’  requires the evaluation ef; kernel computations an@(m; )
whereD’ is as in (34). computation (wheren; = |f|, the number of elements if)
Case 4k € J, kmin € I. Choose¥ to be the line segment and, to computémin of (32) this has to be repeated, times!
joining v andz; andU to be the line segment joiningandC’  Therefore it is important to maintain caches for these variables.
whereC” is as in (33). Let us definee, (k) = w - 2, e,(k) = v - 2z, bpu = © - 1,
This defines the basic operation of the algorithm. Efficier#t,, = v - v, 6y, = w-v,andé.. = = - 2.
algorithms for doing nearest point computations involving a Among these cache variables,ande, are the only vectors.
triangle and line segments can be found in the Appendix aBihce the algorithm spends much of its operation adjusting the
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of the support vectors, itis appropriate to bring in the nonsupport TABLE |

vectors only rarely to check satisfaction of optimality criteria. PROPERTIES OFDATA SETS

In that case, it is efficient to maintaia, (k) ande, only for

k € TU J and, for other indexes comput(e )these quantities from DataSet | o* | n M| Mval | Mitest

scratch whenever needed. Checkers | 0.5 | 2 | 465 | 155 | 155
As mentioned in the last paragraph, it is important to spend Adult-1 | 10.0 | 123 | 1605 | 535 | 535

most of the iterations using € 1 U .J. With this in mind, we Adult-4 | 10.0 [ 123 | 4781 | 1594 | 1594

define two types of loops. ThEype lloop goeonceover allk ¢ Adult-7 | 10.0 | 123 | 16100

IU J, sequentially, choosing one at a time, checking condition
A, and, if it is satisfied, doing one iteration, i.e., Step 2) of the
generic algorithm. Th&ype Illoop operates only with € U sjnce Platt's SMO algorithm is currently one of the fastest algo-
J, doing the iterations many many times until certain criteria afghms for SVM design, we compare NPA against SMO. Apart
met. Whereas, in Platt's SMO algorithm, the iterations run ovgbm Comparison of Computationa| cost we also compare the
one support vector index at a time, we have adopted a differgpt algorithms on how well they generalize.
strategy for Type Il loop. Let us definenax, j max, andkmax  We implemented both algorithms in Fortran and ran them
as follows: using¢77 on a 200-MHz Pentium machine. SMO was imple-
mented exactly along the lines suggested by Platt in [20].
; Although we have compared the methods on a number of
Jmax = argmax{z - z; : j € J} (35) problems, here we only report the (representative) performance
on two benchmark problems: Checkers data and UCI Adult data
[25], [21]. We created the Checkers data by generating a random
kxmx:{ imax, if —z Zimax+ 72 4> 2 Zjmax—z-v Set of points on a 4« 4 checkers grid [14]. The Adult data set
< jmax, otherwise. was taken from Platt's web page [21]. In the case of Adult data
(36) set, the inputs are represented in a special binary format, as used
These can be efficiently computed mainly because of thg Platt in the testing of SMO. To study scaling properties as
caching ofe,, (k) ande, (k) for all k € 7 U J. A basic Type Il training data grows, Platt did staged experiments on the Adult
iteration consists of determiningmax and doing one iteration data. We have used only the data from the first, fourth and sev-
using £ = kmax. These iterations are continued until thenth stages. For training we used exactly the sets given by Platt.
approximate optimality criteria are satisfied over the suppdfbr validation and testing we used subsets of the large valida-
vector set, i.e., when tion and test sets given by Platt. The Gaussian kernel

tmax = argmax{—z -z :9i€ [}

€
gy = =2 Zimax + 2w < o2 K(zi,2;) = exp(—=0.5||z; — ,]|2/o2)

€
supp __ . . _ . < e 2 . .
4 2 Zjmax =20 < Sl|Z]" @37) was used in all experiments. Thé values employeds, the
2

eﬁiimension of the input, anéh, m.,;, andmy.:, the sizes of

In the early stages Of‘ the algorithm (fay a few of the Typ.tﬁe training, validation and test sets, are given in Table |. The
then-Typell rounds) a “nearly accurate” set of support vector in- . . .
a- values given in this table were chosen as follows. For the

dexes get identified. Until th?t happens, we hgve fqund that ItAsdult data thes? values are the same as those used by Platt in
wasteful to spend too much time doing Type Il iterations. Therg-

fore we have adopted the following strategy. If, at the point Q S experiments on SMO; fqr th_e Checkers data, we chdse
Suitably to get good generalization.

