
JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 1

Bayesian Support Vector Regression Using a
Unified Loss function

Wei Chu, S. Sathiya Keerthi, and Chong Jin Ong,

Abstract— In this paper, we use a unified loss function, called
the soft insensitive loss function, for Bayesian support vector re-
gression. We follow standard Gaussian processes for regression to
set up the Bayesian framework, in which the unified loss function
is used in the likelihood evaluation. Under this framework, the
maximum a posteriori estimate of the function values corresponds
to the solution of an extended support vector regression problem.
The overall approach has the merits of support vector regression
such as convex quadratic programming and sparsity in solution
representation. It also has the advantages of Bayesian methods for
model adaptation and error bars of its predictions. Experimental
results on simulated and real-world data sets indicate that the
approach works well even on large data sets.

Index Terms— Bayesian Inference, Support Vector Regression,
Gaussian Processes, Non-quadratic loss function, Automatic Rel-
evance Determination, Model Selection

I. INTRODUCTION

THe application of Bayesian techniques to neural networks
was pioneered by MacKay [1], Neal [2] and, Buntine and

Weigend [3]. These works are reviewed in [4], [5] and [6].
Unlike standard neural network design, the Bayesian approach
considers probability distributions in the weight space of the
network. Together with the observed data, prior distributions
are converted to posterior distributions through the use of
Bayes’ theorem. Neal [7] observed that a Gaussian prior
for the weights approaches a Gaussian process for functions
as the number of hidden units approaches infinity. Inspired
by Neal’s work, Williams and Rasmussen [8] extended the
use of Gaussian process prior to higher dimensional regres-
sion problems that have been traditionally tackled with other
techniques, such as neural networks, decision trees etc, and
good results have been obtained. Regression with Gaussian
processes (GPR) is reviewed in [9]. The important advantages
of GPR models over other non-Bayesian models are the ability
to infer hyperparameters and the provision of confidence
intervals of its predictions. The drawback of GPR models lies
in the huge computational cost for large sets of data.

Support vector machines (SVM) for regression (SVR), as
described by Vapnik [10], exploit the idea of mapping input
data into a high dimensional (often infinite) reproducing
kernel Hilbert space (RKHS) where a linear regression is
performed. The advantages of SVR are: the presence of a
global minimum solution resulting from the minimization of
a convex programming problem; relatively fast training speed;

Manuscript received April 20, 2002; revised March 7, 2003. This work was
supported by the research scholarship of National University of Singapore.

W. Chu is with Gatsby Computational Neuroscience Unit, University
College London. S. S. Keerthi and C. J. Ong are with Department of
Mechanical Engineering, National University of Singapore.

and sparseness in solution representation. The performance of
SVR crucially depends on the shape of the kernel function
and other hyperparameters that represent the characteristics
of the noise distribution in the training data. Re-sampling
approaches, such as cross-validation [11], are commonly used
in practice to decide values of these hyperparameters, but
such approaches are very expensive when a large number of
hyperparameters are involved. Typically, Bayesian methods are
regarded as suitable tools to determine the values of these
hyperparameters.

There is some literature on Bayesian interpretations of
SVM. For classification, Kwok [12] built up MacKay’s ev-
idence framework [1] using a weight-space interpretation.
Seeger [13] presented a variational Bayesian method for model
selection, and Sollich [14] proposed Bayesian methods with
normalized evidence and error bar. In SVM for regression
(SVR), Law and Kwok [15] applied MacKay’s Bayesian
framework to SVR in the weight space. Gao et al. [16] derived
the evidence and error bar approximation for SVR along the
way proposed by Sollich [14]. In these two approaches, the
lack of smoothness of the ε-insensitive loss function (ε-ILF)
in SVR may cause inaccuracy in evidence evaluation and
inference. To improve the performance of Bayesian inference,
we use a unified non-quadratic loss function for SVR, called
the soft insensitive loss function (SILF). The SILF is C1

smooth and possesses the main advantages of ε-ILF, such as
insensitivity to outliers and sparseness in solution representa-
tion. We follow standard GPR to set up Bayesian framework,
and then employ SILF in likelihood evaluation. Maximum a
posteriori (MAP) estimate of the function values results in an
extended SVR problem, so that quadratic programming can be
employed to find the solution. Optimal hyperparameters can
then be inferred by Bayesian techniques with the benefit of
sparseness, and error bars of its predictions.

The important advantages of our Bayesian treatment on
SVR using the SILF (BSVR) over classical SVR are: (1)
the capability to systematically and efficiently infer optimal
hyperparameters together with feature selection; and (2) the
ability to compute predictive distribution using the probabilis-
tic framework. Moreover, Bayesian model selection achieves
quite better generalization performance on sparse training data
sets than cross validation does. Compared with GPR, BSVR
possesses: (1) the sparseness property that greatly reduces the
computational cost in Bayesian inference and thus helps us
to tackle large data sets, and (2) the insensitivity property to
outliers that helps us to achieve robust performance on some
real data sets.

The paper is organized as follows: in section II we review

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 2

the standard framework of regression with Gaussian processes;
in section III we propose SILF as a unified non-quadratic loss
function, and describe some of its useful properties; in section
IV we employ SILF as the loss function in the MAP estimation
of function values, and show that the associated optimiza-
tion problem is a constrained convex quadratic programming
problem; in section V we carry out hyperparameter inference
by evidence maximization, and then intrinsically incorporate
feature selection in the model adaptation; in section VI we
discuss the predictive distribution for test cases; in section VII
we carefully study our algorithm on simulated and real data
sets, and also consistently compare our method with GPR and
SVR for generalization performance and computational cost
on benchmark data; we conclude the paper in section VIII.

II. BAYESIAN FRAMEWORK IN GAUSSIAN PROCESSES

In regression problems, we are given a set of training data
D = {(xi, yi)|i = 1, . . . , n, xi ∈ R

d, yi ∈ R} which is
collected by randomly sampling a function f , defined on R

d.
As the measurements are usually corrupted by additive noise,
training samples can be represented as

yi = f(xi) + δi i = 1, 2, . . . , n (1)

where the δi are independent, identically distributed (i.i.d.)
random variables, whose distributions are usually unknown.
Regression aims to infer the function f , or an estimate of
it, from the finite data set D. In the Bayesian approach, we
regard the function f as the realization of a random field with a
known prior probability. Let f = [f(x1) f(x2) . . . f(xn)]T .
The posterior probability of f given the training data D can
then be derived by Bayes’ theorem:

P(f |D) = P(D|f)P(f)
P(D) (2)

where P(f) is the prior probability of the random field and
P(D|f) is the conditional probability of the data D given the
function values f which is exactly

∏n
i=1 P(yi|f(xi)). Now

we follow the standard Gaussian processes [8] [9] to describe
a Bayesian framework.

A. Prior Probability

We assume that the collection of training data is the real-
ization of random variables f(xi) in a zero mean stationary
Gaussian process indexed by xi. The Gaussian process is
specified by the covariance matrix for the set of variables
{f(xi)}. The covariance between the outputs corresponding
to inputs xi and xj can be defined as

Cov[f(xi), f(xj)] = Cov(xi, xj)

= κ0 exp

(

−κ
2

d
∑

l=1

(xli − xlj)2
)

+ κb

(3)
where κ > 0, κb > 0 denotes the variance of the offset to
the function f(x), κ0 > 0 denotes the average power of f(x),
and xl denotes the l-th element of the input vector x. Such a
covariance function expresses the idea that cases with nearby
inputs have highly correlated outputs. Note that the first term

in (3) is the Gaussian kernel in SVM, while the second term
corresponds to the variance of the bias in classical SVR [10].
Other kernel functions in SVM, such as polynomial kernel,
spline kernel [11], ANOVA decomposition kernel [17] etc., or
their combinations can also be used in covariance function,
but we only focus on Gaussian kernel in the present work.

Thus, the prior probability of the functions is a multivariate
Gaussian with zero mean and covariance matrix as follows

P(f) = 1

Zf

exp

(

−1
2
fTΣ−1f

)

(4)

where f = [f(x1), f(x2), . . . , f(xn)]
T , Zf = (2π)n/2

√

|Σ|
and Σ is the n×n covariance matrix whose ij-th elements is
Cov[f(xi), f(xj)].1

B. Likelihood Function

The probability P(D|f), known as likelihood, is essentially
a model of the noise. If the additive noise δi in (1) is i.i.d.
with probability distribution P(δi), P(D|f) can be evaluated
by:

P(D|f) =
n
∏

i=1

P(yi − f(xi)) =
n
∏

i=1

P(δi) (5)

Furthermore, P(δi) is often assumed to be of the exponential
form such that

P(δi) ∝ exp(−C · `(δi))

where `(·) is called the loss function and C is a parameter
greater than zero. Thus, the likelihood function can also be
expressed as

P(D|f) ∝ exp
(

−C ·
n
∑

i=1

`(yi − f(xi))
)

(6)

Hence, the loss function characterizes the noise distribution
which, together with the prior probability P(f), determines
the posterior probability P(f |D).

C. Posterior Probability

Based on Bayes’ theorem (2), prior probability (4) and the
likelihood (5), posterior probability of f can be written as

P(f |D) = 1

Z exp (−S(f)) (7)

where S(f) = C
∑n

i=1 ` (yi − f(xi)) + 1
2f

TΣ−1f and Z =
∫

exp(−S(f))df . The maximum a posteriori (MAP) estimate
of the function values is therefore the minimizer of the
following optimization problem:2

min
f
S(f) = C

n
∑

i=1

` (yi − f(xi)) +
1

2
fTΣ−1f (8)

1If the covariance is defined using (3), Σ is symmetric and positive definite
if {xi} is a set of distinct points in R

d [18].
2S(f) is a regularized functional. As for the connection to regularization

theory, Evgeniou et al. [19] have given a comprehensive discussion.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 3

Let fMP be the optimal solution of (8). If the loss function in
(8) is differentiable, the derivative of S(f) with respect to f

should be zero at fMP, i.e.

∂S(f)

∂f

∣

∣

∣

∣

fMP

= C
n
∑

i=1

∂` (yi − f(xi))
∂f

∣

∣

∣

∣

∣

fMP

+Σ−1f = 0

Let us define the following set of unknowns wi =

− C ∂`(yi−f(xi))
∂f(xi)

∣

∣

∣

fMP(xi)
∀i, and w as the column vector con-

taining {wi}. Then fMP can be written as:

fMP = Σ ·w (9)

The elegant form of a minimizer of (8) is also known as the
representer theorem [20]. A generalized representer theorem
can be found in [21], in which the loss function is merely
required to be any strictly monotonically increasing function
` : R → [0,+∞).

D. Hyperparameter Evidence

The Bayesian framework we described above is conditional
on the parameters in the prior distribution and the parameters
in likelihood function, which can be collected as θ, the hyper-
parameter vector. The normalizing constant P(D) in (2), more
exactly P(D|θ), is irrelevant to the inference of the functions
f , but it becomes important in hyperparameter inference, and
it is known as the evidence of the hyperparameters θ [1].

III. A UNIFIED NON-QUADRATIC LOSS FUNCTION

There are several choices for the form of the loss function.
In standard Gaussian processes for regression (GPR), Gaussian
noise model is used in likelihood function [8] [9], which is of
the form

PG(δ) =
1√
2πσ

exp

(

− δ2

2σ2

)

,

where the parameter σ2 is the noise variance and the corre-
sponding loss function is the quadratic function `(δ) = 1

2δ
2.

This choice of the Gaussian likelihood, together with the
Gaussian process prior for the functions f , yields a posterior
distribution of f that can be computed exactly using matrix
operations in the GPR formulation. This is one reason why
the Gaussian noise model is popularly used.

However, one of the potential difficulties of the quadratic
loss function is that it receives large contributions from out-
liers. If there are long tails on the noise distributions then the
solution can be dominated by a very small number of outliers,
which is an undesirable result. Techniques that attempt to
solve this problem are referred to as robust statistics [22].
Non-quadratic loss functions have been introduced to reduce
the sensitivity to the outliers. The three non-quadratic loss
functions commonly used in regression problems are:

1) the Laplacian loss function defined as `(δ) = |δ|;
2) the Huber’s loss function [22] defined as

`(δ) =







δ2

4ε
if |δ| ≤ 2ε

|δ| − ε otherwise.
(10)

where ε > 0;

−2
 −1
 0
 1
 2

0

0.5

1

1.5

2

Quadratic Loss Function

−2
 −1
 0
 1
 2

0

0.5

1

1.5

2

Laplacian Loss Function

−3
 −2
 −1
 0
 ε
 2
 3

0

0.5

1

1.5

2

Huber’s Loss Function

−3
 −2
 −1
 0
 ε
 2
 3

0

0.5

1

1.5

2

Epsilon Insensitive Loss Function

Fig. 1. Graphs of popular loss functions, where ε is set at 1.

3) the ε-insensitive loss function (ε-ILF) [10],

`(δ) =

{

0 if |δ| ≤ ε
|δ| − ε otherwise.

where ε > 0.
From their definitions and Figure 1, the Huber’s loss func-

tion and ε-ILF approach the Laplacian loss function as ε→ 0.
In addition, Laplacian loss function and ε-ILF are non-smooth,
while Huber’s loss function is a C1 smooth function which can
be thought of as a mixture between Gaussian and Laplacian
loss function.
ε-ILF, used in SVR, is special in that it gives identical

zero penalty to small noise values. Because of this, training
samples with small noise that fall in this flat zero region are
not involved in the representation of regression functions. This
simplification of computational burden is usually referred to as
the sparseness property. All the other loss functions mentioned
above do not enjoy this property since they contribute a
positive penalty to all noise values other than zero. On the
other hand, quadratic and Huber’s loss function are attractive
because they are differentiable, a property that allows appropri-
ate approximations to be used in the Bayesian approach. Based
on these observations, we combine their desirable features
and introduce a novel unified loss function called the soft
insensitive loss function.

The soft insensitive loss function (SILF) is defined as:

`ε,β(δ) =







































−δ − ε if δ ∈ ∆C∗

(δ + (1− β)ε)2
4βε

if δ ∈ ∆M∗

0 if δ ∈ ∆0
(δ − (1− β)ε)2

4βε
if δ ∈ ∆M

δ − ε if δ ∈ ∆C

(11)

where 0 < β ≤ 1, ε > 0, ∆C∗ :=
(

− ∞,−(1 + β)ε
)

,
∆M∗ := [−(1+β)ε,−(1−β)ε], ∆0 := (−(1−β)ε, (1−β)ε),
∆M := [(1−β)ε, (1+β)ε] and ∆C :=

(

(1+β)ε,+∞
)

. There

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 4

−1.5
 −1
 −(1+β)ε
 −0.5
 −(1−β)ε
 0
 (1−β)ε
 ε=0.5
 (1+β)ε
 1
 1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆ο
 M
∆
∆
M*
∆
C*
 ∆
C

Soft Insensitive Loss Function

Noise Distribution

Fig. 2. Graphs of soft insensitive loss function (solid curve) and its
corresponding noise density function (dotted curve), where ε = 0.5, β = 0.5
and C = 2.0 in the noise model.

is a profile of SILF as shown in Figure 2. The properties of
SILF are entirely controlled by two parameters, β and ε. For a
fixed ε, SILF approaches ε-ILF as β → 0; on the other hand,
it approaches the Huber’s loss function as β → 1. In addition,
SILF becomes the Laplacian loss function as ε → 0. If ε is
held at some large value and β → 1, SILF approaches the
quadratic loss function for all practical purposes.

The derivatives of the loss function are needed in Bayesian
methods. The first order derivative of SILF can be written as

d`ε,β(δ)

dδ
=



































−1 if δ ∈ ∆C∗

δ + (1− β)ε
2βε

if δ ∈ ∆M∗

0 if δ ∈ ∆0
δ − (1− β)ε

2βε
if δ ∈ ∆M

1 if δ ∈ ∆C

where 0 < β ≤ 1 and ε > 0. The loss function is not twice
continuously differentiable, but the second order derivative
exists almost everywhere:

d2`ε,β(δ)

dδ2
=







1

2βε
if δ ∈ ∆M∗ ∪∆M

0 otherwise
(12)

where 0 < β ≤ 1 and ε > 0.
We now derive some of the properties of the noise model

corresponding to SILF, as they are useful in the subsequent
development. The density function of the additive noise in
measurement corresponding to the choice of SILF is

PS(δ) =
1

ZS
exp

(

− C · `ε,β(δ)
)

(13)

where ZS =
∫

exp
(

−C ·`ε,β(δ)
)

dδ. It is possible to evaluate

the integral and write ZS as:

ZS = 2(1− β)ε+ 2
√

πβε

C
· erf

(

√

Cβε
)

+
2

C
exp

(

−Cβε
)

(14)

where erf(z) =
2√
π

∫ z

0

exp(−t2) dt. The mean of the noise

is zero, and the variance of the noise σ2n can be written as:

σ2n =
2

ZS

{

(1− β)3ε3
3

+
4(1− β)βε2

C

+

√

πβε

C

(

2βε

C
+ (1− β)2ε2

)

erf
(

√

Cβε
)

+

(

ε2(1− β)2
C

+
2ε(1 + β)

C2
+

2

C3

)

exp(−Cβε)
}

(15)
Remark 1: We now give an interpretation for SILF, which

is an extension of that given by Pontil et al. [23] for ε-ILF. If
we discard the popular assumption that the distribution of the
noise variables δi is a zero-mean Gaussian, but assume that
the noise variables δi have a Gaussian distribution P(δi|σi, ti)
having its own standard deviation σi and its mean ti that are
i.i.d. random variables with density functions µ(σi) and λ(ti)
respectively. Then we can compute the marginal of the noise
probability by integrating over σi and ti as follows:

P(δi) =
∫

dσi

∫

dtiP(δi|σi, ti)λ(ti)µ(σi) (16)

The probability (16) can also be evaluated in the form of loss
function as (13). Under such settings, it is possible [24] to
find a Rayleigh distribution on σi and a specific distribution
on ti, such that the evaluations of expression (13) and (16) are
equivalent. Therefore, the use of SILF can also be explained as
a general Gaussian noise model with the specific distribution
on the mean and the standard deviation.