entry to a Type Il loop, the percentage difference of the numberWe first applied the three algorithms on the training sets and

of support vectors as Ocompared W'th the value at the prev'gclzjgmpared the computational costs. The algorithms apply to dif-
entr_y Is greater than 2%, then we I'”."F the ngmper of Type | IH"erent SVM formulations: SMO solves SVM-VL whereas NPA
erations tan, the total number of training pairs in the problem, olves SVM-VQ. Hence, to do a proper cross comparison of the
This is done to roughly make the cost of Type | and Type i . '

loops equal. In anv case. we have found it useful to limit thmethods, we did the following. Le¥/ denote the final margin
ps equal. y case, . . Shtained by a solution in the solution space. For each data set,
number of Type Il iterations t@0m. The algorithm is stopped

we chose two different ranges f6randC values in such a way

when (37) holds, causing the algorithm to exit Type Il loop, an%
. . o o at they roughly cover the same rangé\éfvalues. (It may be
in the Type | loop that follows there is rpsatisfying condition noted tgaﬂ\/[%az an inverse relationsghip Wit and(C*.) Ti¥en

A. . : : : e ran the methods on a bunch@andC values sampled from
Full details concerning the actual implementation of the fu L

. : ose ranges. Such a study is important for another reason, as

algorithm and a pseudocode for the algorithm can be found in : . . =
. L . ell. When a particular method is used for SVM desigror C

[14]. Using them it is extremely easy to develop a working code . ;
; ) IS usually unknown, and it has to be chosen by trying a number
in short time. . I
of values and using a validation set. Therefore, fast performance
of a method in a range @ or C values is important. Whether
or not a particular method has such a performance gets revealed
In this section we empirically evaluate the performance afearly in our experiments. A common stopping criterion was

the nearest point algorithm (NPA) described in the last sectiahosen for both methods; see [14] for details.

VII. COMPUTATIONAL EXPERIMENTS
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Fig. 9. Adult-1 data: CPU time (in seconds) shown as a function of the margiri‘g_ 11.

y: Adult-7 data: CPU time (in seconds) shown as a function of the margin
M. M.

For the various datasets, Figs. 8-11 show the variation gba For each combination of algorithm and dataset, the cor-

computing cost (measured as CPU time in seconds) asafun_cpggbonding validation set was used to choose the Gest C'
of the margin }/. On an average, SMO and NPA perform quitg., e (The Adult-7 dataset was not used in these experiments

closely. At smallM values (larger’, C' values), NPA s€ems 10 o556 of the large computing times involved in choosing op-
do better than SMO, which indicates thatit is a better method ff?rrnal C andC values using the validation set.) Using the clas-
solving SVM-NV. For the highe/ values the two algorithms i ¢orresponding to this best value the performance (per-

are equally efficient. The performance on the Adult datasets ajsg,» ye misclassification) on the test set was evaluated. The re-

indicates th‘f"t NPA scale; to large size p_rot_)lems aswellas SMQys are givenin Table lll. Clearly, the classifiers designed using
Table Il gives a rough idea of the variation of the number (gMO and NPA give nearly the same performance
support vectors witld/ for the various combinations of datasets '

and algorithms. The linear violation formulation (SMO) results
in a smaller number of support vectors when compared to the
guadratic violation formulation (NPA). While the difference is In this paper we have developed a new fast algorithm for
small for the Checkers dataset, the difference is prominent fbesigning SVM classifiers using a carefully devised nearest
the Adult datasets, especially at high (smallC, C) values. If point algorithm. The comparative performance of this algo-
such a difference occurs in a particular problem, then the lingéthm against the SMO algorithm on a number of benchmark
formulation has an advantage when using the SVM classifier fproblems is excellent. The performance studies done in this
inference after the design process is over. paper as well as those done by Friel3 [9] indicate that the SVM
After training on severat’, C' values we studied general-classifier formulation that quadratically penalizes classification
ization properties of SVM classifiers designed using SMO andblations is worth considering. Like the SMO algorithm, our