IV. SUPPORT VECTOR REGRESSION

We now describe the optimization problem (8) arising from
the introduction of SILF (13) as the loss function. In this case,
the MAP estimate of the function values is the minimizer of
the following problem

min
f
S(f) = C

n
∑

i=1

`ε,β(yi − f(xi)) +
1

2
fTΣ−1f (17)

As usual, by introducing two slack variables ξi and ξ∗i ,
(17) can be restated as the following equivalent optimization
problem, which we refer to as the primal problem:

min
f ,ξ,ξ∗

S(f , ξ, ξ∗) = C

n
∑

i=1

(ψ(ξi)+ψ(ξ
∗
i))+

1

2
fTΣ−1f (18)

subject to






yi − f(xi) ≤ (1− β)ε+ ξi
f(xi)− yi ≤ (1− β)ε+ ξ∗i
ξi ≥ 0, ξ∗i ≥ 0 ∀i

(19)

where

ψ(π) =

{

π2

4βε if π ∈ [0, 2βε)
π − βε if π ∈ [2βε,+∞) (20)

Standard Lagrangian techniques [25] are used to derive the
dual problem. Let αi ≥ 0, α∗i ≥ 0, γi ≥ 0 and γi ≥ 0 ∀i be

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 5

the corresponding Lagrange multipliers for the inequality in
(19). The Lagrangian for the primal problem is:

L(f , ξ, ξ∗;α,α∗, ξ, ξ∗) = C

n
∑

i=1

(ψ(ξi) + ψ(ξ∗i))

+
1

2
fTΣ−1f −

n
∑

i=1

γiξi −
n
∑

i=1

γ∗i ξ
∗
i

−
n
∑

i=1

αi(ξi + (1− β)ε− yi + f(xi))

−
n
∑

i=1

α∗i (ξ
∗
i + (1− β)ε+ yi − f(xi))

(21)
The KKT conditions for the primal problem require

f(xi) =

n
∑

j=1

(αj − α∗j)Cov(xi, xj) ∀i (22)

C
∂ψ(ξi)

∂ξi
= αi + γi ∀i (23)

C
∂ψ(ξ∗i)

∂ξ∗i
= α∗i + γ∗i ∀i (24)

Based on the definition of ψ(·) given by (20) and the constraint
conditions (23) and (24), the equality constraint on Lagrange
multipliers can be explicitly written as

αi + γi = C ξi

2βε for 0 ≤ ξi < 2βε

αi + γi = C for ξi ≥ 2βε ∀i (25)

α∗i + γ∗i = C
ξ∗

i

2βε for 0 ≤ ξ∗i < 2βε

α∗i + γ∗i = C for ξ∗i ≥ 2βε ∀i (26)

If we collect all terms involving ξi in the Lagrangian (21), we
get Ti = Cψ(ξi) − (αi + γi)ξ. Using (20) and (25) we can
rewrite Ti as

Ti =







− (αi + γi)
2βε

C
if 0 ≤ αi + γi < C

−Cβε if αi + γi = C
(27)

Thus ξi can be eliminated if we set Ti = − (αi+γi)
2βε

C and
introduce the additional constraints, 0 ≤ αi + γi ≤ C. The
same arguments can be repeated for ξ∗i . Then the dual problem
becomes a maximization problem involving only the dual
variables α, α∗, γ and γ∗:

max
α,α∗,γ,γ∗

S(α,α∗,γ,γ∗) =

−1
2

n
∑

i=1

n
∑

j=1

(αi − α∗i)(αj − α∗j)Cov(xi, xj)

−
n
∑

i=1

(αi + α∗i)(1− β)ε+ (α∗i + γ∗i)
2

+

n
∑

i=1

(αi − α∗i)yi −
βε

C

n
∑

i=1

(

(αi + γi)
2
)

(28)
subject to αi ≥ 0, γi ≥ 0, α∗i ≥ 0, γ∗i ≥ 0, 0 ≤ αi + γi ≤ C
and 0 ≤ α∗i + γ

∗
i ≤ C, ∀i. As the last term in (28) is the only

one where γi and γ∗i appear, (28) is maximal when γi = 0

and γ∗i = 0 ∀i. Therefore, the dual problem can be finally
simplified as

min
α,α∗

S(α,α∗) =
βε

C

n
∑

i=1

(

α2i + α∗i
2
)

+

n
∑

i=1

(αi + α∗i)(1− β)ε

+
1

2

n
∑

i=1

n
∑

j=1

(αi − α∗i)(αj − α∗j)Cov(xi, xj)−
n
∑

i=1

(αi − α∗i)yi

(29)
subject to 0 ≤ αi ≤ C and 0 ≤ α∗i ≤ C.

Obviously, the dual problem (29) is a convex quadratic
programming problem. Matrix-based quadratic programming
techniques that use the “chunking” idea can be used for its
solutions [26]. Popular SMO algorithms for classical SVR [27]
[28] can also be adapted for its solution. For more details about
the adaptation, refer to [29].

The optimal value of the primal variables f can be obtained
from the solution of (29) as

fMP = Σ · (α−α∗) (30)

where α = [α1, α2, . . . , αn]
T and α∗ = [α∗1, α

∗
2, . . . , α

∗
n]
T .

This expression, which is consistent with (9), is the solution
to MAP estimate of the function values fMP in the Gaussian
processes.3 At the optimal solution, the training samples
(xi, yi) with associated αi−α∗i satisfying 0 < |αi−α∗i | < C
are usually called off-bound support vectors (SVs); the samples
with |αi − α∗i | = C are on-bound SVs, and the samples with
|αi − α∗i | = 0 are non-SVs. From the definition of SILF (11)
and the equality constraints (25) and (26), we notice that the
noise δi in (1) associated with on-bound SVs should belong
to ∆C∗ ∪∆C , while δi associated with off-bound SVs should
belong to the region ∆M∗ ∪∆M .4

Remark 2: From (12), the second derivative of `ε,β(δi) is
not continuous at the boundary of ∆M∗∪∆M . The lack of C2

continuity may have impact on the evaluation of the evidence
P(D|θ) (to be discussed later in Section V). However, it
should be pointed out that the noise δi seldom falls on the
boundary of ∆M∗ ∪∆M exactly, since it is of low probability
for a continuous random variable to be realized on some
particular values.

A. General Formulation

Like SILF, the dual problem in (29) is a generalization of
several SVR formulations. More exactly, when β = 0 (29)
becomes the SVR formulation using ε-ILF; when β = 1, (29)
becomes that when the Huber’s loss function is used; and when
β = 0 and ε = 0, (29) becomes that for the case of the
Laplacian loss function. Moreover, for the case of Gaussian
noise model (III), the dual problem becomes

min
α,α∗

1

2

n
∑

i=1

n
∑

j=1

(αi − α∗i)(αj − α∗j)Cov(xi, xj)

−
n
∑

i=1

(αi − α∗i)yi +
σ2

2

n
∑

i=1

(

α2i + α∗i
2
)

(31)

3In Gaussian processes, the most probable estimate and the MAP estimate
are identical.

4Note that the region ∆M∗ ∪∆M is crucially determined by the parameter
β in the SILF (11).

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 6

subject to αi ≥ 0 and α∗i ≥ 0 ∀i, where σ2 is the variance of
the additive Gaussian noise. The optimization problem (29) is
equivalent to the general SVR (29) with β = 1 and 2ε/C = σ2

provided that we keep upper bound C large enough to prevent
any αi and α∗i from reaching the upper bound at the optimal
solution. If we take the implicit constraint αi · α∗i = 0 into
account and then denote αi − α∗i as νi, it is found that the
formulation (31) corresponds to a much simpler case of

min
ν

1

2

n
∑

i=1

n
∑

j=1

νiνjCov(xi, xj)−
n
∑

i=1

νiyi +
σ2

2

n
∑

i=1

ν2i (32)

without any constraint. This is an unconstrained quadratic
programming problem. The solution on small data sets can be
found simply from a matrix inverse operation. For large data
sets, conjugate gradient algorithm could be used [30]. As for
SMO algorithm design, see the ideas on LS-SVMs discussed
in [31].

V. MODEL ADAPTATION

The hyperparameter vector θ contains the parameters in
the prior distribution and the parameters in the likelihood
function, i.e., θ = {C, ε, κ, κb}.5 For a given set of θ, the MAP
estimate of the functions can be found from the solution of the
optimization problem (17) in Section IV. Based on the MAP
estimate fMP, we show below how the optimal values of the
hyperparameters are inferred.

A. Evidence Approximation

The optimal values of hyperparameters θ can be inferred by
maximizing the posterior probability P(θ|D):

P(θ|D) = P(D|θ)P(θ)
P(D)

A prior distribution on the hyperparameters P(θ) is required
here. As we typically have little idea about the suitable values
of θ before training data are available, we assume a flat distri-
bution for P(θ), i.e., P(θ) is greatly insensitive to the values
of θ. Therefore, the evidence P(D|θ) can be used to assign a
preference to alternative values of the hyperparameters θ [1].
An explicit expression of the evidence P(D|θ) can be obtained
as an integral over the f -space with a Taylor expansion at
fMP. Gradient-based optimization methods can then be used to
infer the optimal hyperparameters that maximize this evidence
function, given by

P(D|θ) =
∫

P(D|f , θ)P(f |θ) df . (33)

Using the definitions of the prior probability (4) and the
likelihood (5) with SILF (13), the evidence (33) can be written
as

P(D|θ) = Z−1
f Z−n

S

∫

exp (−S(f)) df . (34)

The marginalization can be done analytically by considering
the Taylor expansion of S(f) around its minimum S(fMP),

5Due to the redundancy with C and the correlation with κ, κ0 is fixed at
the variance of the targets {yi} instead of automatical tuning in the present
work.

and retaining terms up to the second order. The first order
derivative with respect to f at the most probable point f is
zero. The second order derivative exists everywhere except
the boundary of the region ∆M ∪ ∆∗

M . As pointed out in
Remark 2, the probability that a sample exactly falls on the
boundary is little. Thus it is quite alright to use the second
order approximation

S(f) ≈ S(fMP)+
1

2
(f −fMP)

T · ∂
2S(f)

∂f∂fT

∣

∣

∣

∣

f=fMP

· (f −fMP)

(35)
where ∂2S(f)

∂f∂fT

∣

∣

∣

f=fMP

= Σ−1 + C · Λ and Λ is a diagonal

matrix with ii-th entry being 1
2βε if the corresponding training

sample (xi, yi) is an off-bound SV, otherwise the entry is zero.
Introducing (35) and Zf into (34), we get

P(D|θ) = exp (−S(fMP)) · |I+ C · Σ · Λ|− 1

2 · Z−n
S (36)

where I is a n× n identity matrix.
Notice that only a sub-matrix of Σ plays a role in the

determinant |I+C ·Σ·Λ| due to the sparseness of Λ. Let ΣM be
the m×m sub-matrix of Σ obtained by deleting all the rows
and columns associated with the on-bound SVs and non-SVs,
i.e., keeping the m off-bound SVs only. This fact, together
with fMP = Σ · (α−α∗) from (30), can be used to show that
the negative log probability of data given hyperparameters is

− lnP(D|θ) = 1

2
(α−α∗)T · Σ · (α−α∗) + n lnZS

+C

n
∑

i=1

`β,ε(yi − fMP(xi)) +
1

2
ln

∣

∣

∣

∣

I+
C

2βε
ΣM

∣

∣

∣

∣

(37)
where ZS is defined by (14), I is a m×m identity matrix. The
evidence evaluation (37) is a convenient yardstick for model
selection.

The expression of (37) is then used for the determination
of the best hyperparameter θ by finding the minimizer for
− lnP(D|θ). Note that the evidence depends on the set of
off-bound SVs. This set will vary when the hyperparameters
are changed. We assume that the set of off-bound SVs remains
unchanged near the minimum of (37). In this region, the evi-
dence is a smooth function of these hyperparameters. Gradient-
based optimization methods could be used for the minimizer
of (37). We usually collect {lnC, ln ε, lnκb, lnκ} as the set
of variables to tune,6 and the derivatives of − lnP(D|θ) with
respect to these variables are

∂ − lnP(D|θ)
∂ lnC

= C

n
∑

i=1

`ε,β(yi − fMP(xi))

+
1

2
trace

[

(

2βε

C
I+ΣM

)−1

ΣM

]

− n

ZS

(
√

βεπ

C
· erf(

√

Cβε) +
2

C
exp(−Cβε)

)

(38)

6The definition of variables causes the optimization problem to be uncon-
strained.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 7

∂ − lnP(D|θ)
∂ ln ε

= −1
2

trace

[

(

2βε

C
I+ΣM

)−1

ΣM

]

−C





∑

δi∈∆M∗∪∆M

δ2i − (1− β)2ε2
4βε

+
∑

δi∈∆C∗∪∆C

ε





+
n

ZS

(
√

βεπ

C
· erf(

√

Cβε) + 2(1− β)ε
)

(39)
∂ − lnP(D|θ)

∂ lnκ′
=
κ′

2
trace

[

(

2βε

C
I+ΣM

)−1
∂ΣM

∂κ′

]

−κ
′

2
(α−α∗)T

∂Σ

∂κ′
(α−α∗)

(40)
where κ′ ∈ {κb, κ}, δi = yi − fMP(xi), and α and α∗ is
the optimal solution of (29). Note that the non-SVs are not
involved in these evaluations.7

B. Feature Selection

Feature selection is an essential part in regression modelling.
Recently, Jebara and Jaakkola [32] formalized a kind of feature
weighting in maximum entropy discrimination framework, and
Weston et al. [33] introduced a method of feature selection
for support vector machines by minimizing the bounds on the
leave-one-out error.

MacKay [34] and Neal [7] proposed automatic relevance
determination (ARD) as a hierarchical prior over the weights
in neural networks. The weights connected to an irrelevant in-
put can be automatically punished with a tighter prior in model
adaptation, which reduces the influence of such a weight
towards zero effectively. ARD can be directly embedded into
the covariance function (3) as follows [9]:

Cov[f(xi), f(xj)] = Cov(xi, xj)

= κ0 exp

(

−1
2

d
∑

l=1

κl(x
l
i − xlj)2

)

+ κb

(41)
where κl > 0 is the ARD parameter that determines the
relevance of the l-th input dimension to the prediction of the
output variables. The derivatives of − lnP(D|θ) with respect
to the variables {lnκl}dl=1 can be evaluated as in (40). The
form of feature selection we use here results in a type of
feature weighting.

It is possible that the optimization problem is stuck at local
minima in the determination of θ. We minimize the impact
of this problem by minimizing (37) several times starting
from several different initial states, and choosing the one with
the highest evidence as our preferred choice for θ. It is also
possible to organize these candidates together as an expert
committee to represent the predictive distribution that can
reduce the uncertainty with respect to the hyperparameters.

C. Discussions

In classical GPR, the inversion of the full n×n matrix Σ has
to be done for hyperparameter inference. In our approach, only

7Refer to [29] for full details of the derivation.

the inversion of the m×m matrix ΣM, corresponding to off-
bound SVs, is required instead of the full matrix inverse. The
non-SVs are not even involved in matrix multiplication and the
future prediction. Usually, the off-bound SVs are small fraction
of the whole training samples. As a result, it is possible to
tackle reasonably large data sets with thousands of samples
using our approach. For very large data sets, the size of the
matrix ΣM can still be large and the computation of its inverse
can become the most time-consuming step. The parameter β
can control the number of off-bound SVs. In the numerical
experiments, we find that the choice of β has little influence
on the training accuracy and the generalization capacity, but
has a significant effect on the number of off-bound SVs and
hence, the training time. As a practical strategy for tuning β,
we can choose a suitable β to keep the number of off-bound
SVs small for large data sets.8 This can shorten training time
greatly with no appreciable degradation in the generalization
performance. Heuristically, we fix β at: 0.3 when the size of
training data sets is less than 2000; 0.1 for 2000 ∼ 4000
samples; and, 0.05 for 4000 ∼ 6000 samples.9

Clearly, Our discussion above is not suitable to the case of
classical SVR (β = 0), since in this case SILF becomes ε-
ILF, which is not smooth. An approximate evaluation for the
evidence in the case has been discussed by Gao et al. [16],
in which the (left/right) first order derivative at the insensitive
tube is used in the evidence approximation.

Schölkopf and Smola [35] proposed an interesting variant
of SVR, known as ν−SVR, in which the hyperparameter ε is
optimized in the MAP estimate. Law and Kwok [36] applied
the evidence framework [1] to ν−SVR with a particular prior
for ε, but the dependency on ε makes the consequent evidence
approximation intractable. Variational methods [37] might be
used here to tackle the integral.

VI. ERROR BAR IN PREDICTION

In this section, we present error bars for predictions on new
data points [1] [4]. This ability to provide error bars is one
of the important advantages of the probabilistic approach over
the usual deterministic approach to SVR.

Suppose a test case x is given for which the target tx
is unknown. The random variable f(x) indexed by x along
with the n random variables {f(xi)} in (4) have the joint
multivariate Gaussian distribution,

[

f

f(x)

]

∼ N
([

0
0

]

,

[

Σ k

kT Cov(x, x)

])

(42)

where f and Σ are defined as in (4), kT =
[Cov(x1, x), Cov(x2, x), . . . , Cov(xn, x)]. The conditional
distribution of f(x) given f is a Gaussian,

P(f(x)|f) ∝ exp
(

−1
2

(f(x)− fT · Σ−1 · k)2
Cov(x, x)− kT · Σ−1 · k

)

(43)

8Clearly, the number of off-bound SVs reduces, as β → 0, to the number
of off-bound SVs in the standard SVR (β = 0), but never below this number.
The set of off-bound SVs in standard SVR is usually a small part of the
training set.

9As for small size data sets, such as less than 100, we may set β at some
large value, say 0.8 ∼ 1.0, to avoid the matrix ΣM from shrinking.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 8

where the mean is Ef(x)|f [f(x)] = fT · Σ−1 · k and the
variance is V arf(x)|f [f(x)] = Cov(x, x) − kT · Σ−1 · k. At
fMP, the mean of the predictive distribution for f(x) is fTMP ·
Σ−1 · k, where fTMP · Σ−1 is just the Lagrange multipliers
(α−α∗)T in the solution of (29).10

To make predictions with the optimal hyperparameters we
have inferred, we need to compute the distribution P(f(x)|D)
in order to erase the influence of the uncertainty in f .11

Formally, P(f(x)|D) can be found from

P(f(x)|D) =
∫

P(f(x)|f ,D)P(f |D) df

=

∫

P(f(x)|f)P(f |D) df

where P(f(x)|f) is given by (43) and P(f |D) is given by (7).
We replace f ·Σ−1 by its linear expansion around fMP and use
the approximation (35) for S(f), the distribution P(f(x)|D)
can be written as:

P(f(x)|D) ∝
∫

exp

(

−1
2

(f(x)− fTMP · Σ−1 · k − (f − fMP)
T · Σ−1 · k)2

Cov(x, x)− kT · Σ−1 · k

)

· exp
(

−1
2
(f − fMP)

T (Σ−1 + C · Λ)(f − fMP)

)

df

This expression can be simplified to a Gaussian distribution
of the form:

P(f(x)|D) = 1√
2πσt

exp

(

− (f(x)− (α−α∗)T · k)2
2σ2t

)

(44)
where σ2t = Cov(x, x)− kTM · (2βεC I+ΣM)

−1 · kM and kM is
a sub-vector of k obtained by keeping the entries associated
with the off-bound SVs.