VIIl. CONCLUSION
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TABLE I
NUMBER OF SUPPORTVECTORS THE NUMBERS ARE GIVEN AT SOME REPRESENTATIVEA VALUES. FOR SMO THE TWO VALUES IN EACH ITEM ARE THE
NUMBER OF «v;'s WHICH ARE IN THE OPEN INTERVAL (0, C') AND THE NUMBER OF «v;,'s AT C', RESPECTIVELY. FOR NPA THE VALUE IS
THE NUMBER OF NON-ZERO 3;,'S

SMO NPA
Data Set | High M | Middle M | Low M | High M | Middle M | Low M
Checkers | 21, 295 34, 80 37,0 242 88 37
Adult-1 | 55,764 | 107, 584 637, 24 1602 1034 677
Adult-4 | 68, 2136 | 233, 1653 | 1661, 190 3385 2999 1967
Adult-7 | 37, 7818 | 355, 5659 | 2438, 3728 | 11950 10181 8393

TABLE Il Case?2) ||z]|> > z- 2
PERCENTAGEMISCLASSIFICATION ON THETEST SET 7Using (A 3) we get after some algebra

Checkers | Adult-1 | Adult-4 2 \2
s _gp - (P =2-2) "
SMO | 58 138 | 146 20" = 1121° = = (A.6)
NPA 3.9 14.2 13.4
Let ||z — z|| £ L for some finiteL. (If = andz are points of a

) ) ) ) ) _ polytope then such a bound exists. By (A.4) and (A.6) we get
algorithm also is quite straightforward to implement, as indi-

cated by the pseudocode in [14]. Our nearest point formulation é?

2 112
as well as the algorithm are special to classification problems 1201 = I > Iz (A7)
and cannot be used for SVM regression. L
Combining the two cases we get
APPENDIX | 5 en2 [, e
LINE SEGMENT AND TRIANGLE ALGORITHMS 1201 = 112" > wmin {C’ 2 (A-8)

In this Appendix we give two useful algorithms: one for com- cqnsider next, the problem of computing the nearest point
puting the nearest point from the origin to a line segment; apg 5 triangle joining three points?, Q, andR from the origin.
one for computing the nearest point from the origin to a trianglgye have found it to be numerically robust to compute the min-

Consider the problem of computing the nearest point of jym distance from the origin to each of the edges of the tri-
the line segment joining two points, and 7 from the origin. gngle and the minimum distance from the origin to the inte-
Expressing: in terms of a single real variableas rior of the triangle (if such a minimum exists) and then take
the best of these four values. The first three distances can be
computed using the line segment algorithm we described above.
Let us now consider the interior. This is done by computing
the minimum distance from the origin to the two dimensional
affine space formed by, ), and R, and then testing whether

F=A7+(1— Nz (A1)

and minimizing||z||? with respect to\, it is easy to obtain the
following expression for the optimal:

1 if |z <z 2 the nearest point lies inside the triangle. Setting the gradient of
A= { 2112 —2-» . (A.2) ||P+(Q— P)\2+(R— P)X3]|? to zero and solving fok; and
TR otherwise. A, yields
It is also easy to derive an expression for the optimal value o
3|12 y P P S\Q = (622f1 - 612f2)/den, Az = (—612f1 + 611f2)/d€n
i (A.9)
e [lIZP if 2|2 <z 2 wheree;; = [|Q — P|I?, e22 = [|R = P|?, e12 = (Q —
12| = { EPEP-G2®  oiherwise. (A3) P).(R—P),den = cyiean — ¢y, f1 = (P — Q) - P, and
lIZ==II* f» = (P—R)-R.Let\; = 1 — Xy — A3. Clearly, the minimum
A1 > 0, A2 > 0,and)A; > 0; in that case, the nearest point
z-z2<|2))? - & (A.4) Isgiven byA; P+ XQ + A3 R and the square of the minimum

distance isP - P — A2 f1 — Az f2.
Let us consider two cases.

Case 1)||z||* < z- # In this case, we have, by (A.3) and
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