The target tx is a function of f(x) and the noise δ as in
(1), i.e. tx = f(x) + δ. As the noise is of zero mean, with
variance σ2n as given in (15), the variance of tx is therefore
σ2t + σ2n.

VII. NUMERICAL EXPERIMENTS

In the implementation of our Bayesian approach to support
vector regression (BSVR), we used the routine L-BFGS-B
[39] as the gradient-based optimization package, and started
from the initial values of the hyperparameters to infer the
optimal ones.12 We also implemented standard GPR [9] and
classical SVR [10] for comparison purpose. For GPR, evi-
dence maximization was implemented to choose the optimal
hyperparameters using the routine L-BFGS-B. In the classical
SVR, there are three tunable hyperparameters {C, ε, κ} in

10The zero Lagrange multipliers in the solution of (29) associated with
non-SVs are not at all involved in the prediction process.

11In a full Bayesian treatment, these hyperparameters θ must be integrated
over θ-space. Hybrid Monte Carlo methods [38] [2] can be adopted here
to approximate the integral efficiently by using the gradients of P(D|θ) to
choose search directions which favor regions of high posterior probability of
θ.

12In numerical experiments, the initial values of the hyperparameters were
usually chosen as C = 1.0, ε = 0.05, κb = 100.0 and κ = 0.5. We suggest
to try more starting points in practice, such as C = 10.0 or κ = 1/d where
d is the input dimension, and then choose the best model by the evidence.

the case that the Gaussian covariance function (3) is used as
the kernel function.13 Due to the prohibitive computational
cost for cross validation in three-dimensional hyperparameter
space, we simply fix ε at a reasonable value and then search
the corresponding optimal values for C and κ only. Five-
fold cross validation was employed to determine their optimal
values. The initial search was done on a 7 × 7 coarse grid
linearly spaced in the region {(log10 C, log10 κ)| − 0.5 ≤
log10 C ≤ 2.5,−2.5 ≤ log10 κ ≤ 0.5}, followed by a
fine search on a 9 × 9 uniform grid linearly spaced by 0.1
in the (log10 C, log10 κ) space. This scheme requires 650
evaluations. In order to accelerate these experiments, we also
cached the full covariance matrix in the implementation of
GPR and SVR that requires O(n2) memory, but we did not
do that for BSVR. Average squared error (ASE) and average
absolute error (AAE) are used as measures in prediction. Their
definitions are

ASE =
1

m

m
∑

j=1

(yj − f(xj))2)

AAE =
1

m

m
∑

j=1

|yj − f(xj)|

where m is the number of test cases, yj is the target value for
xj and f(xj) is the prediction at xj . The computer used for
these numerical experiments was PIII 866 PC with 384MB
RAM and Windows 2000 as the operating system.14 We start
with the simulated sinc data to study the role of β in our
approach which is the main factor of advantage over the
Huber’s loss function and the quadratic loss function, and
carry out the scaling results for SVR, BSVR and GPR; and
then we employ the ARD Gaussian covariance function to
carry out feature selection on robot arm data, and illustrate
the predictive distribution on laser generated data; we also
compare our method with GPR and SVR for generalization
capability and computational cost on some benchmark data.

A. Sinc Data

The function sinc(x) = |x|−1 sin |x| is commonly used
to illustrate SVR [10]. Training and testing data sets were
obtained by uniformly sampling data points from the interval
[−10, 10]. Eight training data sets with sizes ranging from
50 to 4000 and a single common testing data set of 3000
cases were generated. The targets were corrupted by the noise
generated by the noise model (13), using C = 10, ε = 0.1
and β = 0.3.15 From (15), the noise variance σ2n is 0.026785
theoretically. The true noise variances σ2T in each of the
training data sets were computed and recorded in the second
column of Table I as reference. The average squared noise in
the testing data set is actually 0.026612, and the true value of
average absolute noise is 0.12492.

13κ0 and κb are trivial for classical SVR in this case.
14The program bisvm.exe (version 4.2) and its source code

we used for these numerical experiments can be accessed from
http://guppy.mpe.nus.edu.sg/∼mpessk/papers/bisvm.zip.

15The simulated sinc data we generated can be accessed from
http://guppy.mpe.nus.edu.sg/∼chuwei/data/sinc.zip. As for how to generate
the noise distributed as the model (13), refer to [29].

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 9

10
3

10
2

10
1

10
0

1645

1640

1635

1630

1625

1620

β

Negative Logarithm of the Evidence

10
3

10
2

10
1

10
0

0

1000

2000

3000

4000

β

Number of Support Vectors

10
3

10
2

10
1

10
0

0

50

100

150

200

250

300

350

β

Average CPU Time in Seconds for an Evaluation

10
3

10
2

10
1

10
0

5

0

5

10

15
x 10

6

β

Test ASE Minus True Value

SVs

offbound SVs

for MAP estimate

for gradient evaluation

the true value of ASE 0.026612

(a) (b)

(c) (d)

Fig. 3. Graphs of training results with respect to different β for the 4000
sinc data set. The horizontal axis indicates the value of β in log-scale. The
solid line in the graph (a) indicates the number of SVs, while the dotted line
indicates the number of off-bound SVs. In the graph (b), the solid line indicate
the CPU time in seconds used to evaluate evidence and its gradient, and the
dotted line is the CPU time in seconds consumed for MAP estimate. In the
graph (c), the dots indicate − lnP(D|θ) in training results. In the graph (d),
the dots indicate the average squared error (ASE) in testing minus the true
value in the additive noise that is 0.026612.

We normalized the inputs of training data sets and keep the
targets unchanged. We started from the default settings with a
fixed value of β = 0.3. The training results were recorded in
the upper part of Table I. We find that the parameters C and ε
approach the true value 10 and 0.1 respectively as the training
sample size increases; σ2n, the variance of the additive noise
that is estimated by (13) approaches σ2T too; and the ASE
on testing data set also approaches the true value of average
squared noise. About 60% of training samples are selected
as SVs. However, the training time increases heavily as the
size of training data set becomes larger. The main reason is
that the number of off-bound SVs that are involved in matrix
inverse becomes larger. In the next experiment, we fixed β
at a small value 0.1 and then carried out the training results,
which were recorded in the lower part of Table I. Comparing
with the case of β = 0.3, we notice that the number of off-
bound SVs decreases significantly for the case β = 0.1. That
reduces the computational cost for the matrix inverse in the
gradient evaluation for the evidence, and hence shortens the
training time greatly. Moreover, the performance in testing
does not worsen. Although β is not fixed at its true value, as
the the size of training data increases, the estimated variance
of the additive noise σ2n still approaches σ2T and the test ASE
approaches to its true value too.

We also trained on the data set having 4000 examples,
starting from the default settings with different β ranging from
0.001 to 1.0, and plotted the training results in Figure 3. Note
that it is the Huber’s loss function (10) when β = 1.0. We find
that the number of off-bound SVs increases as β increases.
The CPU time used to evaluate the evidence and its gradients
increases significantly for β larger than 0.2, i.e., when the

10

1

10

2

10

3

0

0.05

0.1

0.15

0.2

0.25

Test AAE of GPR

data size

10

1

10

2

10

3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Test ASE of GPR

data size

10

1

10

2

10

3

0

0.05

0.1

0.15

0.2

0.25

data size

Test AAE of SVR

10

1

10

2

10

3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Test ASE of SVR

data size

10

1

10

2

10

3

0

0.05

0.1

0.15

0.2

0.25

Test AAE of BSVR

data size

10

1

10

2

10

3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Test ASE of BSVR

data size

(a)
 (b)
 (C)

(d)
 (e)
 (f)

10
1

10
2

10
3

10
0

10
2

10
4

data size

CPU Time Used by GPR

10
1

10
2

10
3

10
0

10
2

10
4

data size

CPU Time Used by SVR

10
1

10
2

10
3

10
0

10
2

10
4

data size

CPU Time Used by BSVR

slope ≈
 2.15

slope ≈
 2.36
slope ≈
 3.05

(g) (h)
 (i)

Fig. 4. SVR, BSVR and GPR on the simulated sinc data at different training
data size. The results of AAE and ASE are presented in the graph (a)∼(f)
respectively. BSVR and GPR used evidence maximization to choose optimal
hyperparameters, while five-fold cross validation was used for SVR. The
position of cross denotes the average values over the 20 repetitions, and the
vertical line indicates the standard deviation. In the graph (g)∼(i), we present
the total CPU time in seconds consumed by these three approaches in training
and test at different data sizes.

number of off-bound SVs greater than 1000. This makes the
training on large-scale data sets very slow. The introduction
of β makes it possible to reduce the number of off-bound
SVs that involves in matrix inverse, and then saves lots of
CPU time and memory. We also find that the evidence and
test ASE is slightly unstable in the region of very small β,
meanwhile the number of off-bound SVs becomes small. One
reason might be that the change on the off-bound SVs set may
cause fluctuation in evidence evaluation when the number of
off-bound SVs is very few. Thus setting β at a very small
value is not desirable. There exists a large range for the value
of β (from 0.01 to 0.1) where the training speed is fast and the
performance is good. The introduction of β makes it possible
to reduce the number of off-bound SVs that involves in matrix
inverse. This is one important advantage of our approach over
the classical GPR in which the inverse of the full matrix is
inevitable.

In the next experiments, we compared the generalization
performance and the computational cost of GPR, SVR and
BSVR on different size of the sinc simulated data. The size
of training data set ranged from 10 to 1000. The targets were
corrupted by additive Gaussian noise of variance 0.04, and
3000 noise-free samples were used as the test set for all the
training data sets. At each size, we repeat the experiments 20

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 10

TABLE I
TRAINING RESULTS ON SINC DATA SETS WITH THE FIXED VALUES, β = 0.3 OR β = 0.1. σ2

T
DENOTES THE TRUE VALUE OF NOISE VARIANCE IN

TRAINING DATA SET; σ2
n DENOTES THE NOISE VARIANCE IN TRAINING DATA RETRIEVED BY (13); − lnP(D|θ) DENOTES THE NEGATIVE LOG EVIDENCE

OF THE HYPERPARAMETERS AS IN (37); SVM DENOTES THE NUMBER OF off-bound SUPPORT VECTORS; SVC DENOTES THE NUMBER OF on-bound

SUPPORT VECTORS; TIME DENOTES THE CPU TIME IN SECONDS CONSUMED IN THE TRAINING; AAE IS THE AVERAGE ABSOLUTE ERROR IN TEST; ASE
DENOTES THE AVERAGE SQUARED ERROR IN TEST; THE TRUE VALUE OF AVERAGE SQUARED NOISE IN THE TESTING DATA SET IS 0.026612; THE TRUE

VALUE OF AVERAGE ABSOLUTE NOISE IN THE TESTING DATA SET IS 0.12492.

β Size σ2
T

C ε σ2
n κ − lnPD|θ SVM SVC TIME AAE ASE

50 .03012 15.95 .181 .02416 5.19 -1.3 23 4 0.15 .13754 .031194
100 .03553 10.00 .136 .03152 5.85 -11.1 33 25 0.40 .13027 .028481
300 .02269 11.16 .118 .02478 5.57 -113.7 90 87 5.95 .12642 .027189

0.3 500 .02669 9.36 .080 .02752 5.89 -174.8 135 218 12.9 .12544 .026765
1000 .02578 9.90 .094 .02655 5.62 -389.9 270 388 63.0 .12537 .026834
2000 .02639 10.01 .096 .02630 5.01 -808.8 539 768 436.2 .12509 .026661
3000 .02777 9.96 .106 .02770 5.20 -1146.7 833 1052 1551.4 .12511 .026671
4000 .02663 10.51 .111 .02609 5.76 -1642.2 1226 1280 3291.9 .12501 .026615

50 .03012 6.70 .086 .05018 9.42 5.51 10 20 0.11 .13411 .030065
100 .03553 12.07 .163 .02855 5.54 -10.1 19 25 0.53 .13366 .029728
300 .02269 12.05 .124 .02300 5.92 -113.8 39 100 5.13 .12651 .027212

0.1 500 .02669 9.42 .080 .02715 5.78 -174.4 57 250 9.43 .12543 .026764
1000 .02578 9.96 .095 .02631 6.09 -389.7 102 459 47.9 .12540 .026848
2000 .02639 10.06 .096 .02600 5.06 -808.5 190 920 264.7 .12512 .026662
3000 .02777 9.96 .108 .02774 5.34 -1142.6 287 1303 1070.4 .12509 .026673
4000 .02663 10.41 .109 .02623 5.74 -1643.3 446 1650 2852.3 .12502 .026619

times to reduce the randomness in training data generation.
The comparison of generalization performance is given in
Figure 4(a)∼Figure 4(f). BSVR and GPR yield better and
more stable performance than SVR on small data sets. Clearly,
when the number of training samples is small, Bayesian
approaches are much better than SVR. GPR yields sightly
better performance than BSVR when the size is less than
100, since GPR takes advantage on the Gaussian noise model
and sparseness in BSVR may lose some information on small
data sets. We presented the CPU time consumed by the
three algorithms for the bunch of tasks, separately in Figure
4(g)∼Figure 4(i). From the scaling results, we find that BSVR
requires O(n2.36) computational cost, while GPR requires
O(n3.05). This advantage of BSVR comes from the sparseness
property in Bayesian inference that help us to tackle large data
sets.

B. Robot Arm Data

The task in the robot arm problem is to learn the mapping
from joint angles, x1 and x2, to the resulting arm position
in rectangular coordinates, y1 and y2. The actual relationship
between inputs and targets is as follows:

y1 = 2.0 cosx1 + 1.3 cos(x1 + x2)
y2 = 2.0 sinx1 + 1.3 sin(x1 + x2)

(45)

Targets are contaminated by independent Gaussian noise of
standard deviation 0.05. The data set of robot arm problem
we used here was generated by MacKay [1] which contains
600 input-target pairs.16 The first 200 samples in the data set

16The robot arm data set generated by MacKay [1] is available at
http://wol.ra.phy.cam.ac.uk/mackay/bigback/dat/.

were used as training set in all cases; the second 200 samples
were used as testing set; the last 200 samples were not used.
Two predictors were constructed for the two outputs separately
in the training. We normalized the input data and keep the
original target values, and then trained with ARD Gaussian
model (41) starting from the default settings. The results are
recorded in Table II.

In the next experiment, four more input variables were
added artificially [7], related to the inputs x1 and x2 in the
original problem (45), x3 and x4 are copies of x1 and x2
corrupted by additive Gaussian noise of standard deviation
0.02, and x5 and x6 are irrelevant Gaussian noise inputs with
zero mean, as follows: x1 = x1, x2 = x2, x3 = x1+0.02 ·n3,
x4 = x2+0.02 ·n4, x5 = n5, x6 = n6, where n3, n4, n5 and
n6 are independent Gaussian noise variables with zero mean
and unit variance.17 We normalized the input data and kept
the original target values, and then trained an ARD Gaussian
model (41) starting from the default settings. The results are
recorded in Table III. It is very interesting to look at the
training results of the ARD parameters in the case of 6 inputs
in Table III. The values of the ARD parameters show nicely
that the first two inputs are most important, followed by the
corrupted inputs. The ARD parameters for the noise inputs
shrink very fast in training. We also recorded the true variance
of the additive Gaussian noise on y1 and y2 in the third column
of Table II as reference, which are about 0.0025. Although
the additive noise is Gaussian that is not consistent with our
loss function in likelihood evaluation, we retrieve the noise
variance properly. Meanwhile we keep sparseness in solution

17The robot arm data set with six inputs we generated can be accessed
from http://guppy.mpe.nus.edu.sg/∼chuwei/data/robotarm.zip.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 11

TABLE II
TRAINING RESULTS ON THE TWO-DIMENSIONAL ROBOT ARM DATA SET WITH THE FIXED VALUE OF β = 0.3. σ2

T
DENOTES THE TRUE VALUE OF NOISE

VARIANCE IN THE TRAINING DATA; σ2
n DENOTES THE ESTIMATED VALUE OF THE NOISE VARIANCE; SVM DENOTES THE NUMBER OF off-bound SUPPORT

VECTORS; SVC DENOTES THE NUMBER OF on-bound SUPPORT VECTORS; TIME DENOTES THE CPU TIME IN SECONDS CONSUMED IN THE TRAINING;
AAE IS THE AVERAGE ABSOLUTE ERROR IN TEST; ASE DENOTES THE AVERAGE SQUARED ERROR IN TEST.

y σ2
T

(10−3)
C ε σ2

n

(10−3)
κ1 κ2 κb SVM SVC TIME AAE ASE(10−3)

y1 2.743 44.94 0.057 2.681 0.682 0.248 3.86 75 21 33.8 .03930 2.491
y2 2.362 34.35 0.042 2.787 0.673 0.184 17.03 74 42 68.4 .04544 3.184

TABLE III
TRAINING RESULTS ON THE SIX-DIMENSIONAL ROBOT ARM DATA SET WITH THE FIXED VALUE OF β = 0.3. σ2

n DENOTES THE ESTIMATED VALUE OF THE

NOISE VARIANCE; SVM DENOTES THE NUMBER OF off-bound SUPPORT VECTORS; SVC DENOTES THE NUMBER OF on-bound SUPPORT VECTORS; AAE IS

THE AVERAGE ABSOLUTE ERROR IN TEST; ASE DENOTES THE AVERAGE SQUARED ERROR IN TEST.

y σ2
n

(10−3)
κ1 κ2 κ3

(10−2) κ4
(10−2) κ5

(10−5) κ6
(10−5) κb SVM SVC AAE ASE(10−3)

y1 2.696 .667 .248 .287 .0087 0.01 0.01 2.36 74 27 .03907 2.477
y2 2.779 .603 .222 8.41 .904 0.01 0.01 23.53 60 77 .04622 3.160

TABLE IV
COMPARISON WITH OTHER IMPLEMENTATION METHODS ON TESTING

ASE OF THE ROBOT ARM POSITIONS. INPUTS DENOTES THE NUMBER OF

INPUTS. ASE DENOTES THE AVERAGE SQUARED ERROR IN TESTING.

IMPLEMENTATION METHOD INPUTS ASE(10−3)

Gaussian Approximation of MacKay
Solution with highest evidence 2 5.73
Solution with lowest test error 2 5.57

Hybrid Monte Carlo of Neal 2 5.47
6 5.49

Gaussian Processes of Williams and Rasmussen 2 5.63
6 5.69

GPR using Evidence Maximization
with Gaussian Covariance Function 2 5.83

with ARD Gaussian 2 5.70
with ARD Gaussian 6 5.70

SVR using Gaussian Covariance Function
ε = 0.1 2 7.46
ε = 0.05 2 6.82
ε = 0.01 2 5.84

BSVR with β = 0.3

Gaussian Covariance Function 2 5.89
ARD Gaussian 2 5.68
ARD Gaussian 6 5.64

representation. About 50% ∼ 60% of the training samples are
selected as SVs (refer to Table II and III).

In Table IV, we compared the test ASE with that in other
implementations, such as neural networks with Gaussian ap-
proximation by MacKay [1] and neural networks with Monte
Carlo by Neal [7], and Gaussian processes for regression by
Williams and Rasmussen [8] etc. The expected test error of
ASE based on knowledge of the true distribution is about
0.005. These results indicate that our approach gives a per-
formance that is very similar to that given by well-respected

techniques.18

C. Laser Generated Data

SVR has been successfully applied to time series prediction
[40]. Here we choose the laser data to illustrate the error
bar in predictions. The laser data has been used in the Santa
Fe Time Series Prediction Analysis Competition.19 A total of
1000 points of far-infrared laser fluctuations were used as the
training data and 100 following points were used as testing
data set. We normalized the training data set coordinate-wise,
and used 8 consecutive points as the inputs to predict the next
point. We chose Gaussian kernel (3) and started training from
the default settings. β was fixed at 0.3. Figure 5 plots the
predictions on testing data set and the error bars. Although
the predictions of our model do not match the targets very
well on the region (1051-1080), our model can reasonably
provide larger error bars for these predictions. This feature is
very useful in other learning fields, such as active learning.

D. Benchmark Comparisons

We compare our method BSVR with standard GPR [9] and
classical SVR [10] upon generalization performance and com-
putational cost on some benchmark data sets. The descriptions
of these benchmark data sets we used are given as follows.

a) Boston Housing Data: The “Boston Housing” data
was collected in connection with a study of how air quality
affects housing prices. The data concerns the median price in
1970 of owner-occupied houses in 506 census tracts within
the Boston metropolitan area. Thirteen attributes pertaining to

18Note that Monte Carlo methods sample hyperparameters hundreds of
times according to P(θ|D) and then average their individual predictions.
Thus they have the advantage of reducing the uncertainty in hyperparameters.
On the other hand, our approach takes the mode of P(θ|D) as the optimal
hyperparameters.

19Full description can be found at URL: http://www-
psych.stanford.edu/∼andreas/Time-Series/SantaFe.html.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 12

1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100
20

10

0

10

20

30

time series

1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100
50

0

50

100

150

200

250

300

time series

Fig. 5. Graphs of our predictions on laser generated data. In the upper graph,
the dots indicate our predictions on the testing data set and the solid curve
describes the time series. In the lower graph, the dot indicates estimation error
that is equal to prediction minus target, and solid curves indicate the error
bars ±2

√

σ2
t
+ σ2

n in predictive distribution.

TABLE V
COMPARISON WITH RIDGE REGRESSION [17], RELEVANCE VECTOR

MACHINE [41], GPR AND SVR ON PRICE PREDICTION OF THE BOSTON

HOUSING DATA SET. ASE DENOTES THE AVERAGE SQUARED TEST ERROR.

IMPLEMENTATION METHOD KERNEL TYPE ASE

Ridge Regression Polynomial 10.44
Ridge Regression Splines 8.51
Ridge Regression ANOVA Splines 7.69

Relevance Vector Machine Gaussian 7.46

SVR Gaussian 10.27
GPR Gaussian 9.13

BSVR with β = 0.3 Gaussian 12.34

GPR ARD Gaussian 8.32
BSVR with β = 0.3 ARD Gaussian 6.99

each census tract are available for use in prediction.20 The
objective is to predict the median house value. Following
the method used by Tipping [41] and Saunders et al. [17],21

the data set is partitioned into 481/25 training/testing splits
randomly. This partitioning is carried out 100 times on the
data. We cited the test ASE results reported by other methods
in Table V.

b) Computer Activity Data: The computer activity data
was collected from a Sun Sparcstation 20/712 with 128 Mbytes
of memory running in a multi-user university department. The
data set is composed of 8192 samples with 21 attributes.22 The
task is to predict the portion of time that CPUs run in user
mode from all the 21 attributes. We partitioned the computer

20The original data can be found in StatLib, available at URL
http://lib.stat.cmu.edu/datasets/boston.

21Saunders et al. [17] used 80 cases in 481 training data as validation set
to determine the kernel parameters.

22The data set and its full description can be accessed at
http://www.cs.toronto.edu/∼delve/data/comp-activ/.

activity data into 2000/6192 training/testing splits randomly.
The partitioning was repeated 10 times independently.

c) Abalone Data: We normalize the abalone data23

to zero mean and unit variance coordinate-wise, and
then map the gender encoding (male/female/infant) into
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The normalized data set is split
into 3000 training and 1177 testing data set randomly. The par-
titioning is carried out 10 times independently. The objective
is to predict the abalone’s rings.

The results of BSVR using Gaussian covariance function
against SVR are given in Table VI. SVR yields significantly
better performance on the computer activity data than BSVR
does.24 The results of BSVR and GPR using ARD Gaussian
covariance function are presented in Table VII. ARD feature
selection greatly improves the generalization performance of
BSVR on the computer activity data and the Boston housing
data. BSVR performs significantly better than GPR in AAE
on the Boston housing data and the abalone data. Meanwhile,
BSVR is very efficient. Hence, BSVR with the benefit of
sparseness can efficiently achieve very good generalization on
reasonably large-scale data sets. If we could employ some
scheme to cache part of the covariance matrix, the training
time should be further reduced.

VIII. CONCLUSION

In this paper, we proposed a unifying loss function in a
Bayesian design for support vector regression. The SILF is
smooth and inherits most of the virtues of ε-ILF, such as insen-
sitivity to outliers and sparseness in solution representation. In
the Bayesian framework, we integrate support vector methods
with Gaussian processes to keep the advantages of both. Vari-
ous computational procedures are provided for the evaluation
of MAP estimate and evidence of the hyperparameters. ARD
feature selection and model adaptation are also implemented
intrinsically in hyperparameter determination. Another benefit
arising from the probabilistic formulation is the determination
of error bars in making predictions. Furthermore, sparseness
in the evidence evaluation and probabilistic prediction reduces
the computational cost significantly and helps us to tackle rea-
sonably large data sets. The results in numerical experiments
show that the generalization ability is competitive with other
well-respected techniques.

ACKNOWLEDGMENT

Wei Chu gratefully acknowledges the financial support
provided by the National University of Singapore through
Research Scholarship. A part of the revision work was done
at Gatsby Computational Neuroscience Unit of University
College London supported by the National Institutes of Health

23The data can be accessed via ftp://ftp.ics.uci.edu/pub/machine-learning-
databases/abalone/.

24Note that GPR with Gaussian covariance function yields ASE 18.21 ±
1.07 and AAE 2.36± 0.046 on the computer activity data that is quite close
to the test result of BSVR. SVR performs significantly better than BSVR and
GPR on this dataset, possibly because the probabilistic models prefer relatively
simple models when the noise level is quite high, while SVR selects the best
matching model using cross validation.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 13

TABLE VI
TRAINING RESULTS OF BSVR AND STANDARD SVR ON THE BENCHMARK DATA SETS. BOTH OF THEM USED THE GAUSSIAN COVARIANCE FUNCTION

(3). TIME DENOTES THE TOTAL CPU TIME IN HOURS CONSUMED BY BSVR FOR ALL PARTITIONS OF THAT DATA SET, AND SVR IS THE

CORRESPONDING VALUE OF SVR. ASE DENOTES THE TEST ASE OF BSVR AVERAGED OVER ALL PARTITIONS OF THAT DATA SET TOGETHER WITH THE

STANDARD DEVIATION, AND SVR-ASE IS THE CORRESPONDING ELEMENT OF SVR. AAE DENOTES THE TEST AAE OF BSVR, AND SVR-AAE IS THE

CORRESPONDING ELEMENT OF SVR. THE P-VALUE IS FOR THE PAIRED t−TEST ON TEST ERROR. WE USE THE BOLD FACE TO INDICATE THE CASES IN

WHICH THE INDICATED ELEMENT IS SIGNIFICANTLY BETTER; A P-VALUE THRESHOLD OF 0.01 WAS USED TO DECIDE THIS.

Data set SVR TIME SVR-ASE ASE p-value SVR-AAE AAE p-value

Housing 22.0 0.9 10.27±7.21 12.34±9.20 0.078 2.13±0.48 2.19±0.48 0.32
Computer 45.6 4.7 13.80±0.93 17.59±0.98 5.5×10−8 2.28±0.04 2.33±0.05 0.026
Abalone 67.8 6.5 0.441±0.021 0.438±0.024 0.78 0.455±0.0088 0.454±0.0086 0.95

TABLE VII
TRAINING RESULTS OF BSVR AND STANDARD GPR ON THE BENCHMARK DATA SETS. BOTH OF THEM USED THE ARD GAUSSIAN COVARIANCE

FUNCTION (41). TIME DENOTES THE TOTAL CPU TIME IN HOURS CONSUMED BY BSVR FOR TRAINING ON ALL PARTITIONS OF THAT DATA SET, AND

GPR IS THE CORRESPONDING VALUE OF GPR. ASE DENOTES THE TEST ASE OF BSVR AVERAGED OVER ALL PARTITIONS OF THAT DATA SET

TOGETHER WITH THE STANDARD DEVIATION, AND GPR-ASE IS THE CORRESPONDING ELEMENT OF GPR. AAE DENOTES THE TEST AAE OF BSVR,
AND GPR-AAE IS THE CORRESPONDING ELEMENT OF GPR. THE P-VALUE IS FOR THE PAIRED t−TEST ON TEST ERROR. WE USE THE BOLD FACE TO

INDICATE THE CASES IN WHICH THE INDICATED ELEMENT IS SIGNIFICANTLY BETTER; A P-VALUE THRESHOLD OF 0.01 WAS USED TO DECIDE THIS.

Data set GPR TIME GPR-ASE ASE p-value GPR-AAE AAE p-value

Housing 2.4 2.2 8.32±4.35 6.99±4.38 0.032 2.01±0.40 1.86±0.37 0.0060
Computer 23.0 12.1 5.58±0.25 5.80±0.27 0.070 1.686±0.023 1.687±0.026 0.99
Abalone 43.6 13.6 0.428±0.022 0.432±0.023 0.73 0.463±0.0087 0.451±0.0095 0.0094

and its National Institute of General Medical Sciences divi-
sion under Grant Number 1 P01 GM63208. The anonymous
reviewers’ thoughtful comments are gratefully appreciated.

REFERENCES

[1] D. J. C. MacKay, “A practical Bayesian framework for back propagation
networks,” Neural Computation, vol. 4, no. 3, pp. 448–472, 1992.

[2] R. M. Neal, “Bayesian training of backpropagation networks by the
hybrid Monte Carlo method,” Department of Statistics, University of
Toronto, Technical Report CRG-TR-92-1, 1992.

[3] W. L. Buntine and A. S. Weigend, “Bayesian back-propagation,” Com-
plex Systems, vol. 5, no. 6, pp. 603–643, 1991.

[4] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford
University Press, 1995.

[5] D. J. C. MacKay, “Probable networks and plausible predictions - a
review of practical Bayesian methods for supervised neural networks,”
Network: Computation in Neural Systems, vol. 6, no. 3, pp. 469–505,
1995.

[6] J. Lampinen and A. Vehtari, “Bayesian approach for neural networks -
reviews and case studies,” Neural Networks, vol. 14, pp. 257–274, 2001.

[7] R. M. Neal, Bayesian Learning for Neural Networks, ser. Lecture Notes
in Statistics. Springer, 1996.

[8] C. K. I. Williams and C. E. Rasmussen, “Gaussian processes for
regression,” in Advances in Neural Information Processing Systems,
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds., vol. 8, 1996,
pp. 598–604, mIT Press.

[9] C. K. I. Williams, “Prediction with Gaussian processes: from linear
regression to linear prediction and beyond,” Learning and Inference in
Graphical Models, 1998, kluwer Academic Press.

[10] V. N. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[11] G. Wahba, Spline Models for Observational Data, ser. CBMS-NSF
Regional Conference Series in Applied Mathematics. SIAM, 1990,
vol. 59.

[12] J. T. Kwok, “The evidence framework applied to support vector ma-
chines,” IEEE Transactions on Neural Networks, vol. 11(5), pp. 1162–
1173, 2000.

[13] M. Seeger, “Bayesian model selection for support vector machines,
Gaussian processes and other kernel classifiers,” in Advances in Neural
Information Processing Systems, vol. 12, 1999.

[14] P. Sollich, “Bayesian methods for support vector machines: Evidence
and predictive class probabilities,” Machine Learning, vol. 46, pp. 21–
52, 2002.

[15] M. H. Law and J. T. Kwok, “Bayesian support vector regression,” Pro-
ceedings of the Eighth International Workshop on Artificial Intelligence
and Statistics (AISTATS), pp. 239–244, 2001, key West, Florida, USA.

[16] J. B. Gao, S. R. Gunn, C. J. Harris, and M. Brown, “A probabilistic
framework for SVM regression and error bar estimation,” Machine
Learning, vol. 46, pp. 71–89, March 2002.

[17] C. Saunders, A. Gammerman, and V. Vovk, “Ridge regression learning
algorithm in dual variables,” in Proceedings of the 15th International
Conference on Machine Learning, 1998, pp. 515–521.

[18] C. A. Micchelli, “Interpolation of scatter data: Distance matrices and
conditionally positive definite functions,” Constructive Approximation,
vol. 2, pp. 11–22, 1986.

[19] T. Evgeniou, M. Pontil, and T. Poggio, “A unified framework for
regularization networks and support vector machines,” Massachusette
Institute of Technology, A.I. Memo 1654, 1999.

[20] G. S. Kimeldorf and G. Wahba, “Some results on Tchebycheffian spline
function,” Journal of Mathematical Analysis and Applications, vol. 33,
pp. 82–95, 1971.

[21] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer
theorem,” in Proceedings of the Annual Conference on Computational
Learning Theory, 2001.

[22] P. J. Huber, Robust Statistics. John Wiley and Sons, New York, 1981.
[23] M. Pontil, S. Mukherjee, and F. Girosi, “On the noise model of support

vector regression,” Massachusetts Institute of Technology, Artificail
Intelligence Laboratory, A.I. Memo 1651, 1998.

[24] W. Chu, S. S. Keerthi, and C. J. Ong, “A unified loss function in
Bayesian framework for support vector regression,” in Proceeding of
the 18th International Conference on Machine Learning, 2001, pp. 51–
58, http://guppy.mpe.nus.edu.sg/∼mpessk/svm/icml.pdf.

[25] R. Fletcher, Practical methods of optimization. John Wiley and Sons,
1987.

[26] R. J. Vanderbei, Linear Programming: Foundations and Extensions,
2nd ed., ser. International Series in Operations Research and Manage-
ment Science. Boston: Kluwer Academic, June 2001, vol. 37.

[27] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
GMD First, Technical Report NC2-TR-1998-030, October 1998.

[28] S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy,
“Improvements to the SMO algorithm for SVM regression,” IEEE
Transactions on Neural Networks, vol. 11, pp. 1188–1194, Sept. 2000.

JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 14

[29] W. Chu, “Bayesian approach to support vector machines,”
Ph.D. Thesis, National University of Singapore, January 2003,
http://www.gatsby.ucl.ac.uk/∼chuwei/paper/thesis.pdf.

[30] D. G. Luenberger, Linear and Nonlinear Programming, 2nd ed. Menlo
Park, California: Addison-Wesley Publishing Company, 1984.

[31] S. S. Keerthi and S. K. Shevade, “SMO algorithm for least squares
SVM formulations,” Neural Computation, vol. 15, no. 2, Feb. 2003.

[32] T. S. Jebara and T. S. Jaakkola, “Feature selection and dualities in max-
imum entropy discrimination,” in Uncertainty in Artificial Intelligence:
Proceedings of the Sixteenth Conference (UAI-2000). San Francisco,
CA: Morgan Kaufmann Publishers, 2000, pp. 291–300.

[33] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, and T. Poggio, “Feature
selection in SVMs,” in Advances in Neural Information Processing
Systems, T. Leen, T. Dietterich, and V. Tresp, Eds., vol. 13, 2001, mIT
Press.

[34] D. J. C. MacKay, “Bayesian methods for backpropagation networks,”
Models of Neural Networks III, pp. 211–254, 1994.

[35] B. Schölkopf and A. J. Smola, “New support vector machines,” GMD
FIRST, NeuroCOLT2 Technical Report NC2-TR-1998-031, 1998.

[36] M. H. Law and J. T. Kwok, “Applyig the Bayesian evidence framework
to ν−support vector regression,” in Proceeding of the Twelfth Euro-
pean Conference on Machine Learning, 2001, pp. 312–323, freiburg,
Germany.

[37] M. Opper and D. Saad, Advanced Mean Field Methods - Theory and
Practice. London, England: The MIT Press, February 2001.

[38] S. Duane, A. D. Kennedy, and B. J. Pendleton, “Hybrid Monte Carlo,”
Physics Letters B, vol. 195, no. 2, pp. 216–222, 1987.

[39] R. H. Byrd, P. Lu, and J. Nocedal, “A limited memory algorithm
for bound constrained optimization,” SIAM Journal on Scientific and
Statistical Computing, vol. 16, no. 5, pp. 1190–1208, 1995.

[40] K.-R. Müller, A. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and
V. Vapnik, “Using support vector machines for time series prediction,”
in ICANN ’97: Proc. of the Int. Conf. on Artificial Neural Networks,
W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, Eds., 1997, pp.
999–1004, springer Berlin.

[41] M. E. Tipping, “The relevance vector machine,” in Advances in Neural
Information Processing Systems 12, S. A. Solla, T. K. Leen, and K.-R.
Mller, Eds. MIT Press, 2000, pp. 652–658.

Wei Chu received the B.E. degree in automatic
control from Harbin Engineering University, China
in 1995, and the M.E. degree in inertial navigation
system from the 3rd Research Academy of China
Aerospace Cooperation in 1998. He joined Beijing
Research Institute of Huawei Technologies Corpo-
ration as a software engineer from Jan. 1999 to
Jul. 1999, and then he was a Ph.D. candidate at
Control Division of the Department of Mechanical
Engineering, National University of Singapore, from
Jul. 1999 to Jan. 2003.

He is currently a postdoctoral research fellow at Gatsby Computational
Neuroscience Unit, University College London. His research interests include
machine learning, Bayesian statistics and Bioinformatics.

PLACE
PHOTO
HERE

S. Sathiya Keerthi Biography text here.

PLACE
PHOTO
HERE

Chong Jin Ong Biography text here.